sarada well

Upload: kiran-kumar

Post on 14-Apr-2018

236 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 Sarada Well

    1/46

    DISCHARGE CALCULATIONS.

    Discharge by Catchment area method:

    a) By Ryve's formula = 860 cumecs

    b) By Dicken's formula = 1980 cumecs

    c) By Rainfall Method = 1160 cumecs

    Discharge by A-V Method:

    a) = 1140 cumecsb) = 1140 cumecs

    c) = 1100 cumecs

    d) = 820 cumecs

    e) = 1140 cumecs

    The Discharge by A.V method and rainfall method are coinciding.

    Hence discharge of 1140 cumecs is taken as design discharge.

    At 100m D/S

    At 20m U/S

    At 100m U/S

    At Site of crossing.

    CONSTRUCTION OF HLB ACROSS RIVER VEGAVATHI NEAR VANTHARAM

    @ KM 11/8-10 ON PANUKUVALASA - BALIJIPETA ROAD IN

    VIJAYANAGARAM DISTRICT.

    At 200m D/S

    1

  • 7/29/2019 Sarada Well

    2/46

    CONSTRUCTION OF HLB ACROSS RIVER VEGAVATHI NEAR VANTHARAM

    @ KM 11/8-10 ON PANUKUVALASA - BALIJIPETA ROAD IN

    M.F.L = +13.06

    L.B.L = +7.58

    V = 2.66 m/sec

    Design discharge Q = 3064.2 Cumecs

    D = 13.06 - 7.58 = 5.48 m

    d = 0.15 m

    ha = = 0.34167 m

    = 0.49167 m

    Vv = = 2.80 m/sec

    Linear Water way required = Q/D*Vv = 200.04 m

    14 vents of 16.5 m = 231 m

    However provide 14 vents of 16.5m effective with footpaths from bank to bank.

    Total Head

    Velocity through Vents

    Velocity of flow at M.F.L

    Depth of flow at M.F.L

    Assuming afflux

    LINEAR WATERWAY CALCULATIONS.

    Head due to velocity at approach V2.D

    2/ 2g ( d+D)

    2

    Cd2gh

    2

  • 7/29/2019 Sarada Well

    3/46

    3

  • 7/29/2019 Sarada Well

    4/46

    4

  • 7/29/2019 Sarada Well

    5/46

    Design Discharge 3983.46 cumecs

    M.F.L +13.06

    L.B.L +7.58

    Sill Level +7.58

    Vertical Clearance 1.65 m

    Thickness of Deckslab D 1.675 m

    Wearing coat thickness 0.1 m

    R.C.L = MFL + AFFLUX +VERT. CLEAR +D ( DECK) +WEAR.COAT = +16.64

    Linear water way required = 200.04 m

    Span arrangement provided 14 vents of 16.50 m eff. With footpaths.

    Mean Scour Depth = 9.476 m

    F.L for Pier as per Scour depth = -+12.146

    F.L for Abutment as per Scour depth = -+2.946

    Based on the soil report the following F.L' s are proposed with about 1.50m embedment into S.D.R

    A1 , A2 -+2.95

    P2,P5,P9,P11,P12 -+12.146P3,P4,P6,P7 +88.000

    P1,P8,P10,P13 +89.350

    Length of flywing = RCL-SILL LEVEL - BASE WIDTH

    = 7.000 M

    PROVIDING 350MM THICK FLYWING

    3.5 m

    0.45 m

    Weight of Flywing : 3.5 m

    (3.5x.45+0.5x3.52)0.35x2.40 = 6.468 t

    C.G. of flywing:A X AX

    1 1.575 1.75 2.756

    2 6.125 1.167 7.146

    Total 7.7 9.902

    C.G = 1.286 m

    CONSTRUCTION OF HLB ACROSS RIVER VEGAVATHI NEAR VANTHARAM @ KM

    ON PANUKUVALASA - BALIJIPETA ROAD IN VIJAYANAGARAM DISTRICT.

