scribd solar fotovoltaica

47
«Alumno» Trabajo Obligatorio ENERGÍA SOLOR FOTOVOLTAICA Abril de 2011 FUNDACION SAN VALERO SEAS, Centro de Formación Abierta ZARAGOZA

Upload: roberto-cid-ortiz

Post on 24-Jul-2015

418 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Scribd Solar Fotovoltaica

«Alumno»

Trabajo Obligatorio ENERGÍA SOLOR FOTOVOLTAICAAbril de 2011

FUNDACION SAN VALEROSEAS, Centro de Formación Abierta

ZARAGOZA

Page 2: Scribd Solar Fotovoltaica

PROPUESTA DE TRABAJO OBLIGATORIO

PÁG.: 2/33

Propuesta de trabajo

APARTADO A; INSTALACIONES AISLADAS;

Se nos pide diseñar un sistema de alimentación por energía solar para un medidor caudal y nivel de agua en ríos. Este medidor dispone de una sonda de nivel que realiza cuatro medidas al día de 15 minutos cada una y los almacena en una memoria interna. Además, cada 4 horas se realiza vía FAX un envió de los datos obtenidos, la duración estimada de la transmisión es de 5 minutos. Por razones de seguridad se realizan 3 emisiones de radio de una duración estimada de 15min. Las potencias de los aparatos son los siguientes;

Medidor; 100 w Teléfono 15 w Radio 35 W

Se pide: Cálculo de la energía diaria consumida Justificación del número de paneles y elección del modelo y fabricante Explicación de la elección del regulador Decidir en base al consumo, la capacidad de acumulación, el modelo y fabricante Analizar la sección de los cables (tramo paneles-regulador, tramo regulador-línea

medidor, tramo regulador-línea teléfono y radio y tramo regulador-acumulador Desarrollar el esquema unifilar de la instalación Preparar un presupuesto de la instalación

NOTA; Todas las cargas son de CC de 12 V. La distancia del tramo paneles-regulador es de 5 m, la del regulador-acumulador de 2,5 m, la del regulador-línea teléfono y radio 4 m y la del regulador-línea medidor 10m. Como ubicación de la instalación se considera la provincia de residencia del alumno.

FC-045-02

Page 3: Scribd Solar Fotovoltaica

PROPUESTA DE TRABAJO OBLIGATORIO

PÁG.: 3/33

APARTADO B; INSTALACIONES CONECTADAS A RED:

Tenemos un Punto de conexión para poder evacuar 10 Kw de potencia, la línea de evacuación pertenece a IBERDROLA, y la tensión de la línea es de 380 V entre fases. Sabemos que la zona es despejada y no tiene sombras, y está ubicado en la provincia de Ávila. Sabiendo que la instalación se desea colocar sobre una estructura fija.

Se pide:

Analizar el número de paneles necesarios para poder realizar la instalación, eligiendo modelo y fabricante

Calcular la potencia producida por los módulos solares Justificar la inclinación optima de los módulos solares Seleccionar el inversor más adecuado para la instalación Diseñar el esquema de la instalación detallando los diferentes circuitos, serie

paralelo de la instalación Describir las Protecciones necesarias Comentar la normativa que debemos cumplir si el punto de conexión es en BT. Preparar el presupuesto de la instalación.

Objetivos del trabajo

Obtener la energía media diaria Calcular el nº de paneles y elegir el modelo y fabricante Elegir el regulador adecuado, modelo y fabricante Deducir el sistema de acumulación eligiendo el modelo y fabricante Calcular la secciones de los conductores de los distintos tramos que enlazan los

distintos componentes de la instalación entre si Diseñar los esquemas unifilares de la instalación Realizar el presupuesto de una instalación solar fotovoltaica

Bibliografía

Manual de asignatura. SEAS.

