scheme s1. - royal society of chemistry · mariia pushina, pavel anzenbacher,jr.*_____ department...

57
Supporting information Biguanides, anion receptors and sensors Mariia Pushina, Pavel Anzenbacher,Jr. * ___________________________________ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail: [email protected] Table of Contents 1 General 2 2 Sensors Synthesis 3 Synthesis Schemes 3 Procedures 6 The synthesis of all sensors was based on general method of preparation of biscyanoguanidines. 6 3 Photophysical Properties 14 4 UV-vis absorption Titrations 16 5 Fluorescence Titrations 26 6 Proton NMR titrations 37 7 Stoichiometry determination: Job’s plot 40 8 Paper microzone plates study 43 Qualitative Assay for S1-S6 with different analytes 44 Semi-Quantitative Paper-Based Assay 45 Quantitative Assays 51 9 Competitive titrations of acetate anion in chloride rich solutions 55 Supplemental References 57 Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Upload: others

Post on 10-Feb-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Biguanides, anion receptors and sensors

Mariia Pushina, Pavel Anzenbacher,Jr.*___________________________________

Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail: [email protected]

Table of Contents 1 General 2 2 Sensors Synthesis 3 Synthesis Schemes 3 Procedures 6 The synthesis of all sensors was based on general method of preparation of biscyanoguanidines. 6 3 Photophysical Properties 14 4 UV-vis absorption Titrations 16 5 Fluorescence Titrations 26 6 Proton NMR titrations 37 7 Stoichiometry determination: Job’s plot 40 8 Paper microzone plates study 43 Qualitative Assay for S1-S6 with different analytes 44 Semi-Quantitative Paper-Based Assay 45 Quantitative Assays 51 9 Competitive titrations of acetate anion in chloride rich solutions 55 Supplemental References 57

Electronic Supplementary Material (ESI) for ChemComm.This journal is © The Royal Society of Chemistry 2017

Page 2: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

1 General

Materials and Methods. All chemicals were analytical grade and they were used without purification. NMR. Proton NMR (1H-NMR) and carbon-13 NMR (13C-NMR) spectra were recorded on Bruker Avance III spectrometer at 500 MHz at 348 K. Proton and carbon NMR chemical shifts (δ) are reported in parts per million (ppm) relative to residual solvent signals in DMSO-d6 (δ = 2.50, 39.52). Coupling constants (J) are reported in hertz (Hz) and refer to apparent multiplicities. The following abbreviations are used for the multiplicities: s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), m (multiplet), br (broad). High-Resolution Mass Spectra. High-resolution mass spectra (HRMS) were obtained on Shimadzu AXIMA Performance MALDI TOF mass spectrometer in reflectron mode using Dithranol (CAS 1143-38-0) as a matrix. Absorbance. The absorption spectra were recorded between 250 nm and 550 nm for S1, 250 nm and 500 nm for S2, 250 nm and 450 nm for S3, 250 nm and 500 nm for S4, 250 nm and 500 nm for S5, and 250 nm and 500 nm for S6, respectively. The absorbance from probes was scanned in 2 nm step. Scans were taken under laboratory temperature. The titrations were performed in mixture dimethyl sulfoxide (DMSO):CHCl3 (3:7) with addition of Triton X-100 at laboratory temperature. Titration isotherms were constructed from changes in the absorbance maximum at 420 nm for S1, 317 nm for S2, 280 nm for S3, 400 nm for S4, 315 nm for S5, and 280 nm for S6, respectively. Fluorescence. The emission spectra were recorded between 420 nm and 620 nm for S1, 320 nm and 500 nm for S2, 320 nm and 500 nm for S3, 400 nm and 650 nm for S4, and 320 nm and 500 nm for S6, respectively. The emission from probes was scanned in 2 nm step with appropriate excitation and emission monochromators band pass settings with dwell time 0.20 sec. Scans were taken under laboratory temperature. Fluorescence guest and competitive titrations were performed in mixture DMSO:CHCl3 (3:7) with addition of Triton X-100 at laboratory temperature. Titration isotherms were constructed from changes in the fluorescence maximum at 451 nm for S1, 358 nm for S2, 352 nm for S3, 448 nm for S4, and 351 nm for S6, respectively. Data analysis and curve fitting were performed according to previously published methods1.

2

Page 3: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

2 Sensors Synthesis

Synthesis Schemes Scheme S1. Synthesis of intermediate 1: butanol, reflux, 18 h, 82%.

Scheme S2. Synthesis of sensor S1: 1) 2-ethoxyethanol, reflux, 5 h, 43%; 2) H2O, r.t., 34%. Scheme S3. Synthesis of sensor S2: 1) 2-ethoxyethanol, reflux, 5 h, 44%; 2) H2O, r.t., 80%.

+N

H

H 2-ethoxyethanol, refuxed

N N

N N

NH

H

H

H

H

N N

N

H H

H

N

N

H

HMix 1:2

2HCl1

2, 44 %3, 44 %

+

2-ethoxyethanol, refuxed

N H

H

HClN N

N N

NH

H

H

H

H

N N

N

H H

H

N

N

H

H

2HClMix 1:21

3, 43 %2, 44 %

N N

N NH

NH

H

H H

N N

NH

H HN

N

H

H

FB-

F FFNa+

2

BF4

BF4

+

H

H

3

S2, 34 %S1, 34 %

2

N N

N NH

NH

H

H H

N N

NH

H HN

N

H

H

FB-

F FFNa+

2

BF4

BF4

+

H

H

2

S1, 80 %S2, 80 %

3

3

Na+

N-

N NN

NH

HH

H+

butanol, refluxed

NN

H

H

N-

NNC

H

Na+

N-

NCN

H

Na+

2HClMix 1:2

1, 82 %

Page 4: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Scheme S4. Synthesis of sensor S3: 1) 2-ethoxyethanol, reflux, 5 h, 43%; 2) H2O, r.t., 66%.

Scheme S5. Synthesis of intermediate 5: butanol, reflux, 18 h, 62%.

Scheme S6. Synthesis of sensor S4: 1) 2-ethoxyethanol, reflux, 5 h, 37%; 2) H2O, r.t., 63%.

+

2-ethoxyethanol, refuxed

N H

H

HClN N

N

H H

H

N

N

H

H

HCl5

S5, 37 %6, 37 %

N N

NH

H HN

N

H

H

FB-

F FFNa+

2

BF4

+

H

6

S4, 63 %

4

+

2-ethoxyethanol, refuxed

N H

H

HCl N N

N N

NH

H

H

H

H

N N

N

H H

H

N

N

H

H2HCl1

Mix 1:2

4, 43 %

N N

N NH

NH

H

H H

N N

NH

H HN

N

H

H

FB-

F FFNa+

2

BF4

BF4

+

H

H

4

S3, 66 %

Na+

N-

N NN

H

H+

butanol, refluxedNH

N-

NCN

H

Na+

HCl

5, 62 %

Page 5: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Scheme S7. Synthesis of sensor S5: 1) 2-ethoxyethanol, reflux, 3 h, 24%; 2) H2O, r.t., 31%. Scheme S8. Synthesis of sensor S6: 1) 2-ethoxyethanol, reflux, 3 h, 29%; 2) H2O, r.t., 32%.

+N

H

H 2-ethoxyethanol, refuxed

HClN N

N N

NH

H

H

H

H

HCl5

6, 24 %7, 24 %

N N

N NH

NH

H

H H

FB-

F FFNa+

BF4

+

H

6

S4, 31 %

7

S5, 31 %

+ NH

H2-ethoxyethanol, refuxed

HCl N N

N N

NH

H

H

H

H

HCl5

7, 29 %8, 29 %

N N

N NH

NH

H

H H

FB-

F FFNa+

BF4

+H

7

S6, 32 %

8

5

Page 6: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Procedures

The synthesis of all sensors was based on general method of preparation of biscyanoguanidines.2

6-Di-(N3-cyano-N1-guanidino)hexane (1). Commercially available Hexane-1,6-diamine dihydrochloride (2.00 g, 10.6 mmol) and sodium dicyanimide (1.88 g, 21.2 mmol) were powdered together and refluxed in butanol (50 mL) for 18 h. The solvent was removed under reduced pressure and obtained white powder was recrystallized from water. 1,14-Bis(anthracen-1-ylamino)-3,12-diimino-2,4,11,13-tetraazatetradecane-1,14-diiminium tetrafluoroborate (S1). Compound 1 (0.25 g, 1 mmol) was mixed with 2-aminoanthracene hydrochloride (0.46 g, 2 mmol). The mixture was refluxed in 2-ethoxyethanol (5 mL) for 5 h. The solvent was then evaporated on a rotary evaporator. The powder was recrystallized from water. The obtained compound was dissolved in water:DMSO (8:2) and added into saturated solution of NaBF4 in water. The pale yellow precipitate was filtered and dried in vacuum. Spectral data for S1: 1H-NMR (DMSO-d6, 500 MHz): δ = 9.20 (s, 2H), 8.48 (s, 2H), 8.38 (s, 2H), 8.08 – 7.96 (m, 8H), 7.71 – 7.42 (m, 8H), 7.29 (s, 2H), 6.78 (s, 2H), 2.54 (s, 4H), 1.48 (m, 4H), 1.29 (m, 4H). 13C-CPD (DMSO-d6, 125 MHz): δ = 159.52, 154.44, 135.12, 131.42, 131.22, 130.31, 128.37, 127.73, 127.26, 125.54, 125.45, 125.36, 124.68, 124.46, 233.31, 115.84, 41.14, 28.24, 25.68 ppm. HRMS (MALDI) m/z found 637.3444 [M+H]+; calc 637.3499 for C38H41N10+. 1H-NMR spectrum in DMSO-d6 at 500 MHz (Figure S1), and 13C-CPD-NMR spectrum in DMSO-d6 at 125 MHz (Figure S2) for S1 are shown below. 3,12-Diimino-1,14-bis(naphthalen-1-ylamino)-2,4,11,13-tetraazatetradecane-1,14-diiminium tetrafluoroborate (S2). Compound 1 (1.00 g, 4 mmol) was mixed with naphthylamine hydrochloride (1.44 g, 8 mmol). The mixture was refluxed in 2-ethoxyethanol (20 mL) for 5 h. The solvent was then evaporated on a rotary evaporator. The powder was recrystallized from water and 3,12-diimino-1,14-bis(naphthalen-1-ylamino)-2,4,11,13-tetraazatetradecane-1,14-diiminium dihydrochloride was obtained. The compound was dissolved in water and added into saturated solution of NaBF4 in water. The light purple precipitate was filtered and dried in vacuum. Spectral data for S2: 1H-NMR (DMSO-d6, 500 MHz): δ = 9.05 (s, 2H), 8.07 (d, J = 8.0 Hz, 2H), 7.98 – 7.89 (m, 2H), 7.79 (d, J = 8.1 Hz, 2H), 7.62 – 7.48 (m, 8H), 7.33 (s, 2H), 7.04 (s, 3H), 6.84 (s, 3H), 2.98 (d, J = 6.0 Hz, 4H), 1.33 (s, 4H), 1.14 (s, 4H). 13C-CPD (DMSO-d6, 125 MHz): δ = 159.11, 156.26, 133.58, 133.03, 128.44, 127.85, 125.82, 125.79, 125.59, 125.18, 122.63, 122.12, 40.97, 28.12, 25.54 ppm. HRMS (MALDI) m/z found 537.3292 [M+H]+; calc 537.3188 for C30H37N10+. 1H-NMR spectrum in DMSO-d6 at 500 MHz (Figure S3), and 13C-CPD-NMR spectrum in DMSO-d6 at 125 MHz (Figure S4) for S2 are shown below. 3,12-Diimino-1,14-bis(phenylamino)-2,4,11,13-tetraazatetradecane-1,14-diiminium tetrafluoroborate (S3). Compound 1 (1.00 g, 4 mmol) was mixed with aniline hydrochloride (1.04 g, 8 mmol). The mixture was refluxed in 2-ethoxyethanol (5 mL) for 5 h. The solvent was then evaporated on a rotary evaporator. The powder was recrystallized from water. The obtained compound was dissolved in water and added into saturated solution of NaBF4 in water. The precipitate was filtered and dried in vacuum. Spectral data for S3: 1H-NMR (DMSO-d6, 500 MHz): δ = 9.26 (s, 2H), 7.65 (s, 2H), 7.39 – 7.35 (m, 4H), 7.32 – 7.27 (m, 4H), 7.21 (s, 3H), 7.06 (t, J = 7.3 Hz, 3H), 6.76 (s, 3H), 3.08 (s, 4H), 1.51 – 1.44 (m, 4H), 1.30 (m, 4H). 13C-CPD (DMSO-d6, 125 MHz): δ = 159.52, 154.55, 138.22, 128.28, 123.12, 120.74, 41.03, 28.25, 25.60 ppm. HRMS (MALDI) m/z found 437.2706 [M+H]+; calcd 437.2877 for C22H33N10+. 1H-NMR spectrum in DMSO-d6 at 500 MHz (Figure S5), and 13C-CPD-NMR spectrum in DMSO-d6 at 125 MHz (Figure S6) for S3 are shown below. N3-cyano-N1-guanidinohexane (5). Hexylamine hydrochloride (the hexylamine hydrochloride was prepared by bubbling gaseous hydrogen chloride through a dichloromethane solution of hexylamine) (3.14 g, 22.4 mmol) and sodium dicyanimide (2.00 g, 24.4 mmol) were powdered together and refluxed in butanol (60 mL) for 18 h. The solvent was removed under reduced pressure and obtained white powder was recrystallized from water.

