screen hrc, thorpe ct, shepherd js, spiesz em, riley gp ... · 15/07/2014 3 micromechanics &...

16
15/07/2014 1 Micromechanics in Functionally Distinct Tendons: Tendon Injury and Repair Screen HRC, Thorpe CT, Shepherd JS, Spiesz EM, Riley GP, Legerlotz K, Birch HL, Clegg PD SDFT CDET Positional Tendons High strains & elastic recoil in use High incidence of tendinopathy Energy storing tendons Birch HL (2007) International Journal of Experimental Pathology, 88;4 241-248 Low strains and less elastic Efficient strain transfer from muscle-bone Structure-Function Optimisation Tendon structural mechanics are optimised to suit function Different Hierarchical Mechanical Properties

Upload: others

Post on 25-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Screen HRC, Thorpe CT, Shepherd JS, Spiesz EM, Riley GP ... · 15/07/2014 3 Micromechanics & Energy Storing Tendons SDFT CDET Applied Strain d1 d2 d1 + d2 Fibre sliding Rotation Thorpe

15/07/2014

1

Micromechanics in Functionally Distinct

Tendons: Tendon Injury and Repair

Screen HRC, Thorpe CT, Shepherd JS, Spiesz EM,

Riley GP, Legerlotz K, Birch HL, Clegg PD

SDFT

CDET

Positional Tendons

High strains & elastic recoil in use

High incidence of tendinopathy

Energy storing tendons

Birch HL (2007) International Journal of Experimental

Pathology, 88;4 241-248

Low strains and less elastic

Efficient strain transfer from muscle-bone

Structure-Function

Optimisation

Tendon structural mechanics are optimised to suit function

Different Hierarchical Mechanical Properties

Page 2: Screen HRC, Thorpe CT, Shepherd JS, Spiesz EM, Riley GP ... · 15/07/2014 3 Micromechanics & Energy Storing Tendons SDFT CDET Applied Strain d1 d2 d1 + d2 Fibre sliding Rotation Thorpe

15/07/2014

2

• Fibre composite material

– Multiple hierarchical levels of collagen

– Proteoglycanous matrix binding

– Interspersed with cells (tenocytes)

Tendon Fascicle

Endotendon

Tenocyte

Fibre

Crimp

waveform

Fibril

Crimping

Sub-fibril

Microfibril

Tropocollagen

1.5 nm 3.5 nm 10-20 nm 50-500 nm 10-50 μm 50-400 μm 500-100 μm

Tendon Structure

Screen et al. (2003)

Biorheol. 40, 361-8

Stepper Motor

Heater Pads Microscope

Objective Lens

Grips

Specimen Medium

Coverslip

Screen et al. (2004)

J. Eng. Med. 218, 109-19

• Custom designed rig for location on confocal microscope

• Enables tensile / compressive loading of viable tissue

samples

• Use range of matrix & cell stains to visualise matrix

components during straining

Cheng & Screen (2007)

J. Mat. Sci 21; 8957-65

In Situ Analysis

Techniques

Page 3: Screen HRC, Thorpe CT, Shepherd JS, Spiesz EM, Riley GP ... · 15/07/2014 3 Micromechanics & Energy Storing Tendons SDFT CDET Applied Strain d1 d2 d1 + d2 Fibre sliding Rotation Thorpe

15/07/2014

3

Micromechanics &

Energy Storing Tendons

SDFT CDET

Applied

Strain

d1

d2

d1 + d2

Fibre sliding Rotation

Thorpe et al. (2013) Acta Biomaterialia 9:8; 7948-56

* *

*

0

2

4

6

8

10

12

14

16

0 2 4 6 8

Dis

tan

ce

(u

m)

Applied strain (%)

SDFT

CDET

Fibre sliding & Rotation

*

* *

*

0

1

2

3

4

0 2 4 6 8

Lin

e A

ng

le (°)

Applied Strain (%)

