sargassum cinereum biomass for removal of lead: kinetics ... · potential use of sargassum cinereum...

24
Potential use of Sargassum cinereum biomass for removal of Lead: Kinetics, biomass for removal of Lead: Kinetics, Isotherms, Thermodynamic and Characterization Studies Kishore Kumar Kadimpati Siva Jyothi Jonna

Upload: duongnguyet

Post on 01-May-2018

218 views

Category:

Documents


1 download

TRANSCRIPT

Potential use of Sargassum cinereumbiomass for removal of Lead: Kinetics, biomass for removal of Lead: Kinetics,

Isotherms, Thermodynamic and

Characterization Studies

Kishore Kumar Kadimpati

Siva Jyothi Jonna

Point Point Point Point Point Point Point Point and Nonpoint Sourcesand Nonpoint Sourcesand Nonpoint Sourcesand Nonpoint Sourcesand Nonpoint Sourcesand Nonpoint Sourcesand Nonpoint Sourcesand Nonpoint Sources

Collection and preparation of biomass

Collected from Andaman Nicobar islands, washed

thoroughly to remove debris, shade dried

powdered in domestic mixer. Powdered biomass

is rinsed with demineralized water and dried in

oven at 70°C, sieved trough 100 sieve and

stored in dehumidifier for further studies.

Mallareddy College of Pharmacy

stored in dehumidifier for further studies.

The major advantages of biosorption over conventionaltreatment methods include

¯ Low cost

¯ High efficiency

¯ Minimization of chemical and biological

sludge

¯ No additional nutrient requirement

Mallareddy College of Pharmacy

¯ No additional nutrient requirement

¯ Regeneration of biosorbent and

¯ Possibility of metal recovery

To determine the metal calculations in the parameters the

following equation is used:

MODEL CALCULATION

Where qe = metal uptake (mg/g).

V = volume of metal solution (lit).

Ci = Initial concentration (mg/L).

Cf = Final concentration (mg/L).

w = Mass of the adsorbent (gm).

20

25

30

35

40

45

50

55In

itia

l L

ead

(II)

co

ncen

trati

on

, m

g/L

Pb (II)-Equilibrium time

Mallareddy College of Pharmacy

5

10

15

20

0 20 40 60 80 100 120 140 160

Init

ial L

ead

(II)

co

ncen

trati

on

, m

g/L

Time, min

5 g/L 10 g/L 15 g/L 20 g/L

4

6

8q

e, m

g/g

Effect of pH

Mallareddy College of Pharmacy

0

2

0 20 40 60 80

Ce, mg/L

pH 3 pH 4 pH 5 pH 6

60

65

70

75

80

85

0 50 100 150 200

% R

em

ov

al

of

Lead

(II)

Initial Pb (II) concentration, mg/L

pH 3 pH 4 pH 5 pH 6

7

8

Effect of Initial metal Conc.

Mallareddy College of Pharmacy

0

1

2

3

4

5

6

7

0 50 100 150 200

qe, m

g/g

Initial Pb(II) concentration, mg/L

pH 3 pH 4 pH 5 pH 6

60

65

70

75

80

85

% R

em

ov

al

of

Pb

(II

)Effect of Biomass weight

Mallareddy College of Pharmacy

45

50

55

60

0 2 4 6 8 10 12 14 16 18 20

Biomass weight, g/L

24.8 mg/L 48.3 mg/L 96.3 mg/L 148.2 mg/L 186.7 mg/L

15

20

25

30

35

40

45

qe

, m

g/g

Effect of Biomass weight

Mallareddy College of Pharmacy

0

5

10

15

0 2 4 6 8 10 12 14 16 18 20

Biomass weight, g/L

24.8 mg/L 48.3 mg/L 96.3 mg/L 148.2 mg/L 186.7 mg/L

65

70

75

80

85

% R

em

ov

al

of

Lead

(II)