6

Page 7: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

(3-(Anthracen-2-yl)guanidino)(hexylamino)methaniminium hydrochloride (S4). Compound 5 (0.22 g, 1.3 mmol) was mixed with 2-aminoanthracene hydrochloride (0.30 g, 1.3 mmol). The mixture was refluxed in 2-ethoxyethanol (4 mL) for 5 h. The solvent was then evaporated on a rotary evaporator. The pale green powder was recrystallized from water. Spectral data for S4: 1H-NMR (DMSO-d6, 500 MHz): δ = 9.18 (s, 1H), 8.50 (s, 1H), 8.41 (s, 1H), 8.08 – 8.00 (m, 4H), 7.68 – 7.24 (m, 5H), 6.76 (s, 2H), 3.10 (m, 2H) 1.54 – 1.46 (m, 2H), 1.29 (m, 2H), 1.25 (m, 4H), 0.83 (m, 3H). 13C-CPD (DMSO-d6, 125 MHz): δ = 159.31, 154.22, 135.08, 131.15, 130.90, 130.06, 128.09, 127.49, 127.45, 126.99, 125.26, 125.08, 124.41, 124.23, 121.91, 115.58, 40.95, 30.22, 27.90, 25.27, 21.27, 13.09 ppm. HRMS (MALDI) m/z found 362.2452 [M+H]+; calcd 362.2335 for C22H28N5+. 1H-NMR spectrum in DMSO-d6 at 500 MHz (Figure S7), and 13C-CPD-NMR spectrum in DMSO-d6 at 125 MHz (Figure S8) for S4 are shown below. (3-Hexylguanidino)(naphthalen-1-ylamino)methaniminium tetrafluoroborate (S5). Compound 5 (1.00 g, 5.96 mmol) was mixed with naphthylamine hydrochloride (1.07 g, 5.96 mmol). The mixture was refluxed in 2-ethoxyethanol (5 mL) for 3 h. The solvent was then evaporated on a rotary evaporator. The powder was recrystallized from water. The obtained compound was dissolved in water and added into saturated solution of NaBF4 in water. The light purple precipitate was filtered and dried in vacuum. Spectral data for S5: 1H-NMR (DMSO-d6, 500 MHz): δ = 9.04 (s, 1H), 8.06 (d, J = 8.0 Hz, 1H), 8.00 – 7.92 (m, 1H), 7.79 (d, J = 8.1 Hz, 1H), 7.68 – 7.44 (m, 4H), 7.34 (s, 1H), 7.04 (s, 1H), 6.83 (s, 2H), 2.99 (dd, J = 13.1, 6.7 Hz, 2H), 1.48 – 1.06 (m, 8H), 0.85 (t, J = 7.0 Hz, 3H). 13C-CPD (DMSO-d6, 125 MHz): δ = 159.16, 156.24, 133.61, 133.07, 128.46, 127.88, 125.83, 125.79, 125.60, 125.21, 122.64, 122.15, 41.04, 30.50, 28.17, 25.50, 21.58, 13.43 ppm. HRMS (MALDI) m/z found 312.2279 [M+H]+; calcd 312.2179 for C18H26N5+. 1H-NMR spectrum in DMSO-d6 at 500 MHz (Figure S9), and 13C-CPD-NMR spectrum in DMSO-d6 at 125 MHz (Figure S10) for S5 are shown below. (3-Hexylguanidino)(phenylamino)methaniminium tetrafluoroborate (S6). Compound 5 (1.50 g, 8.9 mmol) was mixed with aniline hydrochloride (1.15 g, 8.9 mmol). The mixture was refluxed in 2-ethoxyethanol (10 mL) for 5 h. The solvent was then evaporated on a rotary evaporator. The powder was recrystallized from water. The obtained compound was dissolved in water and added into saturated solution of NaBF4 in water. The precipitate was filtered and dried in vacuum. Spectral data for S6: 1H-NMR (DMSO-d6, 500 MHz): δ = 8.94 (s, 1H), 7.60 – 7.05 (m, 7H), 6.64 (s, 1H), 3.09 (dd, J = 7.1, 5.8 Hz, 2H), 1.47 (dd, J = 14.0, 7.0 Hz, 2H), 1.38 – 1.22 (m, 6H), 0.87 (m, 3H). 13C-CPD (DMSO-d6, 125 MHz): δ = 159.52, 154.41, 138.18, 128.38, 123.32, 121.01, 41.17, 30.53, 28.22, 25.55, 21.60, 13.44 ppm. HRMS (MALDI) m/z found 262.2077 [M+H]+; calcd 262.2024 for C14H24N5+. 1H-NMR spectrum in DMSO-d6 at 500 MHz (Figure S11), and 13C-CPD-NMR spectrum in DMSO-d6 at 125 MHz (Figure S12) for S6 are shown below.

7

Page 8: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S1. Spectral data for S1: 1H-NMR (DMSO-d6, 500 MHz, 348 K).

0.01.02.03.04.05.06.07.08.09.010.512.0

-50

0

50

100

150

200

250

300

350

400

450

500

550

600

650

4.00

4.00

4.25

6.33

8.18

8.16

2.11

2.23

1.95

1.29

1.47

1.49

2.54

6.78

7.29

7.44

7.44

7.45

7.45

7.45

7.46

7.47

7.48

7.48

7.48

7.49

7.50

7.99

8.01

8.02

8.02

8.04

8.38

8.48

9.20

Figure S2. Spectral data for S1: 13C-NMR (DMSO-d6, 125 MHz, 348 K).

102030405060708090100110120130140150160170

-5000

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

25.6

828

.24

41.1

4

115.

8412

2.31

124.

4612

4.68

125.

3612

5.54

127.

2612

7.73

128.

3713

0.31

131.

2213

1.42

135.

56

154.

44

159.

52

δ ppm

δ ppm

8

Page 9: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S3. Spectral data for S2: 1H-NMR (DMSO-d6, 500 MHz, 348 K).

1.02.03.04.05.06.07.08.09.010.0

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

3.76

4.00

3.94

3.28

3.23

1.71

7.69

1.98

2.01

1.79

1.66

1.14

1.33

2.98

2.99

6.84

7.04

7.33

7.48

7.49

7.51

7.54

7.55

7.57

7.58

7.59

7.79

7.80

7.94

7.94

7.95

8.07

8.08

9.05

Figure S4. Spectral data for S2: 13C-NMR (DMSO-d6, 125 MHz, 348 K).

-100102030405060708090110130150170190210

0

20000

40000

60000

80000

1E+05

1E+05

1E+05

2E+05

2E+05

2E+05

2E+05

2E+05

3E+05

3E+05

3E+05

3E+05

3E+05

25.5

428

.12

40.9

7

122.

1212

2.63

125.

1812

5.59

125.

7912

5.82

127.

8512

8.44

133.

0313

3.58

156.

2615

9.11

δ ppm

δ ppm

9

Page 10: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S5. Spectral data for S3: 1H-NMR (DMSO-d6, 500 MHz, 348 K).

0.01.02.03.04.05.06.07.08.09.010.512.0

0

500

1000

1500

2000

2500

3000

3500

4000

4500

4.08

4.00

4.35

3.10

2.13

2.70

4.31

4.04

2.14

1.83

1.29

1.30

1.46

1.47

1.49

3.08

6.76

7.05

7.06

7.07

7.21

7.27

7.28

7.28

7.29

7.30

7.31

7.35

7.37

7.37

7.65

9.26

Figure S6. Spectral data for S3: 13C-NMR (DMSO-d6, 125 MHz, 348 K).

2030405060708090100110120130140150160170180190

-50000

0

50000

1E+05

2E+05

2E+05

2E+05

3E+05

4E+05

4E+05

4E+0525.6

028

.25

41.0

3

120.

7412

3.12

128.

28

138.

32

154.

55

159.

52

δ ppm

δ ppm

10

Page 11: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S7. Spectral data for S4: 1H-NMR (DMSO-d6, 500 MHz, 348 K).

0.01.02.03.04.05.06.07.08.09.010.512.0

-200-100010020030040050060070080090010001100120013001400150016001700180019002000210022002300

3.00

4.26

2.30

2.15

2.12

1.65

5.28

4.14

1.08

1.10

0.77

0.83

1.25

1.28

1.30

1.49

1.50

1.51

3.10

6.76

7.47

7.48

7.50

8.01

8.03

8.05

8.41

8.50

9.18

Figure S8. Spectral data for S4: 13C-NMR (DMSO-d6, 125 MHz, 348 K).

102030405060708090110130150170190

-5000

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

75000

80000

13.0

9

21.2

725

.27

27.9

030

.22

40.9

5

115.

5812

1.91

124.

2312

4.41

125.

0812

5.26

126.

9912

7.45

127.

4912

8.09

130.

0613

0.90

131.

1513

5.08

154.

22

159.

31

δ ppm

δ ppm

11

Page 12: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S9. Spectral data for S5: 1H-NMR (DMSO-d6, 500 MHz, 348 K).

Figure S10. Spectral data for S5: 13C-NMR (DMSO-d6, 125 MHz, 348 K).

0102030405060708090110130150170190210

0

20000

40000

60000

80000

1E+05

1E+05

1E+05

2E+05

2E+05

2E+05

2E+05

2E+05

3E+05

3E+05

3E+05

3E+05

3E+05

4E+05

13.4

321

.58

25.5

028

.17

30.5

0

41.0

4

122.

