scaling properties of the chiral phase transition in the low density region of two-flavor qcd with...

1
Scaling properties of the chiral phase transition in the low density region of two- flavor QCD with improved Wilson fermions WHOT-QCD Collaboration: S. Aoki1, S. Ejiri2, T. Hatsuda3, K. Kanaya4, Y. Maezawa5, Y. Nakagawa2, H. Ohno6, H. Saito7, T. Umeda 8 , and S. Yoshida3 1Kyoto Univ., 2Niigata Univ., 3RIKEN, 4Univ. of Tsukuba, 5BNL, 6Bielefeld Univ., 7DESY, 8Hiroshima Univ., Abstract: We study scaling behavior of a chiral order parameter in the low density region, performing a simulation of two-flavor QCD with improved Wilson quarks. The scaling behavior of the chiral order parameter defined by a Ward-Takahashi identity agrees with the scaling function of the three-dimensional O(4) spin model at zero chemical potential. We extend the scaling study to finite density QCD. Applying the reweighting method and calculating derivatives of the chiral order parameter with respect to the chemical potential, the scaling properties of the chiral phase transition are discussed in the low density region. We moreover calculate the curvature of the phase boundary of the chiral phase transition in the temperature and chemical potential plane assuming the O(4) scaling relation. 1. Introduction and Motivation Quark mass dependence of QCD phase transition Expected nature of phase transitions (2-flavor QCD and O(4) spin model: same universality class?) mud 0 0 Physical point 1 st orde r 2 nd order Crossover 1 st order ms Quench ed Nf= 2 Nf= 3 Nf= 2 =0 Interesting properties in 2+1- flavor QCD O(4) scaling for ms>>mtc • Tri-critical scaling at mtc • First order transition at ms < mtc • O(4) scaring at small This study • Tri-critical point at finite mud ms 0 =0 Nf= 2 mud0 mud=0 Nf= 2 O(4) Tri-critical point mtc O(4) Tri-critical point Z(2) 2. Wilson quark simulations Iwasaki improved gauge + Clover improved Wilson quark action latti 4 16 3 , 2 1 1 , 1 1 0 ) ( ) ( x x g x W c x W c S , 8 1 , 331 . 0 1 0 1 c c c : nxm wilson loop , 6 2 g 4 / 3 1 ) 8412 . 0 1 ( SW c F K c U e U e K U U K M SW y x y x a y x a i y i x i i y i x i i y x y x q q , , 4 ˆ 4 4 , 4 ˆ 4 4 3 1 , ˆ , ˆ , , 1 1 1 1 Clover term q: quark chemical potential , e det ) ( f , g S N x M x dU Z m n W Chiral limit at T=0 T0 pseudo- critical line (crossove r) determined by Polyakov loop 0 m 4 t N mPS/mV=0.65 mPS/mV=0.80 K T/Tpc K T/Tpc 1.50 0.150290 0.82(3) 1.50 0.143480 0.76(4) 1.60 0.150030 0.86(3) 1.60 0.143749 0.80(4) 1.70 0.148086 0.94(3) 1.70 0.142871 0.84(4) 1.75 0.146763 1.00(4) 1.80 0.141139 0.93(5) 1.80 0.145127 1.07(4) 1.85 0.140070 0.99(5) 1.85 0.143502 1.18(4) 1.90 0.138817 1.08(5) 1.90 0.141849 1.32(5) 1.95 0.137716 1.20(6) 1.95 0.140472 1.48(5) 2.00 0.136931 1.35(7) 2.00 0.139411 1.67(6) 2.10 0.135860 1.69(8) 2.10 0.137833 2.09(7) #conf=500-2600 #noise=100-150 for each color and spin indices 2-flavor QCD 3. Scaling behavior of chiral order parameter at finite 3-1. O(4) scaling test for 2-flavor QCD 3-D O(4) spin model: magnetization (M), external field (h), reduced temperature (t) 2-flavor QCD: chiral order parameter , ud- quark mass (mq), critical (ct), (c) ) ( 1 1 h t f h M , ψ ψ M , 2 a m h q Scaling function: ψ ψ 2 2 T c ct q t t=0 q/T mq=0 2 2 T c q ct q ct 1 1 1 h t x dx x df h dt dM , 0 0 2 2 q q dt dM c T d M d q Note: c is the curvature of the critical line in the (, qT) plane. 