    PRELIMINARY DATA

  • 7/29/2019 Sarada Well

    6/46

    6

    11.00

    Thickness of Wall steining h = Kd = 0.657

    Provide 600mm thick for Pier also.

    75mm 700mmCURB HEIGHT

    300mm

    30

    100mm

    Angle = 30

    Height = 0.775 + 0.3 = 1.643

    Tan300

    Provide 1.7 m curb height.

    L

  • 7/29/2019 Sarada Well

    7/46

    1/8-10

  • 7/29/2019 Sarada Well

    8/46

    DESIGN OF BACKING WALL & BED BLOCK:

    0.30

    CONCRETE MIX = M20 0.10

    RCL 14.282

    R.C.L = 14.282

    = 35 deg.1.7

    Deck thickness = 1.7 m

    Wearing coat thk. = 0.10 m

    Ka = 0.246

    0.211

    = 1.80 t/cum

    0.30

    Width of backing wall = 0.30 m

    Live load surcharge = 1.20

    Thickness of Bed = 0.30 m

    block

    Width of Bed block = 1.05 m

    (h) Height of Backing wall h = 0.10 + 1.7 0.211 = 2.01 m

    a) Moment due to Earth Pressure:

    Pa = 1/2 Ka h2

    = 0.895 t/sqm

    Lever arm = 0.42 X 2.01 = 0.845 m

    Moment = 0.895 X 0.845 = 0.76 t-m

    3

    B.M due to fluid pressure of 480 kg/sqm = 480 2.011 = 0.651 t-m

    1000 6

    < 0.756 t-m

    b) Moment due to Live load surcharge:

    Intensity of Live load surcharge at RCL = 0.246 1.80 1.20 = 0.531 t/sqm

    2Moment = 0.531 X 2.01 2 = 1.074 t-m

    c) Moment due to Breaking force:

    Max.axle load is 20.00 tonne for class 70r wheeled load.

    Breaking force is 20% of axle load I.e = 20.00 X 20 = 4.000 t

    100

    BACKING WALL:

  • 7/29/2019 Sarada Well

    9/46

    Breaking force under each wheel = 2.00 t

    a) Dispersion width at top of bed block = 0.86 2 2.01 = 4.88 m

    (Tyre width = 0.86 m) (For second wheel)

    b) Dispersion width at top of bed block

    (For first wheel)= 0.475 + 1.2 + 0.860 + 2.01 = 4.55 m

    Intensity of second Wheel load / RM = 2.00 4.88 = 0.410 t/m

    Intensity of first Wheel load for overlapping portion = 2.00 4.55 = 0.44 t/m

    Total Wheel Intensity = 0.41 + 0.44 = 0.85 t/m

    Lever arm = 2.01 + 1.20 = 3.21 m

    Moment due to Breaking force = 0.850 X 3.211 = 2.728 t-m

    Total Moment = 0.76 + 1.074 + 2.728 = 4.56 t-m/m

    For V.R.C.C M20 mix: Q = 7.702 j = 0.916

    d = 4.56 * 105

    = 24.33 cm

    100 * 7.70

    d available = 30.00 5 0.6 = 24.40 cm

    > 24.33 cm

    A st = 4.56 * 105

    = 10.20 Cm2

    2000 0.916 24.40

    Spacing of 12 mm dia tor bars = 1.131 X 1000 = 111 Cm c/c

    10.20

    Spacing of 12 mm dia tor bars @ 110 mm c/c vertically in the form of Stirrups.

    Distribution steel:

    A st = 0.12 X 100 X 30.00 = 3.6 Cm2 /m

    100

    Spacing of 10 mm dia bars = 3.142 1.0 X 100 = 21.819 cm

    4 X 3.6

    Provide 10 mm dia tor bars @ 200 mm c/c horizontally on both faces.