1512

2.64

125.

2112

5.60

125.

7912

5.83

127.

8812

8.46

133.

0713

3.61

156.

2415

9.16

0.51.52.53.54.55.56.57.58.59.510.5f1 (ppm)

-100

0

100

200

300

400

500

600

700

800

900

1000

1100

3.00

7.93

1.99

0.09

1.63

1.39

0.82

3.68

0.91

0.92

1.08

0.14

1.01

0.83

0.85

0.86

1.20

1.20

1.23

1.24

1.25

1.34

1.36

2.97

2.98

3.00

3.01

6.22

7.49

7.50

7.56

7.56

7.57

7.58

7.78

7.94

7.95

9.04

δ ppm

12

Page 13: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S11. Spectral data for S6: 1H-NMR (DMSO-d6, 500 MHz, 348 K).

-10123456789101112

-200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3.00

6.31

2.11

2.18

1.69

7.44

0.90

0.86

0.87

0.88

0.89

1.25

1.27

1.27

1.30

1.31

1.32

1.45

1.47

1.48

1.49

3.08

3.09

3.09

3.10

6.64

7.06

7.07

7.09

7.17

7.29

7.29

7.30

7.31

7.32

7.34

7.35

7.54

8.94

Figure S12. Spectral data for S6: 13C-NMR (DMSO-d6, 125 MHz, 348 K).

0102030405060708090110130150170190210

-50000

0

50000

1E+05

2E+05

2E+05

2E+05

3E+05

4E+05

4E+05

4E+05

5E+05

6E+05

6E+05

6E+05

7E+05

8E+05

8E+05

13.4

421

.60

25.5

528

.22

30.5

3

41.1

7

121.

0112

3.32

128.

38

138.

18

154.

4115

9.52

δ ppm

δ ppm

13

Page 14: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

3 Photophysical Properties

The photophysical properties of sensors S1-S6 (Table S1) were measured in mixture DMSO:CHCl3 at room temperature. Absorption spectra were obtained using Hitachi U-3010 double beam UV-visible spectrophotometer (Tokyo, Japan). Fluorescence spectra were acquired at laboratory temperature using a quartz cuvette with 1 cm path length at right angle detection. Emission spectra and fluorescence lifetime measurements were carried out with Edinburgh FLS920-stm combined steady state and lifetime spectrofluorimeter (Edinburgh Instruments Ltd., Livingston, UK). Laser radiation (λ = 355 nm) was used as an excitation source for fluorescence lifetime determination experiments. Absolute quantum yields were obtained upon excitation at absorption maxima using Hamamatsu Quantaurus-QY C11347-11 Absolute PLQY Spectrometer equipped with 150 W xenon lamp and multichannel detector/CCD sensor (Hamamatsu, Japan).

Table S1. Photophysical properties of sensors S1-S6. Absorption and emission maxima (λABS,max, λEM,max, repectively), absolute fluorescence quantum yields ΦFL, fluorescence lifetimes τFL, and molar extinction coefficients εM were acquired in DMSO:CHCl3 (3:7 v/v).

Sensor λABS,maxa λEM,maxb ΦFL (λEXC)c τFL τFL with addition of

Triton X-100 (0.1 mM) [nm] [nm] [%] [ns] [ns]

S1 397 441 47.03 (395 nm) 5.00 (42.90 %) 10.38 (57.10 %)

4.59 (20.65 %) 9.42 (79.35 %)

S2 295 350 37.54 (296 nm) 2.11 (68.24 %) 11.05 (31.76 %)

2.32 (80.14 %) 11.27 (19.86 %)

S3 275 344 1.11 (300 nm) 3.75 (85.42 %) 20.08 (14.58 %)

2.77 (88.93 %) 20.57 (11.07 %)

S4 397 442 41.06 (395 nm) 8.33 (45.15 %) 13.08 (54.85 %)

6.94 (29.71 %) 12.16 (70.29 %)

S5 295 352 6.54 (296 nm) 2.66 (70.40 %) 11.03 (29.60 %)

2.84 (73.75 %) 11.20 (26.25 %)

S6 275 348 1.01 (300 nm) 3.10 (83.10 %) 19.24 (16.90 %)

2.50 (87.16 %) 20.52 (12.84 %)

a Only the lowest energy maxima are listed. b Only the highest energy maxima are listed. c Absolute quantum yields were determined upon excitation at wavelength indicated for solutions with optical density A = 0.2 (all errors < 4%).

14

Page 15: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S13. UV-vis absorption spectra of S1-S6 in DMSO:CHCl3 (3:7) with addition of Triton X-100.

250 300 350 4000

1x104

2x104

3x104 [S2] = 20 µM in DMSO_CHCl3

Wavelength, nm

ε, M

-1 c

m-1

N N

N N

NH

H

H H

N N

N

H HN

N

H

H

H

H

H

H

250 300 350 400 450 500 5500

2x104

4x104

6x104

8x104

1x105

Wavelength, nm

ε, M

-1 c

m-1

[S1] = 20 µM in DMSO_CHCl3

N N

N N

NH

H

H H

N N

N

H HN

N

H

H

HH

HH

250 275 300 325 350 375 4000

1x104

2x104

3x104

Wavelength, nm

ε, M

-1 c

m-1

[S3] = 8.0 µM in DMSO_CHCl3

N N

N NH

N

H

H H

N N

HN

H HN

N

H

HHH

H

250 300 350 400 450 5000

1x104

2x104

3x104

4x104

5x104

6x104

7x104

Wavelength, nm

ε, M

-1 c

m-1

[S4] = 20 µM in DMSO_CHCl3N N

N

H HN

N

H

HH

H

250 300 350 400

5.0x103

1.0x104

1.5x104

2.0x104

2.5x104

Wavelength, nm

ε, M

-1 c

m-1

[S6] = 8 µM in DMSO_CHCl3

N N

N N

NH

H

H H

HH

250 300 350 4000.0

5.0x103

1.0x104

1.5x104

2.0x104

Wavelength, nm

ε, M

-1 c

m-1

[S5] = 20 µM in DMSO_CHCl3

N N

N N

NH

H

H H

HH

15

Page 16: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

4 UV-vis absorption Titrations

All UV-vis absorbtion titrations were measured in DMSO:CHCl3 (3:7 v/v) with addition of Triton X-100 (0.36 mM) at room temperature. The absorbance spectra were recorded using a Hitachi U-3010 spectrophotometer. The bathochromic shifts of spectra of sensors S1-S6 upon the titration with anions were used to calculate the binding constants. Titration isotherms were obtained by plotting the change in optical density at a certain wavelength, usually in their absorption maximum against the concentration of the anion. Table S2. Binding affinities Ka (M-2) for sensors S1-S6 to various anions obtained from UV-vis absorption titration in DMSO:CHCl3 (3:7 v/v) at room temperature. NR – no response. ND – Binding constants could not be determined due to more complex equilibria.

Analyte Affinity constant (Ka, M-2 × 104)

S1 S2 S3 S4 S5 S6 Fluoride 2.90 1.70 0.99 1.90 1.40 0.83 Chloride NR NR NR NR NR NR Acetate 37.0 5.80 1.80 12.0 5.20 1.20 Oxalate 49.0 6.80 1.60 19.0 6.70 1.40

Malonate 5.60 2.90 1.10 5.60 2.00 2.90 Glutamate 0.51 0.39 0.27 0.44 0.29 0.54 Benzoate 4.90 0.92 ND 4.30 ND ND Phthalate 0.10 0.74 ND 0.86 ND ND

H2Phosphate 15.0 NR 1.20 8.80 NR NR

Figure S14. Left: Absorption titration spectra and isotherm of S1 (20μM) upon addition of Fluoride anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Absorption titration spectra and isotherm of S1 (20μM) upon addition of Acetate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

250 300 350 400 450 500 5500.0

0.5

1.0

1.5

2.0

Wavelength, nm

Abso

rban

ce

Ka = (2.9 ± 0.5)×104 M-2

0 200 400 600 800

0.0

0.2

0.4

0.6

0.8

1.0

[Fluoride], µM

(A -

A 0) / (

A i - A

0)

420 nm

250 300 350 400 450 500 5500.0

0.5

1.0

1.5

2.0

Wavelength, nm

Abso

rban

ce

Ka = (3.7 ± 0.8)×105 M-2

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

[Acetate], µM

(A -

A 0) / (

A i - A

0)

420 nm

16

Page 17: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S15. Left: Absorption titration spectra and isotherm of S1 (20μM) upon addition of Oxalate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Absorption titration spectra and isotherm of S1 (20μM) upon addition of Malonate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

Figure S16. Left: Absorption titration spectra and isotherm of S1 (20μM) upon addition of Glutamate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Absorption titration spectra and isotherm of S1 (20μM) upon addition of Benzoate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

250 300 350 400 450 500 5500.0

0.5

1.0

1.5

2.0

Wavelength, nm

Abso

rban

ceKa = (4.9 ± 0.4)×105 M-2

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

[Oxalate], µM

(A -

A 0) / (

A i - A

0)

420 nm

250 300 350 400 450 5000.00.20.40.60.81.01.21.41.61.8

Wavelength, nm

Abso

rban

ce

Ka = (5.6 ± 1.1)×104 M-2

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

[Malonate], µM

(A -

A 0) / (

A i - A

0)

420 nm

250 300 350 400 450 5000.00.20.40.60.81.01.21.41.61.8

Wavelength, nm

Abso

rban

ce

Ka = (5.1 ± 0.5)×103 M-2

0 300 600 900 1200 1500 1800

0.0

0.2

0.4

0.6

0.8

1.0

[Glutamate], µM

(A -

A 0) / (

A i - A

0)

420 nm

250 300 350 400 450 500 5500.0

0.5

1.0

1.5

2.0

Wavelength, nm

Abso

rban

ce

Ka = (4.9 ± 0.6)×104 M-2

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

[Benzoate], µM

(A -

A 0) / (

A i - A

0)420 nm

17

Page 18: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S17. Left: Absorption titration spectra and isotherm of S1 (20μM) upon addition of Phthalate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Absorption titration spectra and isotherm of S1 (20μM) upon addition of Dihydrogen phosphate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

Figure S18. Left: Absorption titration spectra and isotherm of S1 (20μM) upon addition of Fluoride anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Absorption titration spectra and isotherm of S1 (20μM) upon addition of Acetate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

250 300 350 400 450 500 5500.0

0.5

1.0

1.5

2.0

Wavelength, nm

Abso

rban

ceKa = (1.0 ± 0.1)×103 M-2

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

[Phthalate], µM

(A -

A 0) / (

A i - A

0)

420 nm

250 300 350 400 450 500 5500.0

0.5

1.0

1.5

2.0

Wavelength, nm

Abso

rban

ce

Ka = (1.5 ± 0.2)×105 M-2

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

[Dihydrogen phosphate], µM

(A -

A 0) / (

A i - A

0)

420 nm

250 300 350 400 450 5000.0

0.2

0.4

0.6

0.8

1.0

Ka = (1.7 ± 0.1)×104 M-1

Wavelength, nm

Abso

rban

ce

0 50 100 150 200 250 300

0.0

0.2

0.4

0.6

0.8

1.0

[Fluoride], µM

(A -

A 0) / (

A i - A

0)