FC-045-02

Page 4: Scribd Solar Fotovoltaica

PROPUESTA DE TRABAJO OBLIGATORIO

PÁG.: 4/33

Web recomendadas

Para elegir y seleccionar los componentes puedes consultar alguna de las páginas Web que se recomiendan a continuación.

http://www.jhroerden.comhttp://www.saclima.comhttp://www.aetalbasolar.comhttp://www.atersa.comhttp://www.bpsolar.comhttp://www.isofoton.comhttp://www.technosun.comhttp://www.asif.com

FC-045-02

Page 5: Scribd Solar Fotovoltaica

PROPUESTA DE TRABAJO OBLIGATORIO

PÁG.: 5/33

Criterios de evaluación

La evaluación, es una componente fundamental de la formación. Este trabajo obligatorio formará parte de tú calificación final. En esta tabla, se resumen los aspectos a valorar y el porcentaje que representa cada unos de los mismos.

%Total

%Ob.

Contenidos generales 10Estructuración, Exposición, Orden, limpieza y presentaciónClaridad en los conceptos

10

Temas de especialidad (Instalación Aislada) 40

Cálculo de la energía media diaria consumida. 5

Cálculo del nº de paneles y elección del modelo y fabricante 5

Cálculo y elección del regulador 5

Cálculo de la capacidad de acumulación y elección del modelo y fabricante 5

Cálculo de la sección de los conductores 5

Esquema unifilar de la instalación 10

Presupuesto de la instalación 5Temas de especialidad (Instalación Conectada a Red) 40Cálculo del numero de paneles, e inclinación de los paneles 5

Cálculo de la energía producida 5

Elección y justificación del inversor 5

Esquema unifilar de la instalación 5

Protecciones de la instalación 10

Justificación de la normativa a aplicar 5

Presupuesto de la instalación 5Otras aportaciones 10Investigación y aportación de anexos 10

TOTAL 100

Fecha límite de recepción de trabajosEstán disponibles en el apartado “Fechas de Examen” de la plataforma informática.

FC-045-02

Page 6: Scribd Solar Fotovoltaica

PROPUESTA DE TRABAJO OBLIGATORIO

PÁG.: 6/33

Ficha de Corrección del Trabajo (Espacio reservado para anotaciones del profesor)

Profesor:

Alumno (Código / Nombre):

Fecha de Entrega: Fecha de Calificación:

Observaciones sobre el trabajo:

Fecha y Firma:

FC-045-02

Page 7: Scribd Solar Fotovoltaica

PROPUESTA DE TRABAJO OBLIGATORIO

PÁG.: 7/33

Formato de presentación1. La extensión del trabajo no deberá superar las 40 páginas.

2. Se presentará en formato informático toda la información del trabajo.

3. Las normas de presentación serán las siguientes:

Procesador: Microsoft WORD. Tamaño de letra: 12 ptos. Tipo de letra: serán aconsejables letras como “Arial” o “Times New Roman”. Espaciado entre líneas: 1,5 Márgenes:

Lateral izquierdo: 3 cm.Lateral derecho: 2 cm.Margen superior: 3,5 cm.Margen inferior: 2,5 cm.

4. En caso de que el trabajo requiera archivos externos (dibujos Autocad, Catia, Excel, Power Point, programación, etc…) éstos deberán entregarse junto al trabajo. Es posible que algunos trabajos solo consten de estos ficheros, por lo cual no tendrá validez lo indicado en el punto 3.

5. Si el trabajo consta de varios archivos deberá enviarse en un solo fichero comprimido.

6. Si el tamaño del archivo a enviar excede de 5Mb, en lugar de enviarse por correo electrónico deberá entregarse en CD.

7. Reseñar referencias bibliográficas cuando se incluyan frases o textos de otros autores, de lo contrario podrá interpretarse como plaggio.

8. La fecha de entrega será la misma para todos los trabajos de todas las asignaturas y se comunicará al principio de cursar dicha asignatura. Según las regulaciones académicas de Universidad de Gales, si un alumno no entrega un trabajo obtendrá una calificación de cero. Si el alumno entrega tarde el trabajo la nota se realizará a discreción del profesor, siendo la máxima nota un 40%. La nota será calculada de acuerdo con las siguientes condiciones:

Si se entrega un día tarde, la nota máxima será un 40%Si se entrega dos días tarde, la nota máxima será un 35%Si se entrega más de dos días tarde, será 0%

FC-045-02

Page 8: Scribd Solar Fotovoltaica

Desarrollo de trabajoEspacio reservado para el desarrollo del trabajo por parte del alumno.

