search for dark matter mediators - institut national de

40
Raffaele Gerosa 22/03/17 1 Search for Dark Matter Mediators Speaker : Raffaele Gerosa 1 1 University of California San Diego (UCSD) Rencontres de Moriond EW, 23 th March 2017 (La Thuile) On behalf of CMS and ATLAS Collaborations

Upload: others

Post on 29-Jul-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17 1

Search for Dark Matter Mediators

Speaker : Raffaele Gerosa1

1University of California San Diego (UCSD)

Rencontres de Moriond EW, 23th March 2017 (La Thuile)

On behalf of CMS and ATLAS Collaborations

Page 2: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17 2

Introduction

• Cosmological observations support that 85% of the matter component of the universe is dark matter (DM)

Key Properties

Non baryonic, long-lived, massive i.e gravitationally interacting, dark (no color and no electric charge)

• The hunt of Dark Matter particles is an interdisciplinary effort

From cosmology to particle physics

Potentially accessible by a number of different experiments

Potentially accessible by precision measurements of the SM

Page 3: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17 3

Dark Matter detection

Detection of DM implies its interaction with known matter

DM

SM

DM

SM

Direct Detection

DM-nucleon scattering

Indirect Detection

DM annihilation

Collider experimentsProduction of DM

DM

DM

SM

SM

SM

SM

DM

DM

Page 4: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17 4

Simplified DM models for collider searches

• Several BSM models provides DM candidates: SUSY, ADD, little Higgs

• Alternative approach: use simple models to catch the underlying physics

s-channel simplified DM models → DMWG @ LHC

• Include a mediator (mMED) coupled to SM quarks and DM

• 4 basic currents: Vector or Axial-Vector, Scalar or Pseudo-scalar

• DM candidate assumed to be a Dirac fermion with mass (mDM)

• Coupling between mediator and SM (DM) particles are free parameters gSM (gDM)

arXiv:1507.00966

Mono-X searches

• Experimentally, to detect DM, it needs to recoil against some other objects

• X = quark/gluon, photon, W/Z ..

• High pT object balancing large ETmissSpin-1 V/AV

Page 5: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17

Even

ts /

50 G

eV

2<10

1<10

1

10

210

310

410

510

610

710 ATLAS-1 = 13 TeV, 3.2 fbs

Signal Region>250 GeV miss

T>250 GeV, E

Tp

Data 2015Standard Model

) + jetsii AZ() + jetsio AW() + jetsiµ AW() + jetsi eAW(

ll) + jetsAZ(Dibosons

+ single toptt) = (350, 345) GeV0

r¾, b~m()= (150, 1000) GeV

med, M

DM(m

=5600 GeVD

ADD, n=3, M

[GeV]missTE

400 600 800 1000 1200 1400

Dat

a / S

M

0.5

1

1.5

5

Direct DM searches at colliders• The mono-X search which provides the strongest limits on spin-1 mediators is the mono-jet analysis

Signature

• Search for DM mediator produced in association with a high pT jet

• Select events with ETmiss > 200 GeV

• Jets and ETmiss balanced in the transverse plane

Background estimation

• Main backgrounds are Zvv and W+jets

• Modelled from control regions in data

Interpretation

• 95% C.L. exclusion limit on the signal strength µ = σ/σth

• Exclusion sensitivity vs mMED and mDM for fixed coupling values

(gSM = gq = 0.25, gDM = 1)

PRD 94 (2016) 032005 arXiv:1703.01651

• Major challenge consists in estimate backgrounds

Page 6: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17

Even

ts /

50 G

eV

2<10

1<10

1

10

210

310

410

510

610

710 ATLAS-1 = 13 TeV, 3.2 fbs

Signal Region>250 GeV miss

T>250 GeV, E

Tp

Data 2015Standard Model

) + jetsii AZ() + jetsio AW() + jetsiµ AW() + jetsi eAW(

ll) + jetsAZ(Dibosons

+ single toptt) = (350, 345) GeV0

r¾, b~m()= (150, 1000) GeV

med, M

DM(m

=5600 GeVD

ADD, n=3, M

[GeV]missTE

400 600 800 1000 1200 1400

Dat

a / S

M

0.5

1

1.5

5

Direct DM searches at colliders• The mono-X search which provides the strongest limits on spin-1 mediators is the mono-jet analysis

