scintillation detectors elton smith jlab 2005 detector/computer summer lecture series introduction...

39
Scintillation Detectors Elton Smith JLab 2005 Detector/Computer Summer Lecture Series Introduction Components Scintillator Light Guides Photomultiplier Tubes Formalism/Electronics Timing Resolution

Upload: shannon-ramsey

Post on 13-Dec-2015

216 views

Category:

Documents


2 download

TRANSCRIPT

Scintillation Detectors

Elton Smith JLab 2005 Detector/Computer Summer Lecture Series

IntroductionComponents

ScintillatorLight GuidesPhotomultiplier Tubes

Formalism/ElectronicsTiming Resolution

Elton Smith / Scintillation Detectors

B field ~ 5/3 T

R = 3m

L = ½ R = 4.71 m

p = 0.3 B R = 1.5 GeV/c

t = L/c = 15.77 ns

t = L/c = 16.53 ns

tK = 0.76 ns

Experiment basics

= p/√p2+m2 = 0.9957

= p/√p2+m2 = 0.9496

Particle Identification by time-of-flight (TOF) requiresMeasurements with accuracies of ~ 0.1 ns

Elton Smith / Scintillation Detectors

Measure the Flight Time between two Scintillators

400 cm

100 cm

300 cm

20 cmDisc

DiscT

DC

Start

Stop

Particle Trajectory450 ns

Elton Smith / Scintillation Detectors

Propagation velocities

c = 30 cm/ns

vscint = c/n = 20 cm/ns

veff = 16 cm/ns

vpmt = 0.6 cm/ns

vcable = 20 cm/ns

t ~ 0.1 ns

x ~ 3 cm

Elton Smith / Scintillation Detectors

TOF scintillators stacked for shipment

Elton Smith / Scintillation Detectors

CLAS detector open for repairs

Elton Smith / Scintillation Detectors

CLAS detector with FC pulled apart

Elton Smith / Scintillation Detectors

Start counter assembly

Elton Smith / Scintillation Detectors

Scintillator types

Organic

Liquid Economical messy

Solid Fast decay time long attenuation length Emission spectra

Inorganic

Anthracene Unused standard

NaI, CsI Excellent resolution Slow decay time

BGO High density, compact

Elton Smith / Scintillation Detectors

Photocathode spectral response

Elton Smith / Scintillation Detectors

Scintillator thickness

Minimizing material vs. signal/background

CLAS TOF: 5 cm thick Penetrating particles (e.g. pions) loose 10 MeV

Start counter: 0.3 cm thick Penetrating particles loose 0.6 MeV Photons, e+e− backgrounds ~ 1MeV

contribute substantially to count rate Thresholds may eliminate these in TOF

Elton Smith / Scintillation Detectors

Light guides

Goals Match (rectangular) scintillator to (circular) pmt Optimize light collection for applications

Types Plastic Air None “Winston” shapes

Elton Smith / Scintillation Detectors

acrylic

Reflective/Refractive boundaries

Scintillatorn = 1.58

PMT glassn = 1.5

Elton Smith / Scintillation Detectors

Air withreflectiveboundary

Reflective/Refractive boundaries

Scintillatorn = 1.58

PMT glassn = 1.5

%541

12

n

nRair

(reflectance at normal incidence)

Elton Smith / Scintillation Detectors

Reflective/Refractive boundaries

Scintillatorn = 1.58

PMT glassn = 1.5

air

Elton Smith / Scintillation Detectors

acrylic

Reflective/Refractive boundaries

Scintillatorn = 1.58

PMT glassn = 1.5

Large-angle ray lost

Acceptance of incident rays at fixed angle depends on position at the exit face of the scintillator