APARTADO A

Objetivo: Diseñar un sistema de alimentación por energía solar para un medidor

de caudal y nivel de agua en ríos. Este medidor dispone de una sonda de nivel

que realiza cuatro medidas al día de 15 minutos cada una y los almacena en una

memoria interna. Además, cada 4 horas se realiza vía FAX un envió de los datos

obtenidos, la duración estimada de la transmisión es de 5 minutos. Por razones

de seguridad se realizan 3 emisiones de radio de una duración estimada de

15min. Las potencias de los aparatos son los siguientes;

Medidor; 100 w

Teléfono 15 w

Radio 35 W

NOTA; Todas las cargas son de CC de 12 V. La distancia del tramo paneles-

regulador es de 5 m, la del regulador-acumulador de 2,5 m, la del regulador-línea

teléfono y radio 4 m y la del regulador-línea medidor 10m. La ubicación de la

instalación estará localizada en la ciudad de Morelia en el estado de Michoacán en

la República Mexicana.

Índice:

1. Cálculo de la energía diaria consumida

2. Decidir en base al consumo, la capacidad de acumulación, el modelo y

fabricante

3. Justificación del número de paneles y elección del modelo y fabricante

4. Explicación de la elección del regulador

5. Analizar la sección de los cables (tramo paneles-regulador, tramo

regulador-línea medidor, tramo regulador-línea teléfono y radio y tramo

regulador-acumulador

6. Desarrollar el esquema unifilar de la instalación

7. Preparar un presupuesto de la instalación

8. Anexo. Datos técnicos de los elementos utilizados

Page 9: Scribd Solar Fotovoltaica

1. Cálculo de la energía diaria consumida

Tabla de consumo diario:

Aparato Potencia [W] Funcionamiento Tiempo [h] Consumo [W•h]

Medidor 100 4 medidas/día 15/60 100•4•15/60=100

Teléfon

o15 24/4=6 envíos/día 5/60 15•6•5/60=7.5

Radio 35 3 emisiones/día 15/60 35•3•15/60=26.25

Total

potencia150 [W] Total Consumo 133.75 [W•h]

La suma de consumos, es la energía total teórica Et en un periodo de 24 horas.

Et = 133.75 [W•h] Energía diaria consumida

2. Decidir en base al consumo, la capacidad de acumulación, el

modelo y fabricante

La energía diaria necesaria será:

E=EtR

[W·h]

Donde R es:

R=1−[ (1−kb−kc−kv ) ka· N / Pd ]−kb−kc−kv

Voltaje de la batería: 12 V

Ka. Coeficiente de autodescarga. Ka=0.005/día.

Kb. Coeficiente de pérdidas por rendimiento en el acumulador. Kb=0.05

Kc. Coeficiente de pérdidas en el convertidor. No se tiene convertidor por lo

tanto Kc=0

Kv. Coeficiente de otras pérdidas. Kv=0.15

Page 10: Scribd Solar Fotovoltaica

Al no disponer de datos concretos en cuanto a los días de autonomía en la Ciudad

de Morelia, México, voy a considerar N=10

Se recomienda no sobrepasar nunca de 80% la profundidad de descarga para

baterías estacionarias. Voy a tomar Pd=65%=0.65

Sustituyendo los datos en la ecuación para determinar R:

R=1−[(1−0.05−0−0.15 )0.005 ·10

0.65 ]−0.05−0−0.15

R=1−[ (0.8 ) ·0.077 ]−0.2

R=1−(0.062 )−0.2

R=0.738

La energía diaria necesaria será entonces:

E=EtR

=133.75 [Wh ]

0.738=181.23 [Wh ]

La capacidad útil de la batería será:

Cu=E·N [ W·h ]=181.23 · 10=1812.3 [ Wh ]

Expresado en A·h:

Cu [ A·h]=[ W·h ]

V [ Volts ]=1812.3

12=151.025[ A·h]

La capacidad nominal máxima:

C=CuPd

[ A·h ]=151.0250.65

=232.346 [ A·h ]