Signature

• Search for DM mediator produced in association with a high pT jet

• Select events with ETmiss > 200 GeV

• Jets and ETmiss balanced in the transverse plane

Background estimation

• Main backgrounds are Zvv and W+jets

• Modelled from control regions in data

Interpretation

• 95% C.L. exclusion limit on the signal strength µ = σ/σth

• Exclusion sensitivity vs mMED and mDM for fixed coupling values

(gSM = gq = 0.25, gDM = 1)

PRD 94 (2016) 032005 arXiv:1703.01651

• Major challenge consists in estimate backgrounds

Are these the only searches constraining DM at colliders?

Page 7: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17

Even

ts /

50 G

eV

2<10

1<10

1

10

210

310

410

510

610

710 ATLAS-1 = 13 TeV, 3.2 fbs

Signal Region>250 GeV miss

T>250 GeV, E

Tp

Data 2015Standard Model

) + jetsii AZ() + jetsio AW() + jetsiµ AW() + jetsi eAW(

ll) + jetsAZ(Dibosons

+ single toptt) = (350, 345) GeV0

r¾, b~m()= (150, 1000) GeV

med, M

DM(m

=5600 GeVD

ADD, n=3, M

[GeV]missTE

400 600 800 1000 1200 1400

Dat

a / S

M

0.5

1

1.5

5

Direct DM searches at colliders• The mono-X search which provides the strongest limits on spin-1 mediators is the mono-jet analysis

Signature

• Search for DM mediator produced in association with a high pT jet

• Select events with ETmiss > 200 GeV

• Jets and ETmiss balanced in the transverse plane

Background estimation

• Main backgrounds are Zvv and W+jets

• Modelled from control regions in data

Interpretation

• 95% C.L. exclusion limit on the signal strength µ = σ/σth

• Exclusion sensitivity vs mMED and mDM for fixed coupling values

(gSM = gq = 0.25, gDM = 1)

PRD 94 (2016) 032005 arXiv:1703.01651

• Major challenge consists in estimate backgrounds

Constraints on Dark-Matter spin-1 mediators come from resonance searches

Are these the only searches constraining DM at colliders?

Page 8: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17

Dijet search

• Search for heavy resonances decaying to qq, qg or gg final states

[pb/

TeV]

jj/d

mσd

(13 TeV)-136 fbCMSPreliminary Data

Fitgg (2.0 TeV)qg (4.0 TeV)qq (6.0 TeV)

/ ndf = 38.9 / 39 = 1.02χWide PF-jets

> 1.25 TeVjjm| < 1.3η∆| < 2.5, |η|

410

310

210

10

1

1−10

2−103−10

4−10

Dijet mass [TeV]

Unc

erta

inty

(Dat

a-Fi

t)

3−2−1−0123

2 3 4 5 6 7 8

6

• Lower limit in the mass reach due to trigger limitations

Require at leat two jets, one with high pT

Require small rapidity separation between the two jets

• Fit the smooth background spectrum

• Look for local excesses along the di-jet mass spectrum

ATLAS-EXOT-2016-21

CMS-EXO-16-056

• Selections:

Reconstruct the invariant mass mjj

• Mass reach is extended down to ~500 GeV with trigger based analysis (data scouting) → otherwise only mX > 1 TeV