Elton Smith / Scintillation Detectors

Winston Cones - geometry

Elton Smith / Scintillation Detectors

Winston Cone - acceptance

Elton Smith / Scintillation Detectors

Photomultiplier tube, sensitive light meter

Photocathode

Electrodes

Dynodes

Anode

56 AVP pmt

e−

Gain ~ 106 - 107

Elton Smith / Scintillation Detectors

Voltage Dividersd1 d2 d3 dNdN-1dN-2

akg

4 2.5 1 1 1 1 1 1 1 1 1 1

16.5

RL

+HV−HV

Equal Steps – Max Gain

4 2.5 1 1 1 1 1 1 1.4 1.6 3 2.5

21

RL

Intermediate

6 2.5 1 1.25 1.5 1.5 1.75 2.5 3.5 4.5 8 10

44

RL

Progressive

Timing Linearity

Elton Smith / Scintillation Detectors

VoltageDivider

Active componentsto minimize timingand rate capabilitywith gain

Capacitors for increasedlinearity in pulsed applications

Elton Smith / Scintillation Detectors

High voltage

Positive (cathode at ground) low noise, capacitative coupling

Negative Anode at ground (no HV on signal)

No (high) voltage Cockcroft-Walton bases

Elton Smith / Scintillation Detectors

Effect of magnetic field on pmt

Elton Smith / Scintillation Detectors

Housing

Elton Smith / Scintillation Detectors

Compact UNH divider design

Elton Smith / Scintillation Detectors

Dark counts

Solid : Sea level

Dashed: 30 m underground

Thermal Noise

After pulsing andGlass radioactivity

Cosmic rays

Elton Smith / Scintillation Detectors

Signal for passing tracks

Elton Smith / Scintillation Detectors

Single photoelectron signal

Elton Smith / Scintillation Detectors

Pulse distortion in cable

Elton Smith / Scintillation Detectors

Electronics

trigger

dynode

Measure timeMeasure pulse height

anode

Elton Smith / Scintillation Detectors

Formalism: Measure time and position

PL PR

TRTL

X=0 XX=−L/2 X=+L/2

effLL vxTT /0

)()( 002

1

2

1RLRLave TTTTT Mean is independent of x!

effRR vxTT /0

)(2

)()(2

00RL

effRLRL

effTT

vTTTT

vx

Elton Smith / Scintillation Detectors

From single-photoelectron timing to counter resolutionThe uncertainty in determining the passage of a particlethrough a scintillator has a statistical component, dependingon the number of photoelectrons Npe that create the pulse.

)2/exp(

)2/()(

2212

0

LN

Lns

pe

PTOF

1000peN

Note: Parameters for CLAS

ns062.00 Intrinsic timing of electronic circuits

ns1.21

cmnsP /0118.0

)15(36.0134 counterscmLcm )22(430 counterscmcm

Combined scintillator and pmt response

Average path length variations in scintillator

SinglePhotoelectronResponse

Elton Smith / Scintillation Detectors

Average time resolution

CLAS in Hall B

Elton Smith / Scintillation Detectors

Formalism: Measure energy loss

PL PR

TRTL

X=0 XX=−L/2 X=+L/2

/0 xLL ePP /0 x

RR ePP

00RLRL PPPPEnergy

Geometric mean is independent of x!

Elton Smith / Scintillation Detectors

Energy deposited in scintillator

Elton Smith / Scintillation Detectors

UncertaintiesTiming

Mass Resolution

Assume that one pmt measures a time with uncertainty t

2~

2

1 22 tttt RLave

2~)

2

1( 22 t

vttvx effRLeff

E

m 22

2222 1

)1( pEm

224

2

p

p

m

m

Elton Smith / Scintillation Detectors

Example: Kaon mass resolution by TOF cGeVPK /1 GeVEK 116.11495.0 2

896.0

K

KK E

P 26.2

K

KK m

E

For a flight path of d = 500 cm, nsnscm

cmt 6.18

/30896.0

500

nst 15.0 01.0

p

pAssume

222

42

042.001.06.18

15.026.2

m

m MeVmK 21~

Note:

fixedfor

m

m2

Elton Smith / Scintillation Detectors

Velocity vs. momentum

+

K+

p

Elton Smith / Scintillation Detectors

Summary

Scintillator counters have a few simple components Systems are built out of these counters Fast response allows for accurate timing

The time resolution for required for particle identification is the result of the time response of individual components scaled by √Npe