Page 11: Scribd Solar Fotovoltaica

Vamos a utilizar un acumulador estacionario de 6 elementos

de 2V C/u 5 OPzS 250 360 FIAMM con una capacidad de 270 Ah

3. Justificación del número de paneles y elección del modelo y

fabricante

Debido a la necesidad de un regulador y las pérdidas que este produce, la energía

a producir por los paneles será, si consideramos estas pérdidas en un 10 %:

Ep= E0.9

=181.23[Wh]

0.9=201.36[Wh]

Localidad: Morelia, México Latitud: 19.7º aproximación al entero más cercano: 20º

Utilización: Todo el año, los paneles deberán estar inclinados 15º + Latitud

Inclinación de los paneles = 15º +20 º = 35º

Irradiación solar sobre suelo horizontal H para el mes de Enero (mes más

desfavorable) = 10.7 MJ

Al no haber rio alguno dentro de la ciudad, utilizaré un factor de 1.05 (ambiente

limpio) para la corrección de H que es la energía en megajulios que incide sobre

un metro cuadrado de superficie horizontal en un día medio de cada mes.

Factor de corrección k para el mes de enero y para una superficie inclinada 35º

con latitud 20º = 1.16

H=10.7 [ MJ ] En Morelia , en Enero (mes más desfavorable )

Al tratarse de un lugar con atmosfera limpia utilizaré un factor de corrección 1.05

Hcorregida=1.05• H=1.05 •10.7=11.23 [ MJ ]

Las Horas Solar Pico H. S. P. serán:

H . S . P .= 13.6

• k • Hcorregida [ MJ ]=0.2778 •1.16 •11.23 [Horas ]=3.619 h

Page 12: Scribd Solar Fotovoltaica

Se propone usar Placa solar fotovoltaica 40W SL40 Sunlink PV con una

potencia nominal de 40W

El número de paneles será:

En este caso como estamos usando una potencia nominal, 40 W, no usaremos el

coeficiente de 0.9 en el denominador de la fórmula para encontrar el número de

paneles.

Número de paneles= EpP • H . S . P

=201.36 [ Wh ]40 •3.619 [ h ]

=201.36144.76

=1.391

Vamos a utilizar 2 paneles 40W SL40 Sunlink conectados en paralelo

Características eléctricas:

Potencia pico: 40Wp.

Tensión en circuito abierto (Voc): 21,60V.

Tensión en punto de máxima potencia (Vm): 17,2V.

Corriente de cortocircuito (Isc): 2,65A.

Corriente en punto de máxima potencia Im= 2,33A.

Características físicas:

Tipo de célula: Monocristalino.

Dimensiones del módulo: 634x534x35mm.

Peso: 4 Kg.

Número de células: 12 (4x3).

Tamaño de célula: 125mm.

Los dos paneles, estarán conectados en paralelo por lo que:

Vt = Vm = 17.2 V It = 2•Im = 2•2.33 A = 4.66 A

Tensión de circuito abierto Voc = 21.6 V

Page 13: Scribd Solar Fotovoltaica

Corriente de corto circuito del generador Iscg = 2•2.65 = 5.3 A

4. Explicación de la elección del regulador

El regulador de carga se seleccionará para que sea capaz de resistir sin daño una

sobrecarga simultánea, a la temperatura ambiente máxima, de:

o Corriente en la línea de generador: un 25 % superior a la corriente de

cortocircuito del generador fotovoltaico en CEM. (Condiciones

Estándar de Medida).

En la línea de generador, el regulador deberá ser capaz de

soportar entonces: Iscg•1.25 = 5.3•1.25 = 6.625 A

o Corriente en la línea de consumo: un 25 % superior a la corriente máxima

de la carga de consumo.

Iconsumoen la carga=Icc= Potencia totalde la carga12

=150W12 V

=12.5 A

Entonces, en la línea de consumo, el regulador deberá ser capaz de

soportar Icc•1.2 = 12.5•1.25 = 15.625 A

El regulador de ATERSA modelo Mino

V2 cumple ambas condiciones, por lo

tanto es el que se va a proponer.