3-2. Chiral order parameter defined by Ward- Takahashi identities Ward-Takahashi identities in the continuum limit Because the chiral symmetry is explicitly broken for Wilson quarks, we define y x t s q y P x P N N K a m ψ ψ , 3 2 WI ) ( ) ( 2 2 x y x y P x P a m y P x A q 2 0 0 2 4 P t P P t A m a m q WI ψ ψ a m q 5 5 , A P 4. Summary 1) We discussed the scaling property of the chiral phase transition in the low density region. 2) We calculated the chiral order parameter and its second derivative performing a simulation of 2-flavor QCD with Wilson quarks and compared the results with an expected scaling function. 3) The scaling behavior is roughly consistent with our expectation. 4) The curvature of the critical line in the ( ) 3-6. Curvature of the critical line in the ciral limit c T d d q ct 2 2 These operators can be calculated by the random noise method. , tr tr det ln , tr det ln 1 1 2 2 1 2 2 1 M M M M M M M M M M , 2Tr 4tr 2tr tr 5 1 1 5 1 1 5 1 5 1 1 1 5 1 5 1 2 2 1 2 5 1 5 1 2 M M M M M M M M M M M M M M M M M M , tr 2 tr 5 1 5 1 1 2 5 1 5 1 M M M M M M 5 1 5 1 3 2 , 3 2 WI tr 2 2 2 2 M M N N K a m y P x P N N K a m t s q y x t s q We estimate the curvature c by three method. 1)Global fit in the scaling plot (Sec. 3-4). c = 0.0290 (magenta line) 2) From the ratio of the 2 nd derivative and df/dx. (1-1) Method1: c = 0.0273 (42) (Blue line) (1-2) Method2: c = 0.0257 (43) (Black line) da d a T d d T d T d T q ct q c c 2 2 2 2 1 To calculate the curvature of Tc(q), we need a(d/da) in the chiral limit. 3-3. Reweighting method for the chiral order parameter at finite 0 , 0 det ln det ln 0 , 0 det ln det ln 5 1 5 1 5 1 5 1 , 5 1 5 1 0 f 0 f f e e tr e det tr 1 tr ) ( M M N M M N S N M M M M M DU Z M M g 3 2 2 2 d det ln d 2 d det ln d 0 det ln det ln O M M M M 3 2 5 1 5 1 2 2 5 1 5 1 5 1 5 1 5 1 5 1 tr 2 tr 0 tr tr O d M M d d M M d M M M M We compare the scaling functions of 2-flavor QCD and O(4) spin model. The second derivative: 3-4. Scaling plot at finite and O(4) scaling function Consistent with O(4) scaling function. 029 . 0 , 510 . 1 c ct ) ( 1 1 h t f h M 2 2 T c ct q t O(4) scaling function: J. Engels et al., Nucl. Phys. B 678 (2003) 533 mud Quench ed 0 0 1 st orde r 2 nd order Crossover 1 st order We neglect O( ). 3-5-2. method 2 2 2 f 5 1 5 1 2 2 f 5 1 5 1 f 5 1 5 1 2 5 1 5 1 2 2 det ln tr det ln tr det ln tr 2 tr M N M M M N M M M N M M M M F 2 0 2 3 3 2 2 WI 2 0 3 2 WI 2 2 , 2 2 A F F N N K ma T F N N K ma t s q t s t N T a q q , tr 5 1 5 1 0 M M F , det ln det ln 2 f 2 2 f 2 M N M N Second derivative of for 2-flavor QCD I W O(4) scalin g functi on c=0.06 c=0.05 c=0.04 c=0.03 c=0.02 1 1 1 2 2 h t x q dx x df c h T d d These results show the expected scaling behavior although the error is still large. 3-5. Derivatives of the chiral order parameter at =0 3-5-1. method 1 We fit the data of at finite by , where x and y are the fit parameters. (The first derivative is zero due to the symmetry: .) 2 WI T y x I W 0 at 2 1 , 2 WI 2 WI T y x q method 1 method 2 We calculate the expectation value of the following operators and obtain the derivatives. The expectation value at finite is computed by the reweighting method with O( 3 ) error. We fit the data of by the O(4) scaling function adjusting the parameter ct and c in t. I W Best values: Symbols: results at =0 Lines on the right of the symbols: result at 0 We omitted data having large error. In method 1, we fit the data in /T<1.0 cf) Result by an improved staggered: Keczmarek et al., Phys. Rev. D 83 (2011) 014504 ) 4 )( 2 ( 059 . 0 2 1 2 2 T d T d T q c c mPS/mV=0.65 mPS/mV=0.80