ATLAS-CONF-2016-030

[TeV]jjReconstructed m2 3 4 5 6 7 8 9

Even

ts /

Bin

1−10

1

10

210

310

410

510

610

710

|y*| < 0.6Fit Range: 1.1 - 8.2 TeV

-value = 0.63p 3× σ*, q

[TeV]jjm2 3 4 5 6 7 8 9

Sign

ifica

nce

2−02

[TeV]jjm2 3 4 5 6 7 8 9

MC

Dat

a-M

C

0.5−0

0.5 JES Uncertainty

ATLAS Preliminary-1=13 TeV, 37.0 fbs

DataBackground fitBumpHunter interval

= 4.0 TeV*q

*, mq = 5.0 TeV

*q*, mq

Page 9: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17

[TeV]Z’m1.5 2 2.5 3 3.5

qg

0.05

0.1

0.15

0.2

0.25

0.3-1 = 13 TeV, 37.0 fbs

PreliminaryATLAS

Observed limitExpected limit

Dijet result: Z’ leptophobic

• Exclusion limits are usually expressed in σ x BR x acceptance• Assumptions on the lineshape play a fundamental role → Narrow width approximation → ΓX << σexp

Model dependent result for a leptophobic Z’

• The coupling gq affects the production cross section through the total width

• Sensitivity to small gq limited by small cross section

• For gq > [0.5,0.6] → narrow width approximation not valid anymore

7

Upper bound on gq ranges from [0.08,0.35] in the range

mZ’ [0.6,3.5] TeV

Cross section limit for quark-quark resonances

Resonance mass [TeV]

[pb]

Α × Β ×

σ

5−10

4−10

3−10

2−10

1−101

10

210

310

410

510 CMS Preliminary (13 TeV)-1 & 36 fb-127 fb

quark-quark95% CL limits

Observed 1 s.d.±Expected 2 s.d.±Expected

Axiguon/coloron Scalar diquarkW'Z'DM mediator

1 2 3 4 5 6 7 8 9

←→Low

massHighmass

CMS-EXO-16-056

ATLAS-EXOT-2016-21

Page 10: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17

ATLAS low mass dijet

• Goal: extend the dijet search to lower masses → mX < 500 GeV

• Strategy: resonance produced in association with a high pT ISR jet or photon

[TeV]jjReconstructed m210×2 210×3 210×4 310

Even

ts

210

310

410

510

> 150 GeV)γT,

(PγX + *| < 0.8

12|y

50 × σ = 350 GeV, Z'

= 0.30), mqZ' (g-value = 0.67p

Fit Range: 169 - 1493 GeV

[GeV]jjm200 300 400 500 1000Si

gnifi

canc

e

2−02

ATLAS Preliminary-1=13 TeV, 15.5 fbs

DataBackground fitBumpHunter interval

[GeV]Z'm200 300 400 500 600 700 800 900

qg

0.050.1

0.150.2

0.250.3

0.350.4

0.450.5

0.55

>150 GeV)γT,

(PγX + -1 = 13 TeV, 15.5 fbs

PreliminaryATLASobs. limitexp. limit

[GeV]Z'm300 350 400 450 500 550 600

qg

0.050.1

0.150.2

0.250.3

0.350.4

0.450.5

0.55

>430 GeV)T,j

X + j (P-1 = 13 TeV, 15.5 fbs

PreliminaryATLASobs. limitexp. limit

8

Resonance + γ: photon ET > 150 GeV, two jets with |y*| < 0.8

q

q q

q

X

γ

q

q q

q

g

X

Resonance + j: one jet pT > 430 GeV, two additional jets with |y*| < 0.6

ATLAS-CONF-2016-070

Z’ model interpretation

Resonance+γ

Resonance+j

X+j becomes inefficient for mX < 350 GeV cause jets from the resonance becomes close to each other and overlaps in the detector

Page 11: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17

CMS boosted low mass dijet

50 100 150 200 250 300

N e

vent

s

0

200

400

600

800

1000

1200dataQCD Pred.Total SM Pred.W(qq)Z(qq)

= 1B

Z'(qq), g

CMS Preliminary (13 TeV)-12.7 fb

soft drop mass (GeV)50 100 150 200 250 300 D

ata/

Pred

ictio

n

0.50.60.70.80.911.11.21.31.41.5

Z' mass (GeV)80 100 200 300 400 500

Bco

uplin

g, g

00.5

11.5

22.5

33.5

44.5

5CMSPreliminary (13 TeV)-12.7 fb

expectedobserved

σexpected 2σexpected 1

UA2CDF Run 1CDF Run 2

-1 20.3 fb⊕ATLAS 13 )γ (ISR -1 3.2 fb⊕ATLAS 13

(TLA)-1 3.2 fb⊕ATLAS 13 (Scouting)-1 18.8 fb⊕CMS 8

9

• Strategy: look for a boosted low mass resonance (mX < 300 GeV) produced in association with an ISR jets