SDFT

CDET

d1

d2

d1 + d2

p≤0.006 p≤0.03

Significantly more fibre

sliding in positional tendons

Significantly more fascicle rotation

in energy storing tendons

Thorpe et al. (2013) Acta Biomaterialia 9:8; 7948-56

Page 4: Screen HRC, Thorpe CT, Shepherd JS, Spiesz EM, Riley GP ... · 15/07/2014 3 Micromechanics & Energy Storing Tendons SDFT CDET Applied Strain d1 d2 d1 + d2 Fibre sliding Rotation Thorpe

15/07/2014

4

0

20

40

60

80

100

After 4% After 8%

Perc

en

t re

co

very

(%

)

SDFT

CDET

p=0.008 p<0.0001

Micromechanics

Recovery Fibre Sliding

0

20

40

60

80

100

After 4% After 8% P

erc

en

t R

eco

very

(%

)

p=0.015

Fascicle Rotation

Significantly better recovery from loading in energy

storing flexor fascicles

Thorpe et al. (2013) Acta Biomaterialia 9:8; 7948-56

Summary

SDFT

• Extension = fibre sliding

• Extension = sample rotation

• Poor recovery & less elastic

• Good recovery & elasticity

Fascicles in energy storing SDFTs have helical

component which enables efficient extension and recoil

CDET

Thorpe et al. (2013) Acta Biomaterialia 9:8; 7948-56

Page 5: Screen HRC, Thorpe CT, Shepherd JS, Spiesz EM, Riley GP ... · 15/07/2014 3 Micromechanics & Energy Storing Tendons SDFT CDET Applied Strain d1 d2 d1 + d2 Fibre sliding Rotation Thorpe

15/07/2014

5

Tendon Fascicle

Endotendon

Tenocyte

Fibre

Crimp

waveform

Fibril

Crimping

Sub-fibril

Microfibril

Tropocollagen

1.5 nm 3.5 nm 10-20 nm 50-500 nm 10-50 μm 50-400 μm 500-100 μm

Fascicle / Tendon

Mechanics

Fascicle contribution to tendon mechanics?

Whole tendon mechanics

Typical stress strain curves for tendons & fascicles

Thorpe CT et al. (2012) J Roy Soc Int 9:76; 3108-17

Page 6: Screen HRC, Thorpe CT, Shepherd JS, Spiesz EM, Riley GP ... · 15/07/2014 3 Micromechanics & Energy Storing Tendons SDFT CDET Applied Strain d1 d2 d1 + d2 Fibre sliding Rotation Thorpe

15/07/2014

6

Interfascicular matrix

Fibre composite mechanics at the fascicle level?

Building indications of fascicle ends

A

B

10 mm

Cut

Cut

Thorpe CT et al. (2012) J Roy Soc Int 9:76; 3108-17

Interfascicular mechanics

Page 7: Screen HRC, Thorpe CT, Shepherd JS, Spiesz EM, Riley GP ... · 15/07/2014 3 Micromechanics & Energy Storing Tendons SDFT CDET Applied Strain d1 d2 d1 + d2 Fibre sliding Rotation Thorpe

15/07/2014

7

Typical force extension curves

• At and below 60% of

failure load, extension

at interface is

significantly greater

(p<0.001) in the SDFT

Interfascicular mechanics

Thorpe CT et al. (2012) J Roy Soc Int 9:76; 3108-17

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0.00 0.10 0.20 0.30 0.40 0.50 0.60

Lo

ad

(N

)

Displacement (mm)

SDFT

More springy, elastic fascicles in energy storing tendons

Extend and recover using a helical mechanism

Slide relative to each other within the whole

loaded tendon to enable large strains

Extension mechanisms - SDFT

Page 8: Screen HRC, Thorpe CT, Shepherd JS, Spiesz EM, Riley GP ... · 15/07/2014 3 Micromechanics & Energy Storing Tendons SDFT CDET Applied Strain d1 d2 d1 + d2 Fibre sliding Rotation Thorpe

15/07/2014

8

Ageing & Energy Storing Tendon Mechanics

Tightness of

the helix

reduces

Recoverability

of the helix

reduces

Capacity for

fascicle sliding

reduces

Correlates with

reduced fatigue

resistance: Young SDFT

Old SDFT

Thorpe CT et al. (2013) Eur Cell Mat 8:25; 48-60

Thorpe CT et al. (2014) J Roy Soc Int 11:92; 20131058

Tendinopathy

• Why are some individuals prone to

tendinopathy in energy storing tendons?