317 nm

250 300 350 400 450 5000.0

0.2

0.4

0.6

0.8

Wavelength, nm

Abso

rban

ce

Ka = (5.8 ± 0.6)×104 M-2

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

[Acetate], µM

(A -

A 0) / (

A i - A

0)317 nm

18

Page 19: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S19. Left: Absorption titration spectra and isotherm of S2 (20μM) upon addition of Oxalate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Absorption titration spectra and isotherm of S2 (20μM) upon addition of Malonate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

Figure S20. Left: Absorption titration spectra and isotherm of S2 (20μM) upon addition of Glutamate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Absorption titration spectra and isotherm of S2 (20μM) upon addition of Benzoate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

Figure S21. Absorption titration spectra and isotherm of S2 (20μM) upon addition of Phthalate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

250 300 350 400 4500.00.10.20.30.40.50.60.70.8

Ka = (6.8 ± 0.1)×104 M-2

Wavelength, nm

Abso

rban

ce

0 20 40 60 80

0.0

0.2

0.4

0.6

0.8

1.0

325 nm

[Oxalate], µM

(A -

A 0) / (

A i - A

0)

250 300 350 400 450 5000.0

0.2

0.4

0.6

0.8

Wavelength, nm

Abso

rban

ce

Ka = (2.9 ± 0.6)×104 M-2

0 20 40 60 80 100 120

0.0

0.2

0.4

0.6

0.8

1.0

[Malonate], µM

(A -

A 0) / (

A i - A

0)

317 nm

250 300 350 400 450 5000.0

0.2

0.4

0.6

0.8

Wavelength, nm

Abso

rban

ce

Ka = (3.9 ± 0.5)×103 M-2

0 20 40 60 80 100 120 140 160 180

0.0

0.2

0.4

0.6

0.8

1.0

[Glutamate], µM

(A -

A 0) / (

A i - A

0)

317 nm

250 300 350 400 450 5000.0

0.2

0.4

0.6

Wavelength, nm

Abso

rban

ceKa = (9.2 ± 0.5)×103 M-2

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

[Benzoate], µM

(A -

A 0) / (

A i - A

0)

317 nm

250 300 350 400 450 5000.0

0.2

0.4

0.6

Wavelength, nm

Abso

rban

ce

Ka = (7.4 ± 1.1)×103 M-2

0 100 200 300 400

0.0

0.2

0.4

0.6

0.8

1.0

[Phthalate], µM

(A -

A 0) / (

A i - A

0)

317 nm

19

Page 20: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S22. Left: Absorption titration spectra and isotherm of S3 (8μM) upon addition of Fluoride anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Absorption titration spectra and isotherm of S3 (8μM) upon addition of Acetate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

Figure S23. Left: Absorption titration spectra and isotherm of S3 (8μM) upon addition of Oxalate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Absorption titration spectra and isotherm of S3 (8μM) upon addition of Malonate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

250 300 350 400 4500.0

0.1

0.2

0.3

Wavelength, nm

Abso

rban

ceKa = (9.9 ± 1.1)×103 M-2

0 100 200 300 400

0.0

0.2

0.4

0.6

0.8

1.0

(A

- A 0)

/ (A i -

A0)

[Fluoride], µM

280 nm

250 300 350 400 4500.0

0.1

0.2

0.3

0.4

Wavelength, nm

Abso

rban

ce

Ka = (1.8 ± 0.2)×104 M-2

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

[Acetate], µM

(A -

A 0) / (

A i - A

0)

280 nm

250 300 350 400 4500.0

0.1

0.2

0.3

0.4

Wavelength, nm

Abso

rban

ce

Ka = (1.6 ± 0.2)×104 M-2

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

[Oxalate], µM

(A -

A 0) / (

A i - A

0)

280 nm

250 300 350 400 4500.0

0.1

0.2

0.3

0.4

Wavelength, nm

Abso

rban

ce

Ka = (1.1 ± 0.2)×104 M-2

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

[Malonate], µM

(A -

A 0) / (

A i - A

0)

280 nm

20

Page 21: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S24. Left: Absorption titration spectra and isotherm of S3 (8μM) upon addition of Glutamate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Absorption titration spectra and isotherm of S3 (8μM) upon addition of Dihydrogen phosphate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

250 300 350 400 4500.0

0.1

0.2

0.3

0.4

Wavelength, nm

Abso

rban

ceKa = (2.7 ± 0.2)×103 M-2

0 100 200 300 400 500 600 700 800

0.0

0.2

0.4

0.6

0.8

1.0

[Glutamate], µM

(A -

A 0) / (

A i - A

0)

280 nm

250 300 350 400 4500.0

0.1

0.2

0.3

Wavelength, nm

Abso

rban

ce

Ka = (1.2 ± 0.1)×104 M-2

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

[Dihydrogen phosphate], µM

(A -

A 0) / (

A i - A

0)

280 nm

21

Page 22: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S25. Left: Absorption titration spectra and isotherm of S4 (20μM) upon addition of Fluoride anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Absorption titration spectra and isotherm of S4 (20μM) upon addition of Acetate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

Figure S26. Left: Absorption titration spectra and isotherm of S4 (20μM) upon addition of Oxalate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Absorption titration spectra and isotherm of S4 (20μM) upon addition of Malonate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

250 300 350 400 450 5000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Wavelength, nm

Abso

rban

ceKa = (1.9 ± 0.2)×104 M-2

0 100 200 300 400 500 600 700

0.0

0.2

0.4

0.6

0.8

1.0

[Fluoride], µM

(A -

A 0) / (

A i - A

0)

400 nm

250 300 350 400 450 5000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Wavelength, nm

Abso

rban

ce

Ka = (1.2 ± 0.3)×105 M-2

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

[Acetate], µM

(A -

A 0) / (

A i - A

0)

400 nm

250 300 350 400 450 5000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Wavelength, nm

Abso

rban

ce

Ka = (1.9 ± 0.4)×105 M-2

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

[Oxalate], µM

(A -

A 0) / (

A i - A

0)

400 nm

250 300 350 400 450 500 5500.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Wavelength, nm

Abso

rban

ce

Ka = (4.8 ± 0.1)×104 M-2

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

[Malonate], µM

(A -

A 0) / (

A i - A

0)

400 nm

22

Page 23: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S27. Left: Absorption titration spectra and isotherm of S4 (20μM) upon addition of Glutamate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Absorption titration spectra and isotherm of S4 (20μM) upon addition of Benzoate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

Figure S28. Left: Absorption titration spectra and isotherm of S4 (20μM) upon addition of Phthalate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Absorption titration spectra and isotherm of S4 (20μM) upon addition of Dihydrogen phosphate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

250 300 350 400 450 500 5500.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Wavelength, nm

Abso

rban

ceKa = (1.5 ± 0.2)×105 M-2

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

[Glutamate], µM

(A -

A 0) / (

A i - A

0)

400 nm

250 300 350 400 450 500 5500.00.20.40.60.81.01.21.41.6

Wavelength, nm

Abso

rban

ce

Ka = (4.3 ± 0.7)×104 M-2

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

[Benzoate], µM

(A -

A 0) / (

A i - A

0)

400 nm

250 300 350 400 450 500 5500.00.20.40.60.81.01.21.41.61.8

Wavelength, nm

Abso

rban

ce

Ka = (8.6 ± 0.3)×103 M-2

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

[Phthalate], µM

(A -

A 0) / (

A i - A

0)

400 nm

250 300 350 400 450 500 5500.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Wavelength, nm

Abso

rban

ce

Ka = (8.8 ± 0.4)×104 M-2

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

[Dihydrogen phosphate], µM

(A -

A 0) / (

A i - A

0)

400 nm

23

Page 24: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S29. Left: Absorption titration spectra and isotherm of S5 (20μM) upon addition of Fluoride anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Absorption titration spectra and isotherm of S5 (20μM) upon addition of Acetate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

Figure S30. Left: Absorption titration spectra and isotherm of S5 (20μM) upon addition of Oxalate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Absorption titration spectra and isotherm of S5 (20μM) upon addition of Malonate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

Figure S31. Absorption titration spectra and isotherm of S5 (20μM) upon addition of Glutamate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

250 300 350 400 450 5000.0

0.1

0.2

0.3

0.4

0.5

0.6

Wavelength, nm

Abso

rban

ceKa = (1.4 ± 0.1)×104 M-2

0 200 400 600 800 1000 1200

0.0

0.2

0.4

0.6

0.8

1.0

[Fluoride], µM

(A -

A 0) / (

A i - A

0)

315 nm

250 300 350 400 450 5000.0

0.1

0.2

0.3

0.4

0.5

Wavelength, nm

Abso

rban

ce

Ka = (5.2 ± 0.2)×104 M-2

0 200 400 600 800 1000 1200

0.0

0.2

0.4

0.6

0.8

1.0

[Acetate], µM

(A -

A 0) / (

A i - A

0)

315 nm

250 300 350 400 450 5000.0

0.1

0.2

0.3

0.4

0.5

Wavelength, nm

Abso

rban

ce

Ka = (6.7 ± 0.6)×104 M-2

0 100 200 300 400 500 600 700 800

0.0

0.2

0.4

0.6

0.8

1.0

[Oxalate], µM

(A -

A 0) / (

A i - A

0)

315 nm

250 300 350 400 450 5000.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Wavelength, nm

Abso

rban

ce

Ka = (2.0 ± 0.1)×104 M-2

0 200 400 600 800 1000 1200 1400

0.0

0.2

0.4

0.6

0.8

1.0

[Malonate], µM

(A -

A 0) / (

A i - A

0)

315 nm

250 300 350 400 4500.0

0.1

0.2

0.3

0.4

0.5

0.6

Wavelength, nm

Abso

rban

ce

Ka = (2.9 ± 0.9)×103 M-2

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

[Glutamate], µM

(A -

A 0) / (

A i - A

0)

315 nm

24

Page 25: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S32. Left: Absorption titration spectra and isotherm of S6 (8μM) upon addition of Fluoride anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Absorption titration spectra and isotherm of S6 (8μM) upon addition of Acetate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

Figure S33. Left: Absorption titration spectra and isotherm of S6 (8μM) upon addition of Oxalate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Absorption titration spectra and isotherm of S6 (8μM) upon addition of Malonate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM)

Figure S34. Absorption titration spectra and isotherm of S6 (8μM) upon addition of Glutamate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

250 300 350 400 450 5000.00

0.05

0.10

0.15

0.20

Wavelength, nm

Abso

rban

ceKa = (8.3 ± 1.0)×103 M-2

0 100 200 300 400 500 600 700 800

0.0

0.2

0.4

0.6

0.8

1.0

[Fluoride], µM

(A -

A 0) / (

A i - A

0)

280 nm

250 300 350 400 450 500

0.05

0.10

0.15

0.20

0.25

Wavelength, nm

Abso

rban

ce

Ka = (1.2 ± 0.2)×104 M-2

0 20 40 60 80 100 120 140 160

0.0

0.2

0.4

0.6

0.8

1.0

[Acetate], µM

(A -

A 0) / (

A i - A

0)

280 nm

250 300 350 400 450 500

0.05

0.10

0.15

0.20

Wavelength, nm

Abso

rban

ce

Ka = (1.4 ± 0.2)×104 M-2

0 10 20 30 40 50 60 70 80

0.0

0.2

0.4

0.6

0.8

1.0

[Oxalate], µM

(A -

A 0) / (

A i - A

0)

280 nm

250 300 350 400 450 500

0.05

0.10

0.15

0.20

0.25

Wavelength, nm

Abso

rban

ceKa = (2.9 ± 0.1)×104 M-2

0 20 40 60 80 100 120 140 160

0.0

0.2

0.4

0.6

0.8

1.0

[Malonate], µM

(A -

A 0) / (

A i - A

0)

280 nm

250 300 350 400 450 500

0.05

0.10

0.15

0.20

0.25

Wavelength, nm

Abso

rban

ce

Ka = (2.7 ± 0.2)×105 M-2

0 20 40 60 80 100 120 140 160

0.0

0.2

0.4

0.6

0.8

1.0

[Glutamate], µM

(A -

A 0) / (

A i - A

0)

280 nm

25

Page 26: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

5 Fluorescence Titrations

All fluorescence titrations were measured in DMSO:CHCl3 (3:7 v/v) with addition of Triton X-100 (0.36 mM) at room temperature using a quartz fluorescence cuvette (Starna Cells) with 1 cm path length at right angle detection on Edinburgh FLS920-stm steady state spectrofluorimeter (Edinburgh Instruments Ltd., Livingston, UK). The titrations were carried as follows. The sensor solutions (2.5 mL) in DMSO:CHCl3 (3:7 v/v) with Triton X-100 (0.36 mM) in cuvette were titrated with stock solution of various anions (62.5 mM in DMSO:CHCl3 (3:7 v/v)) and the change in fluorescence intensity was recorded. Table S3. Binding affinities Ka (M-2) for sensors S1-S6 to various anions obtained from fluorescence titration in DMSO:CHCl3 (3:7 v/v) with addition of Triton X-100 (0.36 mM) at room temperature.