Effect of Temperature

Mallareddy College of Pharmacy

55

60

295 300 305 310 315 320 325

Temperature, °°°°K

24.8 mg/L 48.3 mg/L 96.3 mg/L 148.2 mg/L 186.7 mg/L

0.6

0.7

0.8

Pb(II)- Freundlich Isotherm TEMP0

K KF{mg g-

1)(mg L

-1)n} n R

2

298 2.95053 1.283532 0.9981

308 4.762116 1.216545 0.9997

313 6.343077 1.162115 0.9987

323 9.206615 1.130454 0.9998

Mallareddy College of Pharmacy

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.5 0.75 1 1.25 1.5 1.75 2

log

qe

log Ce

298 K 308 K 313 K 323 K

16

Pb(II)- Langmuir Isotherm

Ce/qe=Ce/qm

+1/KLqm

Temp qm 1/KL KL R2

298 298 9.756098 50.93659 0.019632 0.9698

308 308 10.02004 66.52505 0.015032 0.9482

313 313 12.67427 109.4829 0.009134 0.9931

323 323 14.51379 154.3541 0.006479 0.9694

Mallareddy College of Pharmacy

4

7

10

13

4 24 44 64 84

Ce/q

e

Ce, mg/L

298 K 308 K 313 K 323 K

0.1

0.2

0.3

0.4

0.5

0.6

0.7

log

(C

ad

/Ce)

Pb(II)- Thermodynamics

Mallareddy College of Pharmacy

0

0.003075 0.003125 0.003175 0.003225 0.003275 0.003325 0.0033751/T

24.8 mg/L 48.3 mg/L 96.3 mg/L 148.2 mg/L 186.7 mg/L

CT ∆∆∆∆H ∆∆∆∆S T ∆∆∆∆g=h-ts

24.86 -35.0393 -104.488 298 31.10235

48.319 -30.0725 -89.5282 308 27.54462

96.34 -30.1357 -90.4626 313 28.28465

148.23 -25.8506 -77.5612 323 25.02643

186.71 -24.7362 -74.5437 31.10235

�Enthalpy Change is negative, so the process is

Exothermic nature.

�Gibbs free Energy change is negative it indicates

spontaneous process.

Pb(II)- Kinetics

First order kinetics

-0.4

-0.2

0

0.2

0.4

0.6

0.8

log

(q

e-q

t)

Mallareddy College of Pharmacy

-1.2

-1

-0.8

-0.6

-0.4

0 10 20 30 40 50 60 70 80 90 100Time, min

0.25 g 0.50 g 0.75 g 1 g

20

30

40

50

60

70

80

t/q

t, m

in m

g/g

Pb(II)- Kinetics

Pseudo Second order kinetics

B.W qe qe2*constant K

0.1 g 7.686395 237.9238 0.001355

0.25 g 4.00641 96.43634 0.01037

0.5 g 2.816901 54.77959 0.018255

1 g 2.250731 33.49399 0.029856

Mallareddy College of Pharmacy

0

10

20

0 20 40 60 80 100 120 140 160

Time, min

0.25 g 0.50 g 0.75 g 1 g

�From the Equilibrium kinetics second –

order model is well satisfied.

Unloaded S. cenereum

Mallareddy College of Pharmacy

Pb (II) loaded S. cenereum

S.No Band shift position, cm-1

DescriptionUn loaded

Biomass

Loaded with

Pb2

1 2947.68 2918 C–H stretching vibrations due to lignins

(Ahmet et al., 2007)

2 2145.97 2156 Thiocyanate (–SCN)

3 1925.97 1964 Combination of aromatic bonds

4 1508.85 --------- –NH stretching vibration at peptidic bond of

protein (Hui and Yu, 2007)

Mallareddy College of Pharmacy

protein (Hui and Yu, 2007)

5 1459.80 1439 Symmetric bending vibrations of alkane

bonds (–CH3) (Ahmet et al., 2007)

6 1098.65 1078 C–N, PO34 (ortho phosphate) and organic

siloxanes (Deepa et al., 2007)