• What happens under cyclic fatigue loading?

• Micromechanics

• Cell response

SDFT Focus

Page 9: Screen HRC, Thorpe CT, Shepherd JS, Spiesz EM, Riley GP ... · 15/07/2014 3 Micromechanics & Energy Storing Tendons SDFT CDET Applied Strain d1 d2 d1 + d2 Fibre sliding Rotation Thorpe

15/07/2014

9

Fatigue Loading -

Micromechanics

• Subject half to fatigue loading:

– Cyclic creep: 60% UTS; 1800

cycles

SDFT Fascicles

Young (3-6yrs); Old (18-20yrs)

d1

d2

d1 + d2

Fibre sliding Rotation

Thorpe et al. (2014) Acta Biomat 10:7; 3217-24

X / X

Local strain – young horses Local strain – old horses

Fatigue Loading -

Micromechanics

Thorpe et al. (2014) Acta Biomat 10:7; 3217-24

Page 10: Screen HRC, Thorpe CT, Shepherd JS, Spiesz EM, Riley GP ... · 15/07/2014 3 Micromechanics & Energy Storing Tendons SDFT CDET Applied Strain d1 d2 d1 + d2 Fibre sliding Rotation Thorpe

15/07/2014

10

Rotation – young horses

p≤0.00

2

Rotation – old horses

Fatigue Loading -

Micromechanics

Thorpe et al. (2014) Acta Biomat 10:7; 3217-24

d1

d2

d1 + d2

Fibre sliding – young horses

Fibre sliding – old horses

Fatigue Loading -

Micromechanics

Thorpe et al. (2014) Acta Biomat 10:7; 3217-24

Page 11: Screen HRC, Thorpe CT, Shepherd JS, Spiesz EM, Riley GP ... · 15/07/2014 3 Micromechanics & Energy Storing Tendons SDFT CDET Applied Strain d1 d2 d1 + d2 Fibre sliding Rotation Thorpe

15/07/2014

11

Ability to recoil –

Young SDFT

Fibre Sliding Rotation

Thorpe et al. (2014) Acta Biomat 10:7; 3217-24

SDFT (young)

• Spring coil reduced and

recovery of samples limited

SDFT (old) • Grid rotation enables spring

like high extensions

Fatigue Load Sample

• Resists damage using spring mechanism

• No mechanism to resist loading = resorts to fibre sliding

Fatigue Loading &

Ageing

• Starts to reduce spring coiling

As the spring is lost, capacity for

recoil and recovery is lost

Page 12: Screen HRC, Thorpe CT, Shepherd JS, Spiesz EM, Riley GP ... · 15/07/2014 3 Micromechanics & Energy Storing Tendons SDFT CDET Applied Strain d1 d2 d1 + d2 Fibre sliding Rotation Thorpe

15/07/2014

12

Tendinopathy

• Why are some individuals prone to

tendinopathy in energy storing tendons?

• What happens under cyclic fatigue loading?