• Selections: one large cone (AK8) jet (pT > 500 GeV) which collect the decay products of the resonancejet substructures are used to suppress QCD-multijet backgrounds and to reconstruct the resonance invariant mass

• Signal extraction: fit to the large cone soft-drop mass (mSD) spectrum

CMS-EXO-16-030

Z’ leptophobic

model

ATLASCMS

Page 12: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17

DM interpretation of resonance searches

• DM simplified model for spin-1 mediator is equivalent to the leptophobic Z’ explored in dijet searches• Difference: the addition of a DM candidate modifies the total width of the mediator

Monojet production

Dijet production

10

Z’

Z’

Mediator Width Interesting scenarios

mMED >> mDM: the relative branch fraction of monojet and dijet is proportional to NcNq gSM2/gDM2

gSM << gDM, gDM ~ 1: narrow resonance but BR monojet larger than dijet one

gDM >> gSM, gDM > 1: resonance not narrow anymore BR monojet larger than dijet one

2mDM >> mMED: no partial width into dark matter so the Z’ model reduces to the standard one used in dijet searches

Page 13: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17

DM interpretation of resonance searches

• DM simplified model for spin-1 mediator is equivalent to the leptophobic Z’ explored in dijet searches• Difference: the addition of a DM candidate modifies the total width of the mediator

Monojet production

Dijet production

10

Z’

Z’

Mediator Width Interesting scenarios

mMED >> mDM: the relative branch fraction of monojet and dijet is proportional to NcNq gSM2/gDM2

gSM << gDM, gDM ~ 1: narrow resonance but BR monojet larger than dijet one

gDM >> gSM, gDM > 1: resonance not narrow anymore BR monojet larger than dijet one

2mDM >> mMED: no partial width into dark matter so the Z’ model reduces to the standard one used in dijet searchesThe exclusion power of th

e reinterpretation of resonance searches

into DM limits stric

tly depends on the (gSM,gDM) values

Page 14: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17

Mediator mass [GeV]0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

[GeV

]D

Mm

0

200

400

600

800

1000

1200

1400

1600

CMS 95% CL[EXO-16-056]Dijet

[EXO-16-030]Boosted dijet

[EXO-16-037]qq

DM + j/V

[EXO-16-039]γDM +

[EXO-16-038]llDM + Z

[EXO-16-040]DM + t (100% FC)

DM

= 2 x m

MedM

0.12≥ 2

hcΩ

= 1.0DM

g = 0.25qg

Dirac DM

CMS 95% CL[EXO-16-056]Dijet

[EXO-16-030]Boosted dijet

[EXO-16-037]qq

DM + j/V

[EXO-16-039]γDM +

[EXO-16-038]llDM + Z

[EXO-16-040]DM + t (100% FC)

Axial-Vector mediator

Preliminary CMS (13 TeV)-1 & 36 fb-1, 27 fb-113 fb

0.12≥ 2

hcΩ

[EXO-16-056] Dijet

[EXO-16-030] Boosted Dijet

[EXO-16-037] qqDM + j/V

[EXO-16-039] γDM +

[EXO-16-038] llDM + Z

Z' mass [GeV]500 1000 1500 2000 2500 3000 3500

' qgC

oupl

ing

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45CMS Preliminary

(13 TeV)-1 & 36 fb-127 fb

95% CL upper limits

/ 2Med > MDMm

= 0DMm

ObservedExpected 1 std. deviation±

2 std. deviation±

←→Lowmass

Highmass

CMS: direct vs indirect DM searches

Z' mass (GeV)80 100 200 300 400 500

Bco

uplin

g, g

00.5

11.5

22.5

33.5

44.5

5CMSPreliminary (13 TeV)-12.7 fb

expectedobserved

σexpected 2σexpected 1

UA2CDF Run 1CDF Run 2

-1 20.3 fb⊕ATLAS 13 )γ (ISR -1 3.2 fb⊕ATLAS 13

(TLA)-1 3.2 fb⊕ATLAS 13 (Scouting)-1 18.8 fb⊕CMS 8

11

CMS Z’→ dijet searches DM Interpretation

Benchmark: Axial-Vector mediator with gq = gSM = 0.25 and gDM = 1

Comparison between mono-X DM searches and dijet boundsGiven the coupling choice → dijet bounds are much