    Width of bed block = 105 cm

    Steel to be provided = 105 X 22.5 100 = 23.625 Cm2

    BED BLOCK DESIGN:

  • 7/29/2019 Sarada Well

    10/46

    Longitudinal bars at top & bottom = 23.6 4 = 5.906 Cm2

    Provide 6 nos of 12 mm dia tor bars @ top & bottom equally spaced in a

    width of 1.05 m (Steel provided = 6 X 1.131 = 6.785 Cm2)

    Steel in Transverse direction = 23.6 2 = 11.813 Cm2

    Volume of steel per 1m length = 11.81 X 100 = 1181 Cm3

    Length of each Stirrup = 100 + 25 2 = 250 cm

    Using 10 mm dia bars volume of each stirrup = 250.0 0.786 = 196.500 Cm3

    No of stirrups = 1181 196.5 = 6.011 no

    Spacing of Stirrups = 100 6.011 = 16.63 cm

    Provide 10 mm dia stirrups @ 150 mm c/c

    12 mm dia tor bars @

    110 mmc/c

    10 mm dia tor bars @

    2.01 m 200 mm c/c

    6 nos of

    12 mm dia each at top &bottom

    0.30 m 10 mm dia stirrups @

    150 mm c/c

    1.05 m

  • 7/29/2019 Sarada Well

    11/46

    Width of bed block 90 cm

    Steel to be provided 90 X 22.5 100 20.250 Cm2

    Longitudinal bars at top & bottom 20.3 4 5.063 Cm2

    Provide 6 nos of 12 mm dia tor bars @ top & bottom equally spaced in a

    width of 0.75 m (Steel provided 6 X 1.131 6.785 Cm2)

    Steel in Transverse direction 20.3 2 10.125 Cm2

    Volume of steel per 1m length 10.13 X 100 1013 Cm3

    Length of each Stirrup 85 + 25 2 220 cm

    Using 10 mm dia bars volume of each stirrup = 220.0 0.786 172.920 Cm3

    No of stirrups 1013 172.9 5.855 no

    Spacing of Stirrups 100 5.855 17.08 cm

    Provide 10 mm dia stirrups @ 160 mm c/c

    BED BLOCK DESIGN:

  • 7/29/2019 Sarada Well

    12/46

  • 7/29/2019 Sarada Well

    13/46

    DESIGN OF R.C.C CIRCULAR PIER.

    a) Checking of Circular Pier design using P- body curves:

    P = 455.50 t CONCRETE MIX = M 20

    ML = 105.19 t-mMT = 125.88 t-m

    MR = ML2 + MT2 164.04 t-m say 164.04 t-m

    D = 2.00

    Checking of Pier section based on actual area required & min. % of steel

    for direct load & moment.

    With 0.8 % steel .

    Asc = 0.008 Ag m = 10

    Ac = 3.142* D*D 0.008 = 0.84 D2

    4 4

    Dm = 200.00 2 5 2.25 = 185.5 cmD = 200.00

    Dm = 185.5 D = 0.9275 D

    200

    Ic = 3.142 x D4 +(m-1)* 0.008 * 3.142* D2*Dm2

    64 4 8

    = 0.0491 9.0 0.008 3.142 0.860 D4

    4 8

    = 0.0552 D4

    c = P + M* y

    Ac Ic

    For M 20 c = 66.67 Kg/Cm2 M = Mr 164.04

    66.67 = 455.5 1000 + 164.04 10^5 X D

    0.84 D2

    0.0552 D4

    2

    = 540938 + 1.49E+08

    D2

    D3

    L.H.S = 66.666667

    (by trail&error)

    R.H.S = 540937.89 + 1.49E+08 D = 171.0 cm

    D2

    D3

    Required

    = 48.229596 200.00 cmAvailable D = 2.00 m

    Hence Safe

    Asc in Column

    Pt = 0.8 %

    2

    Ast = 0.8 3.142 X 171.0 = 183.75 Cm2

    100 4

    AST REQD OF ALL CASES(A,B,C) = 183.75 Cm2

    Provide 32 nos of 28 mm dia tor bars 197.06624 Cm2

    Spacing of 28 mm dia steel

    = 19.63 cm C/C Hence O.K

    +(m-1) * 3.142 * D2

  • 7/29/2019 Sarada Well

    14/46

    Transverse reinforcement:

    Provide 10 mm dia tor stirrups @ 250 mm c/c

    B) Checking of Pier section on actual area required and min. % of steel for direct load.