Analyte Affinity constant (Ka, M-2 × 104)

S1 S2 S3 S4 S5 S6 Fluoride 10.0 6.90 1.40 6.30 ND 1.00 Chloride 5.80 0.12 NR NR NR NR Acetate 51.0 11.0 3.30 12.0 ND 3.30 Oxalate 41.0 12.0 4.10 19.0 ND 1.70

Malonate 14.0 5.50 2.60 4.80 ND 3.00 Glutamate 1.30 0.87 0.57 4.40 ND 0.28 Benzoate 7.80 5.00 0.66 4.30 ND 3.10 Phthalate 0.48 3.80 0.30 0.86 ND 1.70

H2Phosphate 35.0 ND 0.48 8.80 ND 2.20

Figure S35. Left: Fluorescence titration spectra (λex=375 nm) and isotherm of S1 (0.2 μM) upon addition of Fluoride anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Fluorescence titration spectra (λex=375 nm) and isotherm of S1 (0.2 μM) upon addition of Acetate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

450 500 550 6001x105

2x105

3x105

4x105

5x105

Fl. I

nten

sity

, a.u

.

Wavelength, nm

Ka = (1.0 ± 0.1)×105 M-2

0 2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0

[Fluoride], µM

(I 0 - I)

/ (I 0 -

I i)

451 nm

450 500 550 600

1x105

2x105

3x105

4x105

5x105

6x105

Wavelength, nm

Fl. I

nten

sity

, a.u

.

Ka = (5.1 ± 1.0)×105 M-2

0 20 40 60 80 100 120 140 160

0.0

0.2

0.4

0.6

0.8

1.0

[Acetate], µM

(I 0 - I)

/ (I 0 -

I i)

451 nm

26

Page 27: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S36. Left: Fluorescence titration spectra (λex=375 nm) and isotherm of S1 (0.2 μM) upon addition of Oxalate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Fluorescence titration spectra (λex=375 nm) and isotherm of S1 (0.2 μM) upon addition of Malonate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

Figure S37. Left: Fluorescence titration spectra (λex=375 nm) and isotherm of S1 (0.2 μM) upon addition of Glutamate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Fluorescence titration spectra (λex=375 nm) and isotherm of S1 (0.2 μM) upon addition of Benzoate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

450 500 550 600

1x105

2x105

3x105

4x105

5x105

6x105

7x105Fl

. Int

ensi

ty, a

.u.

Wavelength, nm

Ka = (4.1 ± 0.2)×105 M-2

0 5 10 15 20 25 30 35 40

0.0

0.2

0.4

0.6

0.8

1.0

[Oxalate], µM

(I 0 - I)

/ (I 0 -

I i)

451 nm

450 500 550 600

1x105

2x105

3x105

4x105

5x105

Fl. I

nten

sity

, a.u

.

Wavelength, nm

Ka = (1.4 ± 0.2)×105 M-2

0 10 20 30 40 50 60 70 80

0.0

0.2

0.4

0.6

0.8

1.0

[Malonate], µM

(I 0 - I)

/ (I 0 -

I i)

451 nm

0 5 10 15 20 25 30 35

0.0

0.2

0.4

0.6

0.8

1.0

[Glutamate], µM

(I 0 - I)

/ (I 0 -

I i)

451 nm

450 500 550 600

1x105

2x105

3x105

4x105

5x105

Fl. I

nten

sity

, a.u

.

Wavelength, nm

Ka = (1.3 ± 0.2)×104 M-2

450 500 550 600

1x105

2x105

3x105

4x105

5x105

Fl. I

nten

sity

, a.u

.

Wavelength, nm

Ka = (7.8 ± 0.9)×104 M-2

0 10 20 30 40 50 60 70 80

0.0

0.2

0.4

0.6

0.8

1.0

[Benzoate], µM

(I 0 - I)

/ (I 0 -

I i)

451 nm

27

Page 28: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S38. Left: Fluorescence titration spectra (λex=375 nm) and isotherm of S1 (0.2 μM) upon addition of Phthalate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Fluorescence titration spectra (λex=375 nm) and isotherm of S1 (0.2 μM) upon addition of Dihydrogen phosphate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

Figure S39. Left: Fluorescence titration spectra (λex=305 nm) and isotherm of S2 (20μM) upon addition of Fluoride anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Fluorescence titration spectra (λex=305 nm) and isotherm of S2 (20μM) upon addition of Acetate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

450 500 550 600

1x105

2x105

3x105

4x105

5x105

6x105Fl

. Int

ensi

ty, a

.u.

Wavelength, nm

Ka = (4.8 ± 0.9)×103 M-2

0 5 10 15 20 25 30 35 40 45

0.0

0.2

0.4

0.6

0.8

1.0

[Phthalate], µM

(I 0 - I)

/ (I 0 -

I i)

451 nm

450 500 550 600

1x105

2x105

3x105

4x105

5x105

6x105

Fl. I

nten

sity

, a.u

.

Wavelength, nm

Ka = (3.5 ± 0.9)×105 M-2

0 2 4 6 8 10 12 14 16

0.0

0.2

0.4

0.6

0.8

1.0

[Dihydrogen phosphate], µM

(I 0 - I)

/ (I 0 -

I i)

451 nm

320 340 360 380 400 420 440 460 480 500

5.0x104

1.0x105

1.5x105

2.0x105

2.5x105

3.0x105

3.5x105

Fl. I

nten

sity

, a.u

.

Wavelength, nm

Ka = (6.9 ± 0.5)×104 M-2

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

[Fluoride], µM

(I 0 - I)

/ (I 0 -

I i)

358 nm

325 350 375 400 425 450 475 500

5.0x104

1.0x105

1.5x105

2.0x105

2.5x105

3.0x105

3.5x105

Fl. I

nten

sity

, a.u

.

Wavelength, nm

Ka = (1.1 ± 0.1)×105 M-2

10 20 30 40 50 60 70 80 90 100

0.0

0.2

0.4

0.6

0.8

1.0

[Acetate], µM

(I 0 - I)

/ (I 0 -

I i)

40 60 80 100

-0.00016

-0.00012

-0.00008

[Acetate], µM

[Ace

tate

] / (I

/I 0 - 1

)

28

Page 29: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S40. Left: Fluorescence titration spectra (λex=305 nm) and isotherm of S2 (20μM) upon addition of Oxalate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Fluorescence titration spectra (λex=305 nm) and isotherm of S2 (20μM) upon addition of Malonate anion in DMSO:CHCl3 (3:7,

v/v) with Triton X-100 (0.36mM).

Figure S41. Left: Fluorescence titration spectra (λex=305 nm) and isotherm of S2 (20μM) upon addition of Glutamate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Fluorescence titration spectra (λex=305 nm) and isotherm of S2 (20μM) upon addition of Benzoate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

325 350 375 400 425 450 475 500

1x105

2x105

3x105

4x105

5x105

Fl. I

nten

sity

, a.u

.

Wavelength, nm

Ka = (1.2 ± 0.1)×105 M-2

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

[Oxalate], µM

(I 0 - I)

/ (I 0 -

I i)

358 nm

325 350 375 400 425 450 475 500

1x105

2x105

3x105

4x105

5x105

Ka = (5.5 ± 0.8)×104 M-2

Fl. I

nten

sity

, a.u

.

Wavelength, nm

0 20 40 60 80 100 120 140

0.0

0.2

0.4

0.6

0.8

1.0

[Malonate], µM

(I 0 - I)

/ (I 0 -

I i)

358 nm

325 350 375 400 425 450 475 500

1x105

2x105

3x105

4x105

5x105

Fl. I

nten

sity

, a.u

.

Wavelength, nm

Ka = (8.7 ± 0.8)×103 M-2

0 20 40 60 80 100 120 140 160

0.0

0.2

0.4

0.6

0.8

1.0

[Glutamate], µM

(I 0 - I)

/ (I 0 -

I i)

358 nm

325 350 375 400 425 450 475 500

1x105

2x105

3x105

4x105

5x105

Fl. I

nten

sity

, a.u

.

Wavelength, nm

Ka = (5.0 ± 0.1)×104 M-2

0 20 40 60 80 100 120 140 160

0.0

0.2

0.4

0.6

0.8

1.0

[Benzoate], µM

(I 0 - I)

/ (I 0 -

I i)

358 nm

29

Page 30: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S42. Left: Fluorescence titration spectra (λex=305 nm) and isotherm of S2 (20μM) upon addition of Phthalate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Fluorescence titration spectra (λex=305 nm) and isotherm of S2 (20μM) upon addition of Dihydrogen phosphate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

Figure S43. Left: Fluorescence titration spectra (λex=315 nm) and isotherm of S3 (8 μM) upon addition of Fluoride anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Fluorescence titration spectra (λex=315 nm) and isotherm of S3 (8 μM) upon addition of Acetate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

325 350 375 400 425 450 475 500

1x105

2x105

3x105

4x105

5x105Fl

. Int

ensi

ty, a

.u.

Wavelength, nm

Ka = (3.8 ± 0.2)×104 M-1

0 50 100 150 200 250 300 350 400

0.0

0.2

0.4

0.6

0.8

1.0

[Phthalate], µM

(I 0 - I)

/ (I 0 -

I i)

0.00018 0.00024 0.00030 0.00036-0.0005

-0.0004

-0.0003

[Phthalate], M

[Pht

hala

te] /

(I/I 0 -

1)

325 350 375 400 425 450 475 500

1x105

2x105

3x105

4x105

5x105

Fl. I

nten

sity

, a.u

.

Wavelength, nm

Ka = ND

0 20 40 60 80 100 120 140 160 180

0.0

0.2

0.4

0.6

0.8

1.0

[Dihydrogen phosphate], µM

(I 0 - I)

/ (I 0 -

I i)

358 nm

350 400 450 5002x105

4x105

6x105

8x105

1x106

Fl. I

nten

sity

, a.u

.