stronger than mono-X ones in the on-shell region

CMS-EXO-16-056

Page 15: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17

ATLAS: direct vs indirect DM searches

Mediator Mass [TeV]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

DM

Ma

ss [

Te

V]

0.2

0.4

0.6

0.8

1

1.2

DM Simplified Model Exclusions August 2016PreliminaryATLAS

= 1.5DM

= 0.1, gq

g

Axial-vector mediator, Dirac DM

Perturb

ative unita

rity

DM Mass = Mediator Mass

×2

= 0.122

hcΩ

Thermal relic

= 0.122

hcΩ

Thermal relic

AT

LA

S-C

ON

F-2

016-0

30

Dije

t T

LA

Phys

. R

ev.

D. 91 0

52007 (

2015)

Dije

t 8

Te

V

arXiv:1604.07773

+jetmissTE

JHEP 06 (2016) 059

γ+missTE

As gSM gets weaker compared to gDM → dijet constraints becomes complementary to mono-XFor “relatively large” quark coupling (gSM) → dijet constraints are very strong

Constraining power in the off-shell region remains strong

12

Mediator Mass [TeV]

0 0.5 1 1.5 2 2.5

DM

Ma

ss [

Te

V]

0.2

0.4

0.6

0.8

1

1.2

DM Simplified Model Exclusions August 2016PreliminaryATLAS

= 1DM

= 0.25, gq

g

Axial-vector mediator, Dirac DM

Per

turb

ativ

e un

itarit

y

DM M

ass = M

ediator Mass

×2

= 0.122

hcΩ

Thermal re

lic

= 0.122

hcΩ

Thermal re

lic

< 0

.12

2 h c

Ω

AT

LA

S-C

ON

F-2

016-0

30

Dije

t T

LA

Phys

. R

ev.

D. 91 0

52007 (

2015)

Dije

t 8

Te

V

AT

LA

S-C

ON

F-2

016-0

69

Dije

t

arXiv:1604.07773

+jetmissTE

JHEP 06 (2016) 059

γ+missTE

AT

LA

S-C

ON

F-2

016-0

70

Dije

t+IS

R

gSM = 0.25, gDM = 1 gSM = 0.10, gDM = 1.5

Page 16: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17

What about spin-0 DM mediators??

13

Page 17: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17

Searches for a spin-0 mediator

• Strongest limits for spin-0 mediators comes from mono-jet and ttbar + DM

• No limits / interpretations from high mass resonance searchesg

g

t

t t

t

g

q0

q

q0

W, Z

q

W±, Z

q

q0

q0

W/ZW/Z

q

g

g

tt

tt

'/a

g

g

t

t

1

14

mono-jet

ttbar + DM

• Coupling choice gSM = gDM = 1

• Dark matter mass fixed to be mDM = 1 GeV

• mono-X searches have exclusion sensitivity for low mass S/PS mediators

• ttbar + DM is the most sensitive search for low mass scalarsCMS-EXO-16-006 arXiv:1703.01651

Page 18: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17

Higgs boson as portal to DM

WIMP mass [GeV]1 10 210 310

]2W

IMP-

nucl

eon

cros

s se

ctio

n [c

m

57 10

55 10

53 10

51 10

49 10

47 10

45 10

43 10

41 10

39 10

DAMA/LIBRA (99.7% CL)CRESST II (95% CL)CDMS SI (95% CL)CoGeNT (99% CL)CRESST II (90% CL)SuperCDMS (90% CL)XENON100 (90% CL)LUX (90% CL)