Upload: nelson-potter

Post on 16-Dec-2015

214 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Scaling properties of the chiral phase transition in the low density region of two-flavor QCD with improved Wilson fermions WHOT-QCD Collaboration: S

Scaling properties of the chiral phase transition in the low density region of two-flavor QCD with improved Wilson fermions

WHOT-QCD Collaboration:S. Aoki1, S. Ejiri2, T. Hatsuda3, K. Kanaya4, Y. Maezawa5, Y. Nakagawa2, H. Ohno6, H. Saito7, T. Umeda8, and S. Yoshida3

1Kyoto Univ., 2Niigata Univ., 3RIKEN, 4Univ. of Tsukuba, 5BNL, 6Bielefeld Univ., 7DESY, 8Hiroshima Univ., Abstract:We study scaling behavior of a chiral order parameter in the low density region, performing a simulation of two-flavor QCD with improved Wilson quarks. The scaling behavior of the chiral order parameter defined by a Ward-Takahashi identity agrees with the scaling function of the three-dimensional O(4) spin model at zero chemical potential. We extend the scaling study to finite density QCD. Applying the reweighting method and calculating derivatives of the chiral order parameter with respect to the chemical potential, the scaling properties of the chiral phase transition are discussed in the low density region. We moreover calculate the curvature of the phase boundary of the chiral phase transition in the temperature and chemical potential plane assuming the O(4) scaling relation.

1. Introduction and Motivation Quark mass dependence of QCD phase transition Expected nature of phase transitions (2-flavor QCD and O(4) spin model: same universality class?)

mud0

0

Physical point

1storder

2ndorder

Crossover

1storder

ms

QuenchedNf=2

Nf=3

Nf=2=0

Interesting properties in 2+1-flavor QCD• O(4) scaling for ms>>mtc

• Tri-critical scaling at mtc

• First order transition at ms < mtc

• O(4) scaring at small This study• Tri-critical point at finite

mud

ms

0

=0

Nf=2

mud0

mud=0

Nf=2

O(4)Tri-criticalpoint mtc

O(4)

Tri-criticalpoint

Z(2)

2. Wilson quark simulations Iwasaki improved gauge + Clover improved Wilson quark action

lattice 4163

,

211

,

110 )()(

xxg xWcxWcS

,81 ,331.0 101 ccc

: nxm wilson loop ,6 2g

4/31)8412.01( SWc

FKcUeUeK

UUKM

SWyxyx

a

yx

a

iyixiiyixiiyxyx

qq

,,4̂44,4̂44

3

1,ˆ,ˆ,,

11

11

Clover term

q: quark chemical potential

,e det )( f

,

gSN

x

MxdUZ

mnW

Chiral limit at T=0

T0 pseudo-critical line(crossover)

determined by Polyakov loop

0m

4tN mPS/mV=0.65 mPS/mV=0.80 K T/Tpc K T/Tpc

1.50 0.150290 0.82(3) 1.50 0.143480 0.76(4) 1.60 0.150030 0.86(3) 1.60 0.143749 0.80(4) 1.70 0.148086 0.94(3) 1.70 0.142871 0.84(4) 1.75 0.146763 1.00(4) 1.80 0.141139 0.93(5) 1.80 0.145127 1.07(4) 1.85 0.140070 0.99(5) 1.85 0.143502 1.18(4) 1.90 0.138817 1.08(5) 1.90 0.141849 1.32(5) 1.95 0.137716 1.20(6) 1.95 0.140472 1.48(5) 2.00 0.136931 1.35(7) 2.00 0.139411 1.67(6) 2.10 0.135860 1.69(8) 2.10 0.137833 2.09(7)

#conf=500-2600

#noise=100-150 for each color and spin indices

2-flavor QCD

3. Scaling behavior of chiral order parameter at finite 3-1. O(4) scaling test for 2-flavor QCD 3-D O(4) spin model: magnetization (M), external field (h), reduced temperature (t) 2-flavor QCD: chiral order parameter , ud-quark mass (mq), critical (ct), (c)

)( 11 htfhM

,ψψM ,2 amh q

Scaling function:

ψψ2

2

T

cct

qt

t=0

q/T

mq=0

2

2

T

c q

ctqct

1

11htxdx

xdf

h

dtdM ,

00

2

2

q

q

dt

dMc

Td

Md

q

Note: c is the curvature of the critical line in the (, qT) plane.