Características eléctricas

Tensión de trabajo: 12-24V

Consumo típico: 6mA

Rango intensidad de carga: 0-12A

Rango intensidad de consumo: 0-16A

Características físicas

Page 14: Scribd Solar Fotovoltaica

Dimensiones: 140x116x30mm

Peso: 230gr

5. Analizar la sección de los cables (tramo paneles-regulador,

tramo regulador-línea medidor, tramo regulador-línea teléfono

y radio y tramo regulador-acumulador

Para el cálculo de la sección de los cables en las diferentes partes de la

instalación, utilizaré la resistividad del cobre ρ=0.018 • mm2

m

Vamos a utilizar la fórmula:

S (m m2 )=2 • ρ[Ω •mm2

m ]•l [ m ] •i [ A ]

ΔV [V ]

Que en el caso de utilizar conductores de cobre será:

S (m m2 )=0.036[ Ω• mm2

m ]• l [ m ] •i [ A ]

ΔV [V ]

Teniendo en cuenta que las máximas caídas de tensión estén por debajo de:

Campo de paneles - regulador; 1 % = e

Regulador - acumulador; 1 % = e

Regulador - equipos < 5 % = e

Para el tramo Paneles – regulador:

l=5 m

Los dos Paneles están en paralelo, entonces:

Vt=Vm=17.2V

¿=2•ℑ=2• 2.33=4.66 A

∆ V =Vt •0.01=17.2• 0.01=0.172 V

Page 15: Scribd Solar Fotovoltaica

S=0.036 • 5• 4.660.172

=4.877 mm ²

La sección mínima comercial mayor que ese valor es de 6 mm2

Para el tramo regulador acumulador:

l=2.5 m

Voy a utilizar la intensidad máxima de consumo indicada por las características del

regulador. I = 16 A

V= Tensión de la batería = 12 V

∆ V =12• 0.01=0.12

S=0.036 • 2.5• 160.12

=12 mm ²

La sección mínima comercial mayor que ese valor es de 16 mm²

Para el tramo regulador – equipos:

Regulador – línea teléfono y radio

l=4m

V=12 V

Tomamos P=35 W + 15 W = 50 W; Entonces:

i=5012

=4.167 A

∆ V =12• 0.05=0.6

S=0.036 • 4 • 4.1670.6

=1 m m2

La sección mínima comercial mayor que ese valor es de 1.5 mm²

Regulador – línea medidor:

l=10 m

V=12 V

Potencia = 100 W; Entonces:

i=10012

=8.333 A

∆ V =12• 0.05=0.6

Page 16: Scribd Solar Fotovoltaica

S=0.036 • 10• 8.3330.6

=5 m m2

La sección mínima comercial mayor que ese valor es de 6 mm²

6. Desarrollar el esquema unifilar de la instalación

Page 17: Scribd Solar Fotovoltaica

ESQUEMA DE LA INSTALACIÓN

7. Preparar un presupuesto de la instalación

JUSTIFICACION DE PRECIOS

Page 18: Scribd Solar Fotovoltaica

Los precios utilizados para la realización del Presupuesto del presente Proyecto

están actualizados y han sido tomados de los catálogos de precios de diferentes

casas proveedoras.

Material necesario:

Elemento Cantidad Precio Total

Acumulador estacionario 5 OPz 250 360

FIAMM (6 baterías estacionarias de 2V, OPzS

Solar LM

1 $ 15615.25 $ 15615.25

Placa solar fotovoltaica 40W SL40 Sunlink PV 2 $ 2396.75 $ 4793.50

Regulador Atersa Mino V2 1 $ 1010.83 $ 1010.83

Caja de derivación DE CSO8 8 módulos 1 $ 233.70 $ 233.70

Toma de corriente (enchufe) base doble

c/tierra montaje sobre pared IP44

1 $ 199.85 $ 199.85

Cable Cu unipolar sección 6 mm2 15x2=30 m $ 5.25 $ 157.50

Cable Cu unipolar sección 16 mm2 2.5x2=5 m $ 23.75 $ 118.75

Cable Cu unipolar sección 1.5 mm2 4x2=8 m $ 3.20 $ 25.60

Varilla de cobre de puesta a tierra formando

electrodo de acero recubierto de cobre de 14

mm de diámetro y 200 cm de longitud, para la

estructura metálica.