Scalar WIMPMajorana WIMPVector WIMP

ATLAS

Higgs portal model:ATLAS 90% CL in

-1 = 7 TeV, 4.5-4.7 fbs-1 = 8 TeV, 20.3 fbs

Vis. & inv. Higgs boson decay channels]inv, BR Z , , g , , , b , t , Z , W [

<0.22 at 90% CLinv

assumption: BRW,Z No

invBR0.2 0.1 0 0.1 0.2 0.3 0.4 0.5

-2

ln

0

2

4

6

8

10ATLAS

-1 = 7 TeV, 4.5-4.7 fbs-1 = 8 TeV, 20.3 fbs

Obs.:Vis. & inv. decay channels

Inv. decay channels

Vis. decay channels

• Another place for DM → SM Higgs branching ratio since it couples to everything with mass

• Higgs invisible searches set an upper limit on BR(Hinv) to be < ~25%

Collider limits are the most stringent ones for low mDM

(arXiv:1112.3299)Higgs portal model

Hidden sector provides DM particle coupled to SM Higgs boson

BR limits are converted into bounds on DM-nucleon cross section

Low mDM is a region hard to be explored by direct detection experiment

JHEP11(2015)206

15

Page 19: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17 16

Conclusion

• Impressive amount of DM searches at colliders:

Large number of signatures have been explored in ETmiss + X searches

Bounds on dark matter mediators comes also from re-cast of resonance searches

For gq = 0.25 and gDM = 1 → dijet search excludes spin-1 mediators with a mass up 2.5-3 TeV

• LHC provides complementary results to direct and indirect detection experiments

Results can be compared with direct and indirect detection experiments in terms of DM-nucleon cross section

Unfortunately no sign of Dark-Matter from collider searches so far

Nevertheless …. the hunt of dark matter continues

Colliders provide the strongest bounds for the spin-dependent DM-nucleon cross section

Colliders provide the strongest bounds for the spin-independent DM-nucleon cross section for mDM < 10 GeV

Page 20: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17

Backup

17

Page 21: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17 18

Direct Detection Experiments

Look for elastic scattering of DM against nucleonsDetector deep underground to minimise backgrounds

LUX experiment

Experiments: LUX, PandaX ..etc

DM

SM

DM

SM

Direct Detection

DM-nucleon scattering

Page 22: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17

Indirect Detection Experiments

DM pairs annihilate in galaxy / stars into SM particles

Annihilation happens in region of high density of DM

Experiments: ice-cube, super KK, PICO-2L ..etc

ice-cubeDM

DM

SM

SM

Indirect Detection

DM annihilation

19

Page 23: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17 20

Collider Experiments

Hadron Colliders

Production of DM in high energy particle collisions DM leave the detector w/o release energy

DM may be observed as missing transverse energy

LHCSM

SM

DM

DM

Collider experiments

Production of DM

Page 24: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17

CMS dijet results

Resonance mass [TeV]

[pb]

Α × Β ×

σ

5−10

4−10

3−10

2−10

1−101

10

210

310

410

510 CMS Preliminary (13 TeV)-1 & 36 fb-127 fb

quark-quark95% CL limits

Observed 1 s.d.±Expected 2 s.d.±Expected

Axiguon/coloron Scalar diquarkW'Z'DM mediator

1 2 3 4 5 6 7 8 9

←→Low

massHighmass

Resonance mass [TeV] [p

b]Α ×

Β × σ

5−10

4−10

3−10

2−10

1−101

10

210

310

410

510 CMS Preliminary (13 TeV)-1 & 36 fb-127 fb

quark-gluon95% CL limits

Observed 1 s.d.±Expected 2 s.d.±Expected

String

Excited quark

1 2 3 4 5 6 7 8 9

←→Low

massHighmass

Resonance mass [TeV]

[pb]

Α × Β ×

σ

5−10

4−10

3−10

2−10

1−101

10

210

310

410

510 CMS Preliminary (13 TeV)-1 & 36 fb-127 fb

gluon-gluon95% CL limits

Observed 1 s.d.±Expected 2 s.d.±Expected

= 1/2) 2sColor-octet scalar (k

1 2 3 4 5 6 7 8 9

←→Low

massHighmass

Resonance mass [TeV]