Wavelength, nm

Ka = (1.4 ± 0.1)×104 M-2

0 200 400 600 800 100012001400

0.0

0.2

0.4

0.6

0.8

1.0

[Fluoride], µM

(I 0 - I)

/ (I 0 -

I i)

352 nm

350 400 450 5002.0x105

4.0x105

6.0x105

8.0x105

1.0x106

1.2x106

1.4x106

Fl. I

nten

sity

, a.u

.

Wavelength, nm

Ka = (3.3 ± 0.7)×104 M-2

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

352 nm

[Acetate], µM

(I 0 - I)

/ (I 0 -

I i)

30

Page 31: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S44. Left: Fluorescence titration spectra (λex=315 nm) and isotherm of S3 (8 μM) upon addition of Oxalate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Fluorescence titration spectra (λex=315 nm) and isotherm of S3 (8 μM) upon addition of Malonate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

Figure S45. Left: Fluorescence titration spectra (λex=315 nm) and isotherm of S3 (8 μM) upon addition of Glutamate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Fluorescence titration spectra (λex=315 nm) and isotherm of S3 (8 μM) upon addition of Benzoate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

350 400 450 5002x105

4x105

6x105

8x105

1x106

Fl. I

nten

sity

, a.u

.

Wavelength, nm

Ka = (4.1 ± 1.0)×104 M-2

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

352 nm

[Oxalate], µM

(I 0 - I)

/ (I 0 -

I i)

350 400 450 500

2x105

3x105

4x105

5x105

6x105

7x105

8x105

Fl. I

nten

sity

, a.u

.

Wavelength, nm

Ka = (2.6 ± 0.2)×104 M-2

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

352 nm

[Malonate], µM

(I 0 - I)

/ (I 0 -

I i)

350 400 450 5002x105

3x105

4x105

5x105

6x105

7x105

8x105

Fl. I

nten

sity

, a.u

.

Wavelength, nm

Ka = (5.7 ± 1.0)×103 M-2

0 200 400 600 800 1000 1200

0.0

0.2

0.4

0.6

0.8

1.0

352 nm

[Glutamate], µM

(I 0 - I)

/ (I 0 -

I i)

350 400 450 500

4x105

6x105

8x105

1x106

Fl. I

nten

sity

, a.u

.

Wavelength, nm

Ka = (6.6 ± 0.4)×103 M-2

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

352 nm

[Benzoate], µM

(I 0 - I)

/ (I 0 -

I i)

31

Page 32: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S46. Left: Fluorescence titration spectra (λex=315 nm) and isotherm of S3 (8 μM) upon addition of Phthalate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Fluorescence titration spectra (λex=315 nm) and isotherm of S3 (8 μM) upon addition of Dihydrogen phosphate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

Figure S47. Left: Fluorescence titration spectra (λex=375 nm) and isotherm of S4 (0.2 μM) upon addition of Fluoride anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Fluorescence titration spectra (λex=375 nm) and isotherm of S4 (0.2 μM) upon addition of Acetate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

350 400 450 5002x105

4x105

6x105

8x105

1x106

Fl. I

nten

sity

, a.u

.

Wavelength, nm

Ka = (3.0 ± 0.2)×103 M-2

0 200 400 600 800 100012001400

0.0

0.2

0.4

0.6

0.8

1.0

352 nm

[Phthalate], µM

(I 0 - I)

/ (I 0 -

I i)

350 400 450 5002x105

3x105

4x105

5x105

6x105

7x105

8x105

Fl. I

nten

sity

, a.u

.

Wavelength, nm

Ka = (4.8 ± 0.4)×103 M-2

0 200 400 600 800 1000 1200

0.0

0.2

0.4

0.6

0.8

1.0

352 nm

[Dihydrogen phosphate], µM

(I 0 - I)

/ (I 0 -

I i)

400 450 500 550 600 650

1x105

2x105

3x105

4x105

5x105

Fl. I

nten

sity

, a.u

.

Wavelength, nm

Ka = (6.3 ± 0.8)×104 M-2

0 20 40 60 80 100 120 140 160

0.0

0.2

0.4

0.6

0.8

1.0

[Fluoride], µM

(I 0 - I)

/ (I 0 -

I i)

448 nm

400 450 500 550 600 650

1x105

2x105

3x105

4x105

5x105

6x105

Fl. I

nten

sity

, a.u

.

Wavelength, nm

Ka = (2.7 ± 0.6)×105 M-2

0 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0

448 nm

[Acetate], µM

(I 0 - I)

/ (I 0 -

I i)

32

Page 33: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S48. Left: Fluorescence titration spectra (λex=375 nm) and isotherm of S4 (0.2 μM) upon addition of Oxalate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Fluorescence titration spectra (λex=375 nm) and isotherm of S4 (0.2 μM) upon addition of Malonate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

Figure S49. Left: Fluorescence titration spectra (λex=375 nm) and isotherm of S4 (0.2 μM) upon addition of Glutamate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Fluorescence titration spectra (λex=375 nm) and isotherm of S4 (0.2 μM) upon addition of Benzoate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

400 450 500 550 600 650

1x105

2x105

3x105

4x105

5x105

Fl. I

nten

sity

, a.u

.

Wavelength, nm

Ka = (3.1 ± 0.1)×105 M-2

0 20 40 60 80 100 120 140 160

0.0

0.2

0.4

0.6

0.8

1.0

448 nm

[Oxalate], µM

(I 0 - I)

/ (I 0 -

I i)

400 450 500 550 600 650

1x105

2x105

3x105

4x105

5x105

Fl. I

nten

sity

, a.u

.

Wavelength, nm

Ka = (7.7 ± 0.4)×104 M-2

0 20 40 60 80 100 120 140

0.0

0.2

0.4

0.6

0.8

1.0

448 nm

[Malonate], µM

(I 0 - I)

/ (I 0 -

I i)

400 450 500 550 600 650

1x105

2x105

3x105

4x105

5x105

6x105

Fl. I

nten

sity

, a.u

.

Wavelength, nm

Ka = (1.3 ± 0.2)×104 M-2

0 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0

448 nm

[Glutamate], µM

(I 0 - I)

/ (I 0 -

I i)

400 450 500 550 600 650

1x105

2x105

3x105

4x105

Fl. I

nten

sity

, a.u

.

Wavelength, nm

Ka = (6.1 ± 0.4)×104 M-2

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

448 nm

[Benzoate], µM

(I 0 - I)

/ (I 0 -

I i)

33

Page 34: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S50. Left: Fluorescence titration spectra (λex=375 nm) and isotherm of S4 (0.2 μM) upon addition of Phthalate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Fluorescence titration spectra (λex=375 nm) and isotherm of S4 (0.2 μM) upon addition of Dihydrogen phosphate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

Figure S51. Left: Fluorescence titration spectra (λex=315 nm) and isotherm of S6 (8 μM) upon addition of Fluoride anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Fluorescence titration spectra (λex=315 nm) and isotherm of S6 (8 μM) upon addition of Acetate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

400 450 500 550 600 650

2x105

4x105

6x105

8x105Fl

. Int

ensi

ty, a

.u.

Wavelength, nm

Ka = (1.1 ± 0.1)×104 M-2

0 50 100 150 200 250 300

0.0

0.2

0.4

0.6

0.8

1.0

448 nm

[Phthalate], µM

(I 0 - I)

/ (I 0 -

I i)

400 450 500 550 600 650

1x105

2x105

3x105

4x105

5x105

6x105

Fl. I

nten

sity

, a.u

.

Wavelength, nm

Ka = (1.9 ± 0.2)×105 M-2

0 50 100 150 200 250 300

0.0

0.2

0.4

0.6

0.8

1.0

448 nm

[Dihydrogen phosphate], µM

(I 0 - I)

/ (I 0 -

I i)

350 400 450 500

4x105

6x105

8x105

1x106

Fl. I

nten

sity

, a.u

.

Wavelength, nm

Ka = (1.0 ± 0.2)×104 M-2

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

[Fluoride], µM

(I 0 - I)

/ (I 0 -

I i)

351 nm

350 400 450

4x105

6x105

8x105

1x106

Fl. I

nten

sity

, a.u

.

Wavelength, nm

Ka = (3.3 ± 0.2)×104 M-2

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

351 nm

[Acetate], µM(I 0 -

I) /

(I 0 - I i)

34

Page 35: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S52. Left: Fluorescence titration spectra (λex=315 nm) and isotherm of S6 (8 μM) upon addition of Oxalate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Fluorescence titration spectra (λex=315 nm) and isotherm of S6 (8 μM) upon addition of Malonate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

Figure S53. Left: Fluorescence titration spectra (λex=315 nm) and isotherm of S6 (8 μM) upon addition of Glutamate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Fluorescence titration spectra (λex=315 nm) and isotherm of S6 (8 μM) upon addition of Benzoate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

340 360 380 400 420 440 460 480 500

2x105

4x105

6x105

8x105

1x106Fl

. Int

ensi

ty, a

.u.

Wavelength, nm

Ka = (1.7 ± 0.3)×104 M-2

0 200 400 600 800

0.0

0.2

0.4

0.6

0.8

1.0

351 nm

[Oxalate], µM

(I 0 - I)

/ (I 0 -

I i)

350 400 450 500

2x105

4x105

6x105

8x105

1x106

Fl. I

nten

sity

, a.u

.

Wavelength, nm

Ka = (3.0 ± 1.0)×104 M-2

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

351 nm

[Malonate], µM

(I 0 - I)

/ (I 0 -

I i)

350 400 450 500

2x105

4x105

6x105

8x105

Fl. I

nten

sity

, a.u

.

Wavelength, nm

Ka = (2.8 ± 0.4)×103 M-2

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

351 nm

[Glutamate], µM

(I 0 - I)

/ (I 0 -

I i)

350 400 450 500

2x105

4x105

6x105

8x105

Fl. I

nten

sity

, a.u

.

Wavelength, nm

Ka = (3.0 ± 0.2)×103 M-2

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

351 nm

[Benzoate], µM

(I 0 - I)

/ (I 0 -

I i)

35

Page 36: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S54. Left: Fluorescence titration spectra (λex=315 nm) and isotherm of S6 (8 μM) upon addition of Phthalate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM). Right: Fluorescence titration spectra (λex=315 nm) and isotherm of S6 (8 μM) upon addition of Dihydrogen phosphate anion in DMSO:CHCl3 (3:7, v/v) with Triton X-100 (0.36mM).

350 400 450 500

2x105

4x105

6x105

8x105

1x106Fl

. Int

ensi

ty, a

.u.

Wavelength, nm

Ka = (1.7 ± 0.3)×103 M-2

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

351 nm

[Phthalate], µM

(I 0 - I)

/ (I 0 -

I i)

350 400 450 500

2x105

4x105

6x105

8x105

1x106

Fl. I

nten

sity

, a.u

.

Wavelength, nm

Ka = (2.2 ± 0.1)×104 M-2

0 200 400 600 800 1000 1200

0.0

0.2

0.4

0.6

0.8

1.0

351 nm

[Dihydrogen phosphate], µM

(I 0 - I)

/ (I 0 -

I i)

36

Page 37: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

6 Proton NMR titrations

The anion binding properties of S1-S6 in DMSO solution were studied with 1H NMR titration method. 1H NMR spectra were recorded on a Bruker Avance III (500 MHz) spectrometer at 348 K in DMSO-d6.