1 $ 249.00 $ 249.00

Conductor de Cu desnudo unipolar 1x35 mm2 25 m 22.75 $ 568.75

8. Anexo.

Datos técnicos de los elementos utilizados

Datos técnicos de las baterías FIAMM tomados de su ficha técnica.

Total material $ 22972.73

Costo de la instalación por mano de

obra

$ 5000.00

Subtotal $ 27972.73

IVA $ 4195.91

TOTAL $ 32168.74

Page 19: Scribd Solar Fotovoltaica
Page 20: Scribd Solar Fotovoltaica
Page 21: Scribd Solar Fotovoltaica

Imagen copiada de los datos técnicos del panel solar 40W SL40 Sunlink PV

Page 22: Scribd Solar Fotovoltaica

Datos técnicos copiados de la ficha técnica del regulador de ATERSA Mino

modelo V2

Page 23: Scribd Solar Fotovoltaica

APARTADO B

Objetivo:

Diseñar un sistema fotovoltaico de inyección a red para inyectar 10 Kw de

potencia a una línea perteneciente a IBERDROLA. La tensión de la línea es de

380 V entre fases. Sabemos que la zona donde se pretende realizar la instalación

está ubicada en la provincia de Ávila y que es despajada y sin sombras. La

instalación se desea colocar sobre una estructura fija.

Índice:

1. Selección del inversor más adecuado para la instalación

2. Analizar el número de paneles necesarios para poder realizar la instalación,

eligiendo modelo y fabricante

3. Cálculo de la potencia producida por los módulos solares

4. Inclinación de los módulos solares

5. Esquema de la instalación

6. Descripción de las Protecciones necesarias.

7. Normativa que regula este procedimiento

8. Presupuesto de la instalación.

9. Anexo. Datos técnicos de los elementos utilizados

Page 24: Scribd Solar Fotovoltaica

1. Selección del inversor más adecuado para la instalación

Potencia = 10 Kw.(Potencia entregada a la red por el inversor). Por ser mayor a 5

Kw será necesario que la conexión a red sea trifásica.

Tensión de la línea entre fases U=380V AC

Tensión de fase V= U

√3=380

√3=220 V AC

El campo de paneles se va a subdividir en tres grupos para poder tener las

diferencias entre tensiones de salida de forma que se proporcionen tres entradas

independientes de panel para cada una de las fases.

La potencia que deberá entregar el generador fotovoltaico deberá ser 20 % arriba

de la potencia del inversor.

Pmp=10 Kw• 1.2=12 Kw

Se van a utilizar tres inversores SMA Sunny boy 3300,

uno por cada fase para dar el total de 10 Kw.

En la descripción técnica se especifican las siguientes características:

Potencia máxima de CC en la entrada: 3820 W

Tensión máxima de CC: 500 V

Rango de tensión MPP: 200 V – 400 V

2. Analizar el número de paneles necesarios para poder realizar la instalación eligiendo modelo y fabricante.

Tenemos las siguientes condiciones:

a. La tensión máxima de entrada (proporcionada por el generador

fotovoltaico), debe ser menor que la tensión máxima de CC del

inversor.

b. La tensión MPP de la secuencia conectada del generador debe ser

mayor que el mínimo del rango de tensión MPP del inversor

Page 25: Scribd Solar Fotovoltaica

Vamos a utilizar paneles de Atersa del

tipo A-170M 170W

Características eléctricas

Potencia (W en prueba -2/+5%) Pwp=160 W

Número de células policristalinas en serie 72

Corriente en punto de máxima potencia Im=4.5 A

Tensión en punto de máxima potencia Vm=35.7 V

Corriente de corto circuito Isc=5 A

Tensión de circuito abierto Voc=43.9 V

Características físicas

Longitud 1618 mm

Anchura 814 mm

Espesor 35 mm

Peso 14.8 Kg

Caja de conexiones con diodos de protección

Tenemos como datos:

Tensión máxima de CC del inversor: 500 V

Mínimo del rango de tensión MPP del inversor: 200 V

Tensión de circuito abierto del panel Voc=43.9 V

Tensión en punto de máxima potencia del panel Vm=35.7 V

La tensión máxima de entrada proporcionada por el generador fotovoltaico la

obtenemos multiplicando el número de paneles que deberán estar conectados en

serie por la tensión a circuito abierto Voc. Entonces, por la condición 1:

Número de paneles conectados en serie • 43.9V <500V

500/ 43.9=11.390 11 Paneles 11• 43.9=482.9<500

Page 26: Scribd Solar Fotovoltaica

La tensión MPP de la secuencia fotovoltaica conectada, la obtenemos

multiplicando el número de paneles conectados en serie por la tensión en el punto

de máxima potencia Vm. Entonces, por la condición 2:

Número de paneles conectados en serie •35.7 V >200 V

20035.7

=5.602 6 paneles 6 •35.7=214.2>200

El número mínimo de paneles conectados en serie por rama será: 6 paneles

El número máximo de paneles conectados en serie por rama será: 11 paneles

Número de paneles=Ramas serie •ramas paralelo=11•6=66 paneles

3. Cálculo de la potencia producida por los módulos solares

Pramaserie=Potencia máxima nominal• númerode pa neles rama serie

La potencia de la rama de 11 paneles conectados en serie será:

Pramaserie=160 •11=1760 W

Potencia totaldel generador fotovoltaico=1760• 6 ramas serie=10560 W

10560W3

=3520 W <3820 W Potenciamáxima deCC deentrada al inversor

Este conjunto de 66 paneles solares, se va a separar en tres subconjuntos cada uno constituido por dos ramas en paralelo, los cuales van a alimentar las entradas de cada uno de los tres inversores.

4. Inclinación de los módulos solares.

Para la inclinación de los módulos solares, se va a tomar el ángulo indicado por la latitud de la localidad en donde se va a edificar la instalación siendo esta la provincia de Ávila con una latitud de 40.7° ~ 41°

Page 27: Scribd Solar Fotovoltaica

5. Esquema de la instalación

ESQUEMA DE LA INSTALACIÓN

Page 28: Scribd Solar Fotovoltaica

6. Descripción de las protecciones necesarias

En ramas de módulos con tensiones de circuito abierto mayores de 30 V (más de 2 módulos conectados en serie), es necesario instalar en antiparalelo con ellas, diodos de “by-pass” cuya función es la de permitir un camino alternativo a la corriente que circula en una asociación de células en serie cuando alguna(s) de las células de la rama está(n) parcialmente sombreada(s). El módulo A-170M 170W que estamos proponiendo dispone de una caja de conexiones con diodos de protección.

Los diodos de bloqueo se instalan en serie con cada rama para evitar que las ramas menos iluminadas actúen como cargas de las más iluminadas en situación de cielo parcialmente nublado. Necesitamos en nuestro caso diodos que soporten una corriente de 10 A (Dos ramas en paralelo con paneles de Isc = 5 A)

Los fusibles protegen a los conductores de sobrecorriente. Los fusibles más el Electronic Solar Switch, -componente que forma parte del inversor Sunny Boy 3300- actúan como un seccionador separador que permite aislar al generador fotovoltaico del equipo o equipos a él conectados.

Otros componentes fundamentales de un generador fotovoltaico son los varistores, que son dispositivos de protección contra sobretensiones producidas por descargas atmosféricas. Estos actúan como fusibles de tensión y se instalan generalmente entre los terminales positivo y negativo de una rama o asociación de ramas y entre cada uno de dichos terminales y la tierra de todas las masas metálicas del generador y/o sistema fotovoltaico (estructura y marcos metálicos de los módulos, carcasas de los cuadros eléctricos, etc.). Los varistores se consideran a una determinada tensión comportándose como aislantes (no dejan pasar la corriente) hasta que se alcanza dicha tensión, momento en el cual pasan a conducir quedando inutilizados después de su actuación por lo que es necesaria su sustitución.