6 1007.60 1013 C–O characterized by polysaccharides in the

biomass (Sujoy and Arun, 2007)

7 876.73 865 (–CH)- 1,3 substitution at aromatic aryl rings

8 798.80 --------- presence of siliceous (Si–C) (Vítor et al,

2009)

Unloaded S. cenereum

After Pb+2 adsorption the particles have

granular, complex, uneven and porous

surface textures that were not found in

the native biomass S. Cinereum algal

powder. The similar results were

observed in case of Cd+2, Cu+2 on the

surface of the Acacia leucocephala bark

powder (Subbaiah et al., 2010).

Mallareddy College of Pharmacy

Pb (II) loaded S. cenereum

powder (Subbaiah et al., 2010).

• Uptake of metal ions by adsorbent increases with increases in

adsorbate concentration.

• Uptake of metal ions increases with increase in pH of solution up to

certain extent and then decreases.

• Decline in sorption capacity with increasing the temperature may be

attributed to the physical adsorption.

Conclusions

Mallareddy College of Pharmacy

• From the linear Isotherm analysis it is clear that the Freundlich

Isotherm well satisfied than Langmuir models.

• The coefficients of the model equation are good agreement with the

values obtained in graphical analysis.

• The metal uptaking capacity is 7.22 mg/g at pH 5.

• The significant change in the wave number reveals, that the

involvement of the C–H stretching vibrations (lignins) (Ahmet

et al., 2007) and Thiocynates in the biosorption process

• After Pb+2 adsorption the particles have

granular, complex, uneven and porous surface textures

that were not found in the native biomass S. Cinereum

algal powder.

Mallareddy College of Pharmacy

algal powder.

• S. Cinereum is promising biomass useful for the removal of

Pb(II) from waste water.

Authors are thankful to DST-SERB

(SERB/F/4631/2013-14 dated 17.10.2013) for

the financial support for this work.

Mallareddy College of Pharmacy

1. Volesky. B., Holan, Z. (1995). Biosorption of heavy metals. Biotechnol. Prog. 11, 235-250.

2. Volesky. B., Holan, Z., Prsetyo, I. (1993). Biotechnol.Bio engineering, 41, 819-825.

3. Verma, N., Rehal, R. (1996) Removal of Chromium by Albizia libbeck pods from industrial

wastewater. J. ind. Pollut. Control.,12(1) 55-59

4. Prakasham, R.S., Sheno Merrie, J., Sheela, R., Saswathi, N., Ramakrishna, S.V. (1999)

Biosorption of chromium VI by free and immobilized Rhizopus arrhizus. Environmental

Pollution. 104 (3) 421-427.

5. Patterson. J. B., “Waste water treatment”, Science Publishers, 1977.

6. Volesky. B., “Sorption and Biosorption”, BV Sorbex, Inc. 1999.

7. Macaski. L. E., Dean. A. C. R., in A. Mizrahi (ed), “Advances in Biotechnological Processes”,

Biological waste treament, Alan R. Liss, 12 (1989) 159-201.

Mallareddy College of Pharmacy

8. Ting. Y. P., Lawson. F., Prince. I. G., Biotechnol. Bioeng., 34 (1989) 990-999.

9. Aksu. Z., Sag. Y., Kutsal. T., Environ. Technol. 11(1990) 33-40.

10. María Mar Areco, María dos Santos Afonso, Copper, zinc, cadmium and lead biosorption by

Gymnogongrus torulosus. Thermodynamics and kinetics studies, Colloids and Surfaces B:

Biointerfaces 81 (2010) 620–628.

11. Aravindhan Rathinam, Bhaswant Maharshi, Sreeram Kalarical Janardhanan, Raghava Rao

Jonnalagadda, Balachandran Unni Nair, Biosorption of cadmium metal ion from simulated

wastewaters using Hypnea valentiae biomass: A kinetic and thermodynamic study,

Bioresource Technology 101 (2010) 1466–1470.

Mallareddy College of Pharmacy