Figure S55. Panel A: 1H NMR titration (selected region) of a solution of S1 (16 mM) with tetrabutylammonium chloride (0-10.0 mol. eq.) in DMSO (500 MHz) at 348K. Panel B: 1H NMR titration isotherm for selected NH signal (●).

Figure S56. Panel A: 1H NMR titration (selected region) of a solution of S2 (16 mM) with tetrabutylammonium chloride (0-8.5 mol. eq.) in DMSO (500 MHz) at 348K. Panel B: 1H NMR titration isotherm for selected NH signal (●).

0 25 50 75 100 125 150 175

0.0

0.2

0.4

0.6

0.8

1.0

[Chloride], mM∆δ

NH

Ka = (8.6 ± 1.0)×101 M-1

[S1] = 16 mM in DMSO

0 mol equiv.

0.5 mol equiv.

1.0 mol equiv.

2.0 mol equiv.

5.0 mol equiv.

7.0 mol equiv.

10.0 mol equiv.

N N

N N

NH

H

H H

N N

N

H HN

N

H

H

HH

HH

A

0 20 40 60 80 100 120 140

0.0

0.2

0.4

0.6

0.8

1.0

[Chloride], mM

∆δNH

Ka = (6.8 ± 0.9)×101 M-1

[S2] = 16 mM in DMSO

B0 mol equiv.

0.5 mol equiv.

1.0 mol equiv.

2.0 mol equiv.

5.5 mol equiv.

6.5 mol equiv.

8.5 mol equiv.

N N

N N

NH

H

H H

N N

N

H HN

N

H

H

H

H

H

H

A

37

Page 38: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S57. Panel A: 1H NMR titration (selected region) of a solution of S3 (16 mM) with tetrabutylammonium chloride (0-10.0 mol. eq.) in DMSO (500 MHz) at 348K. Panel B: 1H NMR titration isotherm for selected NH signal (●).

Figure S58. Panel A: 1H NMR titration (selected region) of a solution of S4 (12 mM) with tetrabutylammonium chloride (0-10.0 mol. eq.) in DMSO (500 MHz) at 348K. Panel B: 1H NMR titration isotherm for selected NH signal (●).

0 mol equiv.

0.5 mol equiv.

1.0 mol equiv.

2.0 mol equiv.

5.0 mol equiv.

7.0 mol equiv.

10.0 mol equiv.

A

0 20 40 60 80 100 120 140 160 180

0.0

0.2

0.4

0.6

0.8

1.0

[Chloride], mM

∆δNH

Ka = (6.4 ± 0.7)×101 M-1

[S3] = 16 mM in DMSO

B

N N

N N

N

H

H

H

H

N N

N

H H

H

N

N

H

HHH

H

6.57.07.58.08.59.09.510.010.511.011.512.012.5f1 (ppm)

1

2

3

4

5

6

70 mol equiv.

0.5 mol equiv.

1.0 mol equiv.

2.0 mol equiv.

5.0 mol equiv.

7.0 mol equiv.

10.0 mol equiv.

A

0 20 40 60 80 100 120 140 160

0.0

0.2

0.4

0.6

0.8

1.0

[Chloride], mM

∆δNH

Ka = (3.0 ± 0.1)×101 M-1

[S4] = 16 mM in DMSO

B

N N

N

H HN

N

H

HH

H

38

Page 39: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S59. Panel A: 1H NMR titration (selected region) of a solution of S5 (12 mM) with tetrabutylammonium chloride (0-10.0 mol. eq.) in DMSO (500 MHz) at 348K. Panel B: 1H NMR titration isotherm for selected NH signal (●).

Figure S60. Panel A: 1H NMR titration (selected region) of a solution of S6 (16 mM) with tetrabutylammonium chloride (0-10.0 mol. eq.) in DMSO (500 MHz) at 348K. Panel B: 1H NMR titration isotherm for selected NH signal (●).

0 mol equiv.

0.5 mol equiv.

1.0 mol equiv.

2.0 mol equiv.

5.0 mol equiv.

7.0 mol equiv.

10.0 mol equiv.

A

0 20 40 60 80 100 120 140 160 180

0.0

0.2

0.4

0.6

0.8

1.0

[Chloride], mM

∆δNH

Ka = (5.6 ± 0.7)×101 M-1

[S5] = 12 mM in DMSO

B

N N

N N

NH

H

H H

HH

0 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0

[Chloride], mM

∆δNH

[S6] = 16 mM in DMSOKa = (4.8 ± 0.5)×101 M-1

B0 mol equiv.

0.5 mol equiv.

1.0 mol equiv.

2.0 mol equiv.

5.0 mol equiv.

7.0 mol equiv.

10.0 mol equiv.

A

N N

N N

NH

H

H H

HH

39

Page 40: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

7 Stoichiometry determination: Job’s plot

The anion binding properties, namely the ratio between sensors S1-S6 and an anion, were studied with Job’s plot fluorescence method, using tetrabutylammonium fluoride and tetrabutylammonium acetate as the anion sources in mix DMSO:CHCl3 (3:7) with addition of surfactant Triton X-100. The obtained results show 1:2 ratio for all complexes of fluoride and acetate anions.

Figure S61. Left: Job’s plot for the determination of the stoichiometry of S1 and F– in the complex in DMSO:CHCl3 (3:7) with addition of surfactant Triton X-100 (0.36mM). Right: Job’s plot for the determination of the stoichiometry of S1 and OAc– in the complex in DMSO:CHCl3 (3:7) with addition of surfactant Triton X-100 (0.36mM).

Figure S62. Left: Job’s plot for the determination of the stoichiometry of S2 and F– in the complex in DMSO:CHCl3 (3:7) with addition of surfactant Triton X-100 (0.36mM). Right: Job’s plot for the determination of the stoichiometry of S2 and OAc– in the complex in DMSO:CHCl3 (3:7) with addition of surfactant Triton X-100 (0.36mM).

0.0 0.2 0.4 0.6 0.8 1.0

0.0

2.0x104

4.0x104

6.0x104

8.0x104

1.0x105

1.2x105

1.4x105

χ Fluoride

Inte

nsity

x χ

Flu

orid

e ʎEx=400 nmʎEm=445 nm

Sensor S1: Fluoride= 1:2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

2.0x104

4.0x104

6.0x104

8.0x104

1.0x105

1.2x105

1.4x105

χ Acetate

Inte

nsity

x χ

Ace

tate

ʎEx=400 nmʎEm=445 nm

Sensor S1: Acetate= 1:2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

5.0x104

1.0x105

1.5x105

2.0x105

χ Fluoride

Inte

nsity

x χ

Flu

orid

e ʎEx=320 nmʎEm=358 nm

Sensor S2: Fluoride= 1:2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

5.0x104

1.0x105

1.5x105

2.0x105

2.5x105

χ Acetate

Inte

nsity

x χ

Ace

tate

ʎEx=320 nmʎEm=358 nm

Sensor S2: Acetate= 1:2

40

Page 41: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S63. Left: Job’s plot for the determination of the stoichiometry of S3 and F– in the complex in DMSO:CHCl3 (3:7) with addition of surfactant Triton X-100 (0.36mM). Right: Job’s plot for the determination of the stoichiometry of S3 and OAc– in the complex in DMSO:CHCl3 (3:7) with addition of surfactant Triton X-100 (0.36mM).

Figure S64. Left: Job’s plot for the determination of the stoichiometry of S4 and F– in the complex in DMSO:CHCl3 (3:7) with addition of surfactant Triton X-100 (0.36mM). Right: Job’s plot for the determination of the stoichiometry of S4 and OAc– in the complex in DMSO:CHCl3 (3:7) with addition of surfactant Triton X-100 (0.36mM).

0.0 0.2 0.4 0.6 0.8 1.00.0

5.0x104

1.0x105

1.5x105

2.0x105

2.5x105

3.0x105

3.5x105

4.0x105

χ Fluoride

Inte

nsity

x χ

Flu

orid

e ʎEx=320 nmʎEm=345 nm

Sensor S3: Fluoride= 1:2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

5.0x104

1.0x105

1.5x105

2.0x105

2.5x105

3.0x105

χ Acetate

Inte

nsity

x χ

Ace

tate

ʎEx=320 nmʎEm=345 nm

Sensor S3: Acetate= 1:2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

2.0x104

4.0x104

6.0x104

8.0x104

1.0x105

1.2x105

χ Fluoride

Inte

nsity

x χ

Flu

orid

e ʎEx=365 nmʎEm=442 nm

Sensor S4: Fluoride= 1:2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

2.0x104

4.0x104

6.0x104

8.0x104

1.0x105

1.2x105

χ Acetate

Inte

nsity

x χ

Ace

tate

ʎEx=365 nmʎEm=442 nm

Sensor S4: Acetate= 1:2

41

Page 42: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S65. Left: Job’s plot for the determination of the stoichiometry of S6 and F– in the complex in DMSO:CHCl3 (3:7) with addition of surfactant Triton X-100 (0.36mM). Right: Job’s plot for the determination of the stoichiometry of S6 and OAc– in the complex in DMSO:CHCl3 (3:7) with addition of surfactant Triton X-100 (0.36mM).

0.0 0.2 0.4 0.6 0.8 1.0

0

1x105

2x105

3x105

4x105

5x105

χ Fluoride

Inte

nsity

x χ

Flu

orid

e ʎEx=303 nmʎEm=348 nm

Sensor S6: Fluoride= 1:20.0 0.2 0.4 0.6 0.8 1.0

0

1x105

2x105

3x105

4x105

χ Acetate

Inte

nsity

x χ

Ace

tate

ʎEx=303 nmʎEm=348 nm

Sensor S6: Acetate= 1:2

42

Page 43: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

8 Paper microzone plates study

The plates were printed on chromatography paper (Whatman) with a Xerox ColorQube model 8570 wax printer. After printing, it was baked in an oven for 4 minutes at 110 oC allowing for the penetration of wax into the paper. These plates were used for qualitative classification of analytes and quantitative analysis of various anions in water. Qualitative analysis was made by reacting 5 mM solution of sensors S1-S6 (1 µL) in DMSO with 5 mM solution of different analytes (1 µL) in water. The responses were recorded by Kodak Image Station 440CF and Kodak Image Station 4000MM. Fluorescence intensities were classified by using Linear Discriminant Analysis (LDA). In quantitative analysis the responses from sensor arrays were evaluated by LDA classification for semi-quantitative analysis and Support Vector Machine (SVM) regression. Cross-validation results confirms 100% classification.

Figure S66. Top: Fluorescence photograph of sensor S1 (0.4mM) with different anions (2.5mM) in DMSO:CHCl3 (3:7). Middle: Fluorescence image from the paper microzone array of sensor S1 (5mM) with four analytes (10mM), obtained as a sum of the RGB channels collected in the measurements. Bottom: Fluorescence spectrum of S1 (0.2 μM) (DMSO:CHCl3, 3:7, v/v) (black). Fluorescence spectrum of S1 (0.2 μM) in a presence of Dihydrogen phosphate anion (DMSO:CHCl3, 3:7, v/v) (red). Fluorescence spectrum of S1 (0.2 μM) in a presence of Fluoride anion (DMSO:CHCl3, 3:7, v/v) (blue)

S1 Ctrl

Fluoride

Chloride

Acetate

Ctrl F Cl OAc Ox Mal Glu OBz Pht Pi

43

Page 44: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Qualitative Assay for S1-S6 with different analytes

Table S4. Table of cumulative proportion of total dispersion for the qualitative assay of S1-S6 (5mM) with various anions (5mM) in water (and one control).