    With 0.8% steel

    Asc = 0.008Ag m = 10

    Ac = 3.142* D2 = 0.84 D2

    4 4

    c = P

    Ac

    For M 20 c = 66.67 Kg/Cm2

    P = 455.5 t

    66.6667 = 455.5 1000 D = 90.08 cm

    0.842 D2

    Actual Area required for direct load = 0.84 D2

    = 6832.95 Cm2

    Ast min = 0.8 X 6832.95 = 54.66 Cm2

    100 < 0.3% of steel

    C) Asc in Column

    Pt = 0.3 % OF GROSS AREA

    2

    Ast = 0.3 3.142 X 200.0 = 94.26100 4 Cm2

    % STEEL PROVIDED = (183.750444*100*4)/(3.142*200*200) = 0.5848

    d) Check by Rational formulae:

    Equivalent Concrete Area = 0.83 X 4 = 3.307 m2

    Direct Stress = P/A = 455500 / 33073.75 = 13.772 Kg/Cm2

    Bending Stress = M x y = ####### X 100.00 = 19.150 Kg/Cm2

    Ie 0.0535 X #########

    Direct stress + Bending sress < 1Perm.comp.str Per.Bend.Strs

    13.772 + 19.15 = 0.563 < 1

    50.00 66.67

    Hence o.k

    +(m-1)* 3.142 *D2*0.008

  • 7/29/2019 Sarada Well

    15/46

    a) Checking of Circular Pier design using P- body curves:

    P = 455.5 t CONCRETE MIX = M 20

    ML = 105.19 t-mMT = 125.88 t-m

    MR = ML2 + MT2 164.04 t-m

    R = 1.00

    D = 2.00

    Cover = 5.00 cm

    m = 10.00

    Eccentricity e = MR = 164.04 = 0.3601 m

    P 455.5

    e = 36.01 / 100 = 0.3601

    R

    r = 100 5 1 1.4 = 92.60 cm

    r = 0.93

    R

    From Pea - body curves

    mp = 10 0.58482 = 0.058

    100

    For e/R = 0.360 , r = 0.926

    R

    r/R e/R mp c k

    For 0.950 0.360 0.075 1.880 0.420

    0.900 0.360 0.075 1.900 0.450

    0.926 0.360 0.075 1.890 0.434

    For 0.950 0.360 0.050 1.980 0.480

    0.900 0.360 0.050 2.020 0.480

    0.926 0.360 0.050 1.999 0.480

    C = 1.999 k = 0.480

    fc = CMr = 1.999 164.04 10^5 = 32.80 Kg/Cm2

    R3

    1003

    < 66.66667 Kg/Cm2

    Fs = m k fc = 10.00 0.480 32.80 = 157.42 Kg/Cm2

    < 2000 Kg/Cm2

  • 7/29/2019 Sarada Well

    16/46

    Name of work;- Construction of ROB at KOLAKALURU IN GUNTUR Dist (pier)

    P = 427 t

    ML = 138 t-m

    MT = 174 t-m

    MR = ML2

    + MT2

    = 222.08 t-m say 223.00 t-m

    External dia. of well = 6.00 m

    Internal dia of well = 4.20 m

    Pier top width = 2.00 m

    Pier bottom width = 2.00 m

    Verticle loads = 427.00 t

    Concrete mix =M 20

    C = 66.60

    n1 = 10.00 = 0.250

    10.00 + 2000

    66.60j = 1.00 - 0.250 = 0.917

    3

    Q = 0.50 x 0.917 x 0.250 66.6 = 7.63

    Providing 1.25 m thick Well cap

    Intensity of slf weight of well cap = t*2.40 = 3.000 t/sqm

    The wellcap is most critical against shear which governs he design.