3-2. Chiral order parameter defined by Ward-Takahashi identities Ward-Takahashi identities in the continuum limit

Because the chiral symmetry is explicitly broken for Wilson quarks, we define

and by the Ward-Takahashi identities [Bochichio et al., NPB262, 331 (1985)].

yxts

q yPxPNN

Kamψψ

,3

2WI

)()(22

xyxyPxPamyPxA q 2

0

02 4

PtP

PtAmamq

WIψψ

amq

55 , AP

4. Summary 1) We discussed the scaling property of the chiral phase transition in the low density region. 2) We calculated the chiral order parameter and its second derivative performing a simulation of 2-flavor QCD with Wilson quarks and compared the results with an expected scaling function. 3) The scaling behavior is roughly consistent with our expectation. 4) The curvature of the critical line in the () plane was estimated.

3-6. Curvature of the critical line in the ciral limit cTd

d

q

ct

2

2

These operators can be calculated by the random noise method.

,trtrdetln

,trdetln 11

2

21

2

21

M

MM

MM

MMM

MM

,2Tr4tr2tr

tr5

115

115

15

1115

15

12

21

25

15

12

M

MMM

MMMM

MM

MMMM

MM

MM

,tr2

tr5

15

112

51

51

MM

MM

MM

51

51

3

2

,3

2WI

tr2222

MMNN

KamyPxP

NN

Kam

ts

q

yxts

q

We estimate the curvature c by three method.1)Global fit in the scaling plot (Sec. 3-4). c = 0.0290 (magenta line)

2) From the ratio of the 2nd derivative and df/dx. (1-1) Method1: c = 0.0273 (42) (Blue line) (1-2) Method2: c = 0.0257 (43) (Black line)

dada

Td

d

Td

Td

T q

ct

q

c

c

2

2

2

21To calculate the curvature of Tc(q),

we need a(d/da) in the chiral limit.

3-3. Reweighting method for the chiral order parameter at finite

0,

0detlndetln

0,

0detlndetln5

15

1

51

51

,51

51

0

f

0

f

f

e

e tredet tr

1tr )(

MMN

MMN

SNMM

MMMDUZ

MM g

32

22

d

detlnd

2d

detlnd0detlndetln

OMM

MM

32

51

5122

51

51

51

51

51

51 tr

2

tr0trtr

O

d

MMd

d

MMdMMMM

We compare the scaling functions of 2-flavor QCD and O(4) spin model.

The second derivative:

3-4. Scaling plot at finite and O(4) scaling function

Consistent with O(4) scaling function.

029.0 ,510.1 cct

)( 11 htfhM 2

2

T

cct

qt

O(4) scaling function: J. Engels et al., Nucl. Phys. B 678 (2003) 533

mud

Quenched

00

1storder2ndorder

Crossover1storder

We neglect O().

3-5-2. method 2

2

2f5

15

12

2

f51

51

f5

15

1

25

15

12

2

detlntr

detlntr

detlntr2

tr

M

NMMM

NMMM

NMMMM

F

20233

2

2

WI2

03

2WI 22

,22

AFFNN

Kma

TF

NN

Kma

tsqts

tNTa qq

,tr 51

51

0 MMF ,detlndetln

2

f2

2

f2

M

NM

N

Second derivative of for 2-flavor QCD IW

O(4) scaling functionc=0.06

c=0.05

c=0.04

c=0.03

c=0.02

111

22

htx

q

dx

xdfc

h

Tdd

These results show the expected scaling behavior although the error is still large.

3-5. Derivatives of the chiral order parameter at =0 3-5-1. method 1 We fit the data of at finite by , where x and y are the fit parameters. (The first derivative is zero due to the symmetry: –.)

2WITyx

IW

0at 2

1 , 2

WI2

WI

Tyx

q

method 1 method 2

We calculate the expectation value of the following operators and obtain the derivatives.

The expectation value at finite is computed by the reweighting method with O(3) error.

We fit the data of by the O(4) scaling function adjusting the parameter ct and c in t.IW

Best values:

Symbols: results at =0 Lines on the right of the symbols: result at 0We omitted data having large error.

In method 1, we fit the data in /T<1.0

cf) Result by an improved staggered: Keczmarek et al., Phys. Rev. D 83 (2011) 014504

)4)(2(059.02

12

2

Td

Td

T q

c

c

mPS/mV=0.65 mPS/mV=0.80