• Micromechanics

• Cell response

SDFT Focus

Tendon Micromechanics

Positional tendons

rely on fibre sliding

Tendon Fascicle

Endotendon

Tenocyte Fibre

Crimp

waveform

Fibril

Crimping Microfibril

Tropocollagen

Fascicular Cells =

high shear

low tension

Inter-Fascicular Cells =

low shear

some tension

Energy storing tendons

rely on helix uncoiling &

fascicle sliding

Fascicular Cells =

low shear

some tension

Inter-Fascicular Cells =

high shear

low tension

Page 13: Screen HRC, Thorpe CT, Shepherd JS, Spiesz EM, Riley GP ... · 15/07/2014 3 Micromechanics & Energy Storing Tendons SDFT CDET Applied Strain d1 d2 d1 + d2 Fibre sliding Rotation Thorpe

15/07/2014

13

Cellular Response to Fatigue Loading

Cyclic loading of fascicles

Characterising damage:

bovine positional fascicles

Legerlotz et al (2013) Scand J Med Sci Sport. 23:1; 31-37.

Significant

upregulation of

IL-6 with loading

1800 Cycles:

from 0-60% of

UTS

Cellular Response to Fatigue Loading

Control

Fatigue Loaded Cycle number

Peak L

oad

(N

)

0 500 1000 15000.0

2.0

4.0

6.0

1800 Cycles: from 0 to 60% of UTS

0 Cycles 300 Cycles 900 Cycles

Bovine Tissue: Shepherd et al. (2014) JMBBM in press Thorpe et al. (2014)

Submitted to SJMSS

Page 14: Screen HRC, Thorpe CT, Shepherd JS, Spiesz EM, Riley GP ... · 15/07/2014 3 Micromechanics & Energy Storing Tendons SDFT CDET Applied Strain d1 d2 d1 + d2 Fibre sliding Rotation Thorpe

15/07/2014

14

Cellular response to

Fatigue Loading

• Markers of inflammation:

• Interleukin-6 (IL-6) – pro-inflammatory cytokine

• Cyclooygenase-2 (COX-2) – prostaglandin activation

Thorpe et al. (2014)

Submitted to SJMSS

Increase in IL-6

and COX-2 with

loading

Response

greater in the

IFM

Cell response to cyclic loading - degradation

• Matrix degrading enzymes:

• Collagenases MMP-1 & 13

• Stromelysin MMP-3

• Marker of collagen degradation – C1,2C

Thorpe et al. (2014)

Submitted to SJMSS

Diffuse increased

staining for MMP-13

with loading

Page 15: Screen HRC, Thorpe CT, Shepherd JS, Spiesz EM, Riley GP ... · 15/07/2014 3 Micromechanics & Energy Storing Tendons SDFT CDET Applied Strain d1 d2 d1 + d2 Fibre sliding Rotation Thorpe

15/07/2014

15

Cell response to cyclic loading - degradation

Thorpe et al. (2014)

Submitted to SJMSS

Increased

MMP-1 with

loading

MMP-1 also in

statically loaded

samples: co-localised

to C1-2C

IFM shows more

turnover?

IFM localised

without load;

Throughout matrix

with load

Cell response to cyclic loading - summary

Increase inflammatory markers with overload; specifically in IFM

Indications of continual IFM turnover: MMP-1 and C1-2C in healthy tissue

Increased collagen degradation activity with loading – throughout matrix

Overload

Page 16: Screen HRC, Thorpe CT, Shepherd JS, Spiesz EM, Riley GP ... · 15/07/2014 3 Micromechanics & Energy Storing Tendons SDFT CDET Applied Strain d1 d2 d1 + d2 Fibre sliding Rotation Thorpe

15/07/2014

16

What’s Next?

• Proteomics

• Histochemistry

• Cell Phenotype

Developing Tendinopathy

Laser capture microdissection to

isolate regions of FM & IFM

IFM turnover important for health?

IFM cells initial responders to overload?

What is in the IFM – does it assist energy storing tendon function?

Contributing Lab Members:

Chavaunne Thorpe

(Post-doc)

Kirsten Legerlotz

(Post-doc)

Jennifer Shepherd

(Post-doc)

Ewa Spiesz

(Post-doc)

Sarah Chaudhry

(Post-doc)

Collaborators:

Peter Clegg (Univ. of Liverpool)

Helen Birch (UCL)

Graham Riley (Univ. of East Anglia)

Marta Godinho

(MSc)

Chineye Udeze

(PhD)