    Hence the cap is designed for shear and checked for bending.

    *Dia of wellcap is reduced for design purpose for a thickness of 'ts' 175 mm

    considering false steining.

    Ex.dia = 6.00 m

    45 Degrees dispersion of load from pier is taken upto C.G. of

    steel I.e upto a depth of 1.50-0.075-0.016-0.016/2 'd' = 1.151 m (effective depth)

    Dispersion length l(ds) = Pier bot.width + 2*disp.width = 4.302 m < 6.00 m

    2

    Area under UDL = 4.302 = 14.54 sqm

    4

    UdL. for shear = vrt.load/area +slf wt = 32.38 t/sqm

    ( 427.00 + 3.000 )

    14.54Shear will be calculated at a distance of 'a' i.e 'd'

    from inner face of steining

    Where a = Int.dia of well/2 -d = 0.949 M

    1.151 0.949

    V = q*a/2 = 15.363 t/m

    DESIGN OF PIER WELL CAP

  • 7/29/2019 Sarada Well

    17/46

    ( 32.38 X 0.949 /2)

    4.20 m

    (Int.dia)

    Shear due to overturning moment

    Max. SF per 'm' run = po d/4

    po = pd/r

    d = Dia.of pier r =Ext dia of well/2

    Where p = 4*MR R3

    = 10.47 t/m

    = 4 x 223.00 3

    3.00

    po = pd/r 10.47 2.00 3 = 6.98 t/m

    Shear force = po d/4 = 3.49 t

    Total Shear force = v + po d/4 = 18.853 t

    Shear stress = 18.853 1.151 16.38 t/sqm < 22.91225 t/sqm

    (Permissible shear stress)

    or 1.64 Kg/Cm2

    < 2.29 Kg/Cm2

    Hence shear reinforcement not reqd.)

    % of steel M20 M25For 0.150 1.8 Kg/Cm2 1.9 Kg/Cm2

    0.250 2.2 Kg/Cm2 2.3 Kg/Cm2

    0.500 3 Kg/Cm2 3.1 Kg/Cm2

    0.750 3.5 Kg/Cm2 3.6 Kg/Cm2

    For M20 Grade concrete for As/bd= 0.273

    Permissible Shear stress 2.29 Kg/Cm2

    Check for flexure:

    For U.D.L Sagging Moment at centre = w*D2/30

    Hogging moment at edge = w*D2/30

    Where 'D' is c/c of steining D = 6.00 + 4.20 = 5.10 m

    2

    or Int.dia+Eff.depth = 4.20 + 1.151 = 5.35 m

    Effective Span = 5.10 m

    For over turning Moments Mu = BM/6a

  • 7/29/2019 Sarada Well

    18/46

    o = (dia. Of pier + well eff.depth)/2 = 1.576

    a = (Ex.dia )/2 = 3

    o a = 1.576 = 0.5252

    3

    o a0.3 2.947

    0.4 2.062

    0.5 1.489

    0.6 1.067

    0.7 0.731

    For simply supported case p 368 case 20

    = 1.489 - 1.489 - 1.067 * 0.5252 - 0.50

    0.6 - 0.5

    = 1.390

    For fixed case

    For fixed case

    o a

    0.3

    0.4 1.73

    0.5 1.146

    0.6 0.749

    0.7 0.467

    = 1.146 - 1.146 - 0.749 * 0.525 - 0.50

    0.6 - 0.5

    = 1.050

    Considering 50% partial fixidity final moments have been considered as one of both the cases.