Conexión de Tierra física. Cualquier instrumento conectado a una alimentación eléctrica está expuesto a descargas electrostáticas, interferencia electromagnética, descargas atmosféricas y errores humanos. Dichos sucesos ponen en riesgo principalmente la integridad humana y el patrimonio. La tierra física es una conexión real a la tierra, es la unión directa de parte del circuito eléctrico a una toma de tierra mediante conductores eléctricos. En nuestro sistema fotovoltaico se van a instalar tres tomas de tierra física como protección principalmente de los inversores y tendrán conexión también a la estructura metálica de los paneles solares. Estas tomas serán a través de varillas de acero recubiertas de cobre de 200 mm de longitud y 14 mm de diámetro.

Page 29: Scribd Solar Fotovoltaica

7. Normativa que regula este procedimiento:

Real Decreto 2818/98 de 13 de diciembre, sobre producción de energía eléctrica por instalaciones abastecidas por recursos o fuentes de energías renovables, residuos y cogeneración.

Real Decreto 1663/00, de 29 de septiembre sobre conexión de instalaciones fotovoltaicas a la red de baja tensión.

Real Decreto 2224/98, de 16 de octubre por el que se establece el certificado de profesionalidad de la ocupación de instalador de sistemas fotovoltaicos y eólicos de pequeña potencia.

Real Decreto 3490/00, de 29 de diciembre de 2000 por el que se establece la tarifa eléctrica para el 2001.

Ley 30/1992, y sus normas de desarrollo. UNE-EN 61173:98 “Protección contra las sobretensiones de los sistemas

fotovoltaicos productores de energía. Guía.”

UNE-EN 61727:96 “Sistemas fotovoltaicos. Características de la interfaz de

conexión a la red eléctrica”.

PNE-EN 50330-1 “Convertidores fotovoltaicos de semiconductores. Parte 1: Interfaz de protección interactivo libre de fallo de compañías eléctricas para convertidores conmutados FV-red. Cualificación de diseño y aprobación de tipo”. (BOE 11/05/99).

PNE-EN 50331-1 “Sistemas fotovoltaicos en edificios. Parte 1: Requisitos de seguridad”.

PNE-EN 61227. “Sistemas fotovoltaicos terrestres generadores de potencia. Generalidades y guía”.

Toda la instalación eléctrica cumplirá las especificaciones del Reglamento Electrotécnico de Baja Tensión, y, en concreto, con las instrucciones BT017 y BT020.

No está claro cuando hay que realizar proyecto técnico o sólo una memoria técnica. En el R.E.B.T., en la MIE BT 041 se indica que para los generadores eléctricos, es obligatorio realizar proyecto técnico cuando la potencia del mismo sea superior a 10 kW, indicando además que si los generadores trabajan en paralelo con la red eléctrica deben tener aprobación previa de la compañía eléctrica.

La obtención del carnet de electricista convencional está regulada por la MIEBT 040 del R.E.B.T.

Page 30: Scribd Solar Fotovoltaica

8. Presupuesto de la instalación

JUSTIFICACION DE PRECIOS

Los precios utilizados para la realización del Presupuesto del presente Proyecto

están actualizados y han sido tomados de los catálogos de precios de diferentes

casas proveedoras.

Material necesario

Elemento Cantidad Precio Total

Inversor SMA Sunny Boy 3300 3 1246.47 € 3739.41 €

Placa solar fotovoltaica Atersa A-170m 66 543.10 € 35844.60 €

Diodo de bloqueo I=10 A MBR 1060 3 0.46 € 1.38 €

Fusible de 10 A 3 0.5 € 1.50 €

Interruptor seccionador doble de

cuchillas con portafusible.

3 12.00€ 36.00 €

Varilla de cobre de puesta a tierra

formando electrodo de acero

recubierto de cobre de 14 mm de

diámetro y 200 cm de longitud, 1 para

cada inversor y 1 para la estructura

metálica.

4 14.78 € 59.12 €

Total Material 39682.01 €

Costo de la instalación por mano de obra

2645.00 €

Subtotal 42327.01 €

IVA 6772.32 €

TOTAL 49099.33 €

Page 31: Scribd Solar Fotovoltaica

9. Anexo. Datos técnicos de los elementos utilizados

Inversor Sunny Boy 3300

Page 32: Scribd Solar Fotovoltaica
Page 33: Scribd Solar Fotovoltaica

Panel solar Fotovoltaico 170W A-170M 170W