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 0.799 0.912 0.957 0.976 0.989 0.995 0.998 0.999 0.999 1 1 1

Figure S67. Graphical output of the qualitative LDA for a competitive assay of S1-S6 (5mM) with various anions (5mM) in water. Achieved with 10 excitation/emission channels for each sensor, 13 repetitions, 100 % correct classification.

-60 -40 -20 0 20 40 60

-40

-20

0

20

40

Control Fluoride Chloride Bromide Acetate Oxalate Malonate Glutamate Benzoate Phthalate Pi PPi

F2

(11.

3%)

F1(79.9%)

44

Page 45: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Semi-Quantitative Paper-Based Assay

Figure S68. Canonical scores plot for LDA for the semi-quantitative assay for S1-S6 and Oxalate, Chloride and Hydrogen pyrophosphate anions and a control.

45

Page 46: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S69. 2 D graphical output of Linear Discriminant Analysis for paper-based assay for sensors S1-S6 (5mM) with chloride, hydrogen pyrophosphate and oxalate anions. Achieved with 6 excitation/emission channels for each sensor, 15 repetitions, 100 % correct classification.

-60 -40 -20 0 20 40 60-40

-20

0

20

40

10.0 mM5.0 mM

4.0 mM

3.0 mM

2.0 mM

1.0 mM

0.5 mM

F2 (2

8.9%

)

F1(45.3%)

Control

10.0 mM

1.0 mM

2.0 mM

3.0 mM

4.0 mM

5.0 mM

5.0 mM

4.0 mM

3.0 mM

2.0 mM

1.0 mM

0.5 mMOP-O O-O

OP

OHO- O-

OO

O-

Cl-

46

Page 47: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S70. Canonical scores plot for LDA for the semi-quantitative assay for S1-S6 Chloride, Dihydrogen phosphate and Hydrogen pyrophosphate anions and a control.

47

Page 48: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S71. 3 D graphical output of Linear Discriminant Analysis for paper-based assay for sensors S1 -S6 (5mM) with chloride, hydrogen pyrophosphate and dihydrogen phosphate anions. Achieved with 6 excitation/emission channels for each sensor, 15 repetitions, 100 % correct classification.

-30 0 30

-20

0

20

-10010

1.0 mM

0.5 mM

F3 (5.9%)F1 (69.3%)

F2 (16.4%)

1.0 mM2.0 mM

3.0 mM

4.0 mM

5.0 mM

10.0 mM

10.0 mM

5.0 mM

4.0 mM

3.0 mM

2.0 mM

0.5 mM

Control

0.5 mM1.0 mM

2.0 mM3.0 mM

4.0 mM5.0 mM

10.0 mM

OP-O O-O

OP

OHO-

OP

HO O-OH

Cl-

48

Page 49: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S72. Canonical scores plot for LDA for the semi-quantitative assay for S1-S6 Chloride, Oxalate, Dihydrogen phosphate and Hydrogen pyrophosphate anions and a control.

Table S5. Table of cumulative proportion of total dispersion for the qualitative assay of S1-S6 (5mM) with Chloride, Oxalate, Dihydrogen phosphate and Hydrogen pyrophosphate anions (5mM) in water (and one control).

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 0.359 0.695 0.957 0.925 0.980 0.991 0.995 0.998 0.998 0.999 0.999 0.999 0.999 1

49

Page 50: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S73. 3 D graphical output of Linear Discriminant Analysis for paper-based assay for sensors S1- S6 (5mM) with Chloride, Hydrogen pyrophosphate, Dihydrogen phosphate and Oxalate anions and a control. Achieved with 6 excitation/emission channels for each sensor, 15 repetitions, 100 % correct classification.

-30

0

30

-30

0

30-20

0

20

F1 (35.9%)

F3 (2

3.0%

)

F3 (33.6%)

OP-O O-O

OP

OHO-

OP

HO O-OH

O-

OO

O-

Cl-

10.0 mM 5.0 mM

10.0 mM

10.0 mM

50

Page 51: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Quantitative Assays The plot of the actual vs. predicted concentration shows high accuracy of prediction for multiple Chloride concentration values. The root-mean-square errors (RMSE) of calibration (RMSEC), cross-validation (RMSECV), and prediction (RMSEP) attest to the quality of the model and prediction. Two unknown samples (red circle ●) were simultaneously correctly analyzed for Chloride (1mM and 4mM).

Figure S74. Results of linear regression by Support Vector Machine (SVM) for Chloride anion. Red circles (●) represent two unknown samples (1.0mM and 4.0mM), which were correctly analyzed using the model.

0 2 4 6 8 100

2

4

6

8

10

X-block Preprocessing: Group ScaleX-block Compression: PCA

RMSEC: 0.0429 RMSECV: 0.2025 RMSEP: 0.1454

Actual [Chloride]/mM

Pre

dict

ed [C

hlor

ide]

/mM

Calibration Data Set Validation Data Set

Cl-

51

Page 52: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

The plot of the actual vs. predicted concentration shows high accuracy of prediction for multiple Oxalate concentration values. The root-mean-square errors (RMSE) of calibration (RMSEC), cross-validation (RMSECV), and prediction (RMSEP) attest to the quality of the model and prediction. Two unknown samples (red circle ●) were simultaneously correctly analyzed for Oxalate (0.5mM and 3mM).

Figure S75. Results of linear regression by Support Vector Machine (SVM) for Oxalate anion. Red circles (●) represent two unknown samples (0.5mM and 3.0mM), which were correctly analyzed using the model.

0 1 2 3 4 50

1

2

3

4

5

X-block Preprocessing: Log10X-block Compression: PLS

RMSEC: 0.026RMSECV: 0.137 RMSEP: 0.122

Actual [Oxalate]/mM

Pre

dict

ed [O

xala

te]/m

M

Calibration Data Set Validation Data Set

O-

OO

O-

52

Page 53: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

The plot of the actual vs. predicted concentration shows high accuracy of prediction for multiple Hydrogen pyrophosphate concentration values. The root-mean-square errors (RMSE) of calibration (RMSEC), cross-validation (RMSECV), and prediction (RMSEP) attest to the quality of the model and prediction. Two unknown samples (red circle ●) were simultaneously correctly analyzed for Hydrogen pyrophosphate (1mM and 4mM).

Figure S76. Results of linear regression by Support Vector Machine (SVM) for Hydrogen pyrophosphate anion. Red circles (●) represent two unknown samples (1.0mM and 4.0mM), which were correctly analyzed using the model.

0 2 4 6 8 100

2

4

6

8

10

X-block Preprocessing: Log10X-block Compression: PCA

RMSEC: 0.0634 RMSECV: 0.2655 RMSEP: 0.2327

Actual [Hydrogen pyrophosphate]/mM

Pre

dict

ed [H

ydro

gen

pyro

phos

phat

e]/m

M

Calibration Data Set Validation Data Set

OOPP--OO OO--

OO

OOPP

OOHHOO--

53

Page 54: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

The plot of the actual vs. predicted concentration shows high accuracy of prediction for multiple Dihydrogen phosphate concentration values. The root-mean-square errors (RMSE) of calibration (RMSEC), cross-validation (RMSECV), and prediction (RMSEP) attest to the quality of the model and prediction. Two unknown samples (red circle ●) were simultaneously correctly analyzed for Dihydrogen phosphate (1mM and 4mM).

Figure S77. Results of linear regression by Support Vector Machine (SVM) for Dihydrogen phosphate anion. Red circles (●) represent two unknown samples (1.0mM and 4.0mM), which were correctly analyzed using the model.

0 2 4 6 8 100

2

4

6

8

10

X-block Preprocessing: Log 10X-block Compression: PLS

RMSEC: 0.0311RMSECV: 0.2682 RMSEP: 0.2046

Actual [Dihydrogen phosphate]/mM Pre

dict

ed [D

ihyd

roge

n ph

osph

ate]

/mM

Calibration Data Set Validation Data Set

OP

HO O-OH

54

Page 55: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

9 Competitive titrations of acetate anion in chloride rich solutions

Figure S78. Left: Fluorescence titration spectra and isotherm of S1 (0.2 μM) upon addition of acetate anion. Right: Fluorescence titration spectra and isotherm of S1 (0.2 μM) upon addition of acetate anion in a presence of chloride anion (500 μM). Both titrations were acquired in DMSO:CHCl3 (3:7, v/v).

Figure S79. Results of linear regression by Support Vector Machine (SVM) based on fluorescence titrations for Acetate anion in a presence of Chloride anion (500μM). Red circles (●) represent two unknown samples (8.0μM and 32μM), which were correctly analyzed using the model.

450 500 550 600

1x105

2x105

3x105

4x105

5x105

6x105

Wavelength, nm

Fl. I

nten

sity

, a.u

.

Ka = (5.1 ± 1.0)×105 M-2

0 20 40 60 80 100 120 140 160

0.0

0.2

0.4

0.6

0.8

1.0

[Acetate], µM

(I 0 - I)

/ (I 0 -

I i)451 nm

450 500 550 600

1x105

2x105

3x105

4x105

5x105

6x105

7x105

Wavelength, nmFl

. Int

ensi

ty, a

.u.

Ka = (1.5 ± 0.1)×105 M-2

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

451 nm

[Acetate], µM

(I 0 - I)

/ (I 0 -

I i)

0.0 2.0x10-5 4.0x10-5 6.0x10-5 8.0x10-50.0

1.0x10-5

2.0x10-5

3.0x10-5

4.0x10-5

5.0x10-5

6.0x10-5

7.0x10-5

8.0x10-5

X-block Preprocessing: Log10X-block Compression: PCA

RMSEC: 1.968x10-8 RMSECV: 2.499x10-7 RMSEP: 1.475x10-6

Actual [Acetate]/M

Pre

dict

ed [A

ceta

te]/M

Calibration Data Set Validation Data Set

55

Page 56: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Figure S80. Left: Canonical scores plot for LDA for the semi-quantitative assay for S1 and Acetate and a control in a presence of Chloride anion (10mM). Right: 2 D graphical output of Linear Discriminant Analysis for paper-based assay for sensors S1 (5mM) with acetate anion in a presence of chloride anion (10mM). Achieved with 9 excitation/emission channels, 15 repetitions, 100 % correct classification.

Figure S81. Results of linear regression by Support Vector Machine (SVM) for Acetate anion in a presence of Chloride anion (10mM). Red circle (●) represents one unknown sample (3mM), which was correctly analyzed using the model.

-30 -15 0 15 30-50

-25

0

25

50

10.0 mM

5.0 mM

4.0 mM

3.0 mM

2.0 mM

1.0 mM

F2 (0

.6%

)

F1(99.3%)

Control

0 2 4 6 8 100

2

4

6

8

10

X-block Preprocessing: Group ScaleX-block Compression: PCA

RMSEC: 0.1830RMSECV: 0.3627 RMSEP: 0.0421

Actual [Acetate]/mM

Pre

dict

ed [A

ceta

te]/m

M

Calibration Data Set Validation Data Set

56

Page 57: Scheme S1. - Royal Society of Chemistry · Mariia Pushina, Pavel Anzenbacher,Jr.*_____ Department of Chemistry, Bowling Green State University Bowling Green, OH 43403, USA E-mail:

Supporting information

Supplemental References

1 A. K. Connors. Binding Constants: the Measurement of Molecular Complex Stability; Wiley: New York, 1987. 2 Rose, F.L.; Swain, G. J. Chem. Soc. 1956, 4422–4425.

57