    Case A :

    w = 25.62 t/m

    D = 6 m

    Sagging moment = w*D2/30 = 38.85 t-m

    Hogging moment = w*D2/30 = 38.85 t-m

    Case B :Due to overturning moments

    MR = 223.00 t-m

    Moment due to shift of well cap top

    = 427 X 0.15 = 64.05 t-m

    `

    `

  • 7/29/2019 Sarada Well

    19/46

    Total moment = MR + 64.05 = 287.05 t-m

    Max. radial moment = S.S + FIX X 287.05 = 19.46 t-m

    2 6 X a

    Sagging Moment = Sag.Mom + Max. Rad.Mom. = 58.31 t-m

    Hogging Moment = Hog.Mom + Max. Rad.Mom. = 58.31 t-m

    d eff required = Sag.Mom = 87.44 Cm < 1.151 m

    7.63 100

    Bottom Reinforcement = Sag.Moment * 1/100 = 27.63 Cm2/m

    Ast provided = 30 Cm2/m width

    Using 20 10.47 Cm

    Provide 20 mm dia. Tor bars both ways both at top & bottom @ . 100 mm c/c

    % of Steel = 100 X 3.14 X 100 = 0.273

    10 100 1.151 X 100

    Steel = 100 + 100 * 2 * 1.578 = 6.312 Kg

    100 100

    Per Cum = 38.25 Kg Say 40 Kg

    1450 Kg per Pier cap.

    t * j * d

    mm dia. Tor bars , Spacing =

  • 7/29/2019 Sarada Well

    20/46

  • 7/29/2019 Sarada Well

    21/46

  • 7/29/2019 Sarada Well

    22/46

    `

  • 7/29/2019 Sarada Well

    23/46

    Name of work;- Construction of ROB at TADEPALLIGUDEM

    in West Godavari District.

    P = 475.5 t

    ML = 155.19 t-m

    MT = 255.88 t-m

    MR = ML + MT

    = 299.26 t-m say 300.00 t-m

    External dia. of well = 6.00 m

    Internal dia of well = 4.20 m

    Pier top width = 2.00 m

    Pier bottom width = 2.00 m

    Verticle loads = 475.50 t

    Concrete mix =M 20

    C = 66.60

    n1 = 10.00 = 0.250

    10.00 + 2000

    66.60

    j = 1.00 - 0.250 = 0.9173

    Q = 0.50 x 0.917 x 0.250 66.6 = 7.63

    Providing 1.25 m thick Well cap

    Intensity of slf weight of well cap = t*2.40 = 3.000 t/sqm

    The wellcap is most critical against shear which governs he design.

    Hence the cap is designed for shear and checked for bending.

    *Dia of wellcap is reduced for design purpose for a thickness of 'ts' 175 mm

    considering false steining.

    Ex.dia = 6.00 m

    45 Degrees dispersion of load from pier is taken upto C.G. of

    steel I.e upto a depth of 1.50-0.075-0.016-0.016/2 ' d' = 1.151 m (effective depth)

    Dispersion length l(ds)= Pier bot.width + 2*disp.width = 4.302 m < 6.00 m

    2

    Area under UDL = 4.302 = 14.54 sqm

    4

    UdL. for shear = vrt.load/area +slf wt = 35.71 t/sqm

    ( 475.50 + 3.000 )

    14.54

    Shear will be calculated at a distance of 'a' i.e 'd'

    from inner face of steining

    Where a = Int.dia of well/2 -d = 0.949 M

    1.151 0.949

    V = q*a/2 = 16.946 t/m

    ( 35.71 X 0.949 /2)

    4.20 m

    (Int.dia)

    DESIGN OF PIER WELL CAP

  • 7/29/2019 Sarada Well

    24/46

    Shear due to overturning moment

    Max. SF per 'm' run = po d/4

    po = pd/r

    d = Dia.of pier r =Ext dia of well/2

    Where p = 4*MR R3

    = 14.11 t/m

    = 4 x 300.00 3

    3.00

    po = pd/r 14.11 2.00 3 = 9.41 t/m

    Shear force = po d/4 = 4.70 t

    Total Shear force = v + po d/4 = 21.650 t

    Shear stress = 21.650 1.151 18.81 t/sqm < 24.12472 t/sqm(Permissible shear stress)

    or 1.88 Kg/Cm2

    < 2.41 Kg/Cm2

    Hence shear reinforcement not reqd.)

    % of steel M20 M25

    For 0.150 1.8 Kg/Cm2 1.9 Kg/Cm2

    0.250 2.2 Kg/Cm2 2.3 Kg/Cm2

    0.500 3 Kg/Cm2 3.1 Kg/Cm2

    0.750 3.5 Kg/Cm2 3.6 Kg/Cm2

    For M20 Grade concrete for As/bd= 0.303

    Permissible Shear stress 2.41 Kg/Cm2

    Check for flexure:

    For U.D.L Sagging Moment at centre = w*D2/30

    Hogging moment at edge = w*D2/30

    Where 'D' is c/c of steining D = 6.00 + 4.20 = 5.10 m

    2

    or Int.dia+Eff.depth = 4.20 + 1.151 = 5.35 m

    Effective Span = 5.10 m

    For over turning Moments Mu = BM/6a

    o = (dia. Of pier + well eff.depth)/2 = 1.576

    a = (Ex.dia )/2 = 3

    o a = 1.576 = 0.5252

    3

    o a

    0.3 2.947

    0.4 2.062

    0.5 1.489

    0.6 1.067

    0.7 0.731

    For simply supported case p 368 case 20

  • 7/29/2019 Sarada Well

    25/46

    = 1.489 - 1.489 - 1.067 * 0.5252 - 0.50

    0.6 - 0.5

    = 1.390

    For fixed caseFor fixed case

    o a

    0.3

    0.4 1.73

    0.5 1.146

    0.6 0.749

    0.7 0.467

    = 1.146 - 1.146 - 0.749 * 0.525 - 0.50

    0.6 - 0.5

    = 1.050

    Considering 50% partial fixidity final moments have been considered as one of both the cases.

    Case A :

    w = 25.62 t/m

    D = 6 m

    Sagging moment = w*D2/30 = 42.86 t-m

    Hogging moment = w*D2/30 = 42.86 t-m

    Case B :

    Due to overturning moments

    MR = 300.00 t-m

    Moment due to shift of well cap top

    = 475.5 X 0.15 = 71.325 t-m

    Total moment = MR + 71.325 = 371.33 t-m

    Max. radial moment = S.S + FIX X 371.33 = 25.17 t-m

    2 6 X a

    Sagging Moment = Sag.Mom + Max. Rad.Mom. = 68.02 t-m

    Hogging Moment = Hog.Mom + Max. Rad.Mom. = 68.02 t-m

    d eff required = Sag.Mom = 94.44 Cm < 1.151 m

    7.63 100

    Bottom Reinforcement = Sag.Moment * 1/100 = 32.23 Cm2/m

    Ast provided = 33 Cm2/m width

    Using 20 9.52 Cm

    Provide 20 mm dia. Tor bars both ways both at top & bottom @ . 90 mm c/c

    t * j * d

    mm dia. Tor bars , Spacing =

    `

    `

  • 7/29/2019 Sarada Well

    26/46

    % of Steel = 100 X 3.14 X 100 = 0.303

    9 100 1.151 X 100

    Steel = 100 + 100 * 2 * 1.578 = 7.013 Kg

    90 90

    Per Cum = 38.25 Kg Say 40 Kg

    1450 Kg per Pier cap.

  • 7/29/2019 Sarada Well

    27/46

    Vertical Load P = 352.44 t

    Long.Moment ML = 180.27 t

    Trans.Moment MT = 107.38 t-m

    Resultant Moment MR = 209.828 t-m

    Thickness of well cap = 1.50 m

    External dia. Of well = 8.00 m

    Internal dia of well = 6.50

    Steining Thickness = 0.75 m

    Steining height = 4.00 m

    Curb height = 1.50 m

    Straight length of Abutment 11.05 m

    Assuming Reinforcement dia. as 2 cm

    Cover = 7.5 cm

    B(C/C ABUT TO EXTREEM END C/C STEINING) = 6.4875 M

    Base width of Abutment at Sill level = 1.9 m

    R.C.L = 100.470

    SILL = 95.000

    effective depth d = 139.5 Cm

    (For Long.direction)

    dp, in perpendicular dimension 141.5 Cm

    (For Tran.direction)

    Assume 1:1 dispersion for vertical load through well cap

    Width of dispersion (2.50+1.395) = 3.295 m

    Length of dispersion L = 11.05 m

    Intensity of load load = 9.68 t/sqm

    unit area

    The wellcap is assumed as partially fixed alround its circumstance.

    i) Effective span S.S case = 7.895 m

    (Int.dia + w.cap thik -cover -2-2/2)c/c length = Int.dia + st.thk) = 7.25 m

    Eff.span = 7.25

    Effective span fixed case = 6.50 m

    Effective span for partially fixed case D 6.88 m

    For simplicity of analysis the intensity of direct load coming

    on wellcap is assumed to act over entire area of wellcap .

    From Reynold's handbook

    Ave. B.M at centre of partially fixed circular slab = wD2/32

    Average B.M around edge = -wD2/32

    Self weight of wellcap = 3.60 t/sqm

    Load intensity = 9.68 t/sqm

    Total w = 13.28 t/sqm

    Moment in longitudinal direction /m = 15.39 t-m/m

    ml ML/disp.length = MLXB/D*L

    Moment in transverse direction /m = 32.59 t-m/m

    MT/disp.width

    B.M due to direct load wD2/32 = 19.615 t-m/m

    MOVEMENT IN LONGITUDINAL DIRECTION + = 15.39 t-m/m

    = (MLXB)/(DXL)

    Moment at support IN L.direct = = 3.85 t-m/m

    DESIGN OF ABUTMANT WELL CAP

    (ML*B)/(4*D*L)

  • 7/29/2019 Sarada Well

    28/46

    Assuming 50% for externally applied moments IN TRANSVERSE DIRECTION

    Moment at centre = M/2

    Moment at support = M/8

    Final B.M at centre of wellcap

    I) AT CENTRE OF WELL CAP:

    Longitudinal B.M +ve = wD2/32 +(MLXB)/(D*L) = 35.01 t-m/m (Bottom)

    Longitudinal B.M -ve = 0 +(ML*B)/(D*L) = 15.39 t-m/m (Top)

    Transverse B.M +ve = wD /32 +MT/2 = 35.91 t-m/m (Bottom)

    Transverse B.M -ve = 0 +MT/2 = 16.29 t-m/m (Top)

    II) AT SUPPORT:

    Longitudinal B.M -ve = w X D2 + (MLXB) = 23.46 t-m/m (Bottom)

    32 (4*D*L)

    Transverse B.M -ve = w X D2 + MT = 23.69 t-m/m

    32 8.00

    Max. B.M = 35.91 t-m/m

    CHECK FOR DEPTH: CONCRETE MIX = M 20

    STEEL Fe 415

    C = 66.66 kg/sq.Cm Q = 7.630

    t = 2000 kg/sq.Cm j = 0.917

    eff.depth required = 35.91 * 105

    = 68.60 Cm

    100 * 7.63

    < 139.5 Cm

    Keeping Transverse Reinforcement nearer to Surface.

    Hence O.KReinforcement:

    1 Longitudinal B.M +ve = 35.01 t-m/m

    Ast = Longitudinal B.M +ve = 13.68 Cm2

    2000 X 0.917 X 139.50

    >

    Ast minimum

    Ast minimum =0.12*b*D/100 = 18.00 Cm2

    Using 20 mm dia.bars

    Spacing required = 4.91*100/18 = 17.45 Cm

    However provide 20 mm dia.bars at 150 mm c/c at bottom in

    Longitudinal direction.

    2 Longitudinal B.M -ve at Support (top) = 23.46 t-m/m

    Ast = Longitudinal B.M -ve = 9.17 Cm2

    2000 X 0.917 X 139.50