[pb]

Α × Β ×

σ

5−10

4−10

3−10

2−10

1−101

10

210

310

410

510 CMS Preliminary (13 TeV)-1 & 36 fb-127 fb

95% CL limitsgluon-gluonquark-gluonquark-quark

StringExcited quarkAxiguon/coloron Scalar diquark

= 1/2) 2sColor-octet scalar (k

W'Z'DM mediatorRS graviton

1 2 3 4 5 6 7 8 9

←→Low

massHighmass

Cross section upper limit mainly depends on the partonic decay state

which affects the lineshape model

21

Page 25: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17

ATLAS dijet results

[TeV]*qm2 4 6

BR

[pb]

× A × σ

4−10

3−10

2−10

1−10

1ATLAS Preliminary

*qObserved 95% CL upper limitExpected 95% CL upper limit

σ 2 ± and σ 1 ±Expected

-1=13 TeV, 37.0 fbs|y*| < 0.6

[TeV]thM4 6 8 10

[pb]

A × σ

5−10

4−10

3−10

2−10

1−10ATLAS Preliminary

QBHObserved 95% CL upper limitExpected 95% CL upper limit

σ 2 ± and σ 1 ±Expected

-1=13 TeV, 37.0 fbs|y*| < 0.6

[TeV]W*m2 3 4 5

BR

[pb]

× A × σ

3−10

2−10

1−10

1 ATLAS Preliminary

)=0)xφW*(sin(Observed 95% CL upper limitExpected 95% CL upper limit

σ 2 ± and σ 1 ±Expected

-1=13 TeV, 37.0 fbs|y*| < 1.2

[TeV]W'm2 4 6

BR

[pb]

× A × σ

4−10

3−10

2−10

1−10

1ATLAS Preliminary

W'Observed 95% CL upper limitExpected 95% CL upper limit

σ 2 ± and σ 1 ±Expected

-1=13 TeV, 37.0 fbs|y*| < 0.6

Benchmark models

• Excited quarks

• Extra gauge bosons W’, Z’ and W*

• QBH: RS Graviton and ADD

• Model dependent limit cause assume a specific lineshape according to the model

22

Page 26: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17 23

ATLAS dijet resultsAcceptance for Z’ vs gq

[TeV]Gm2 4 6

BR

[pb]

× A × σ

4−10

3−10

2−10

1−10

1

ATLAS Preliminary-1=13 TeV, 37.0 fbs

|y*| < 0.6

= 0G/mGσExp. 95% CL upper limit for σ 2 ± and σ 1 ±Expected

Obs. 95% CL upper limit for: = 0.15G/mGσ

= 0.10G/mGσ

= 0.07G/mGσ

= 0.03G/mGσ

= 0G/mGσ

Model independent limit

Gaussian core lineshape assumed

95% upper limits for vs intrinsic width

Page 27: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17 24

Trigger level analysisEvents

510

610

710

|y*| < 0.6Fit Range: 443 - 1236 GeVp-value = 0.44

[GeV]jjm500 600 700 800 900 1000Si

gnificance

−202

-1s=13 TeV, 3.4 fbDataBackground fitBumpHunter interval

ATLAS Preliminary

600 800 1000 1200 1400 1600 1800 2000

[pb/

TeV]

jj/d

mσd

(13 TeV)-127 fbCMSPreliminary Data

Fitgg (0.75 TeV)qg (1.20 TeV)qq (1.60 TeV)

/ ndf = 20.3 / 20 = 1.02χWide Calo-jets

< 2.04 TeVjj0.49 < m| < 1.3η∆| < 2.5, |η|

610

510

410

310

210

10

1

1−10

Dijet mass [TeV]

Unc

erta

inty

(Dat

a-Fi

t)

3−2−1−0123

0.6 0.8 1 1.2 1.4 1.6 1.8 2

• Goal: have access to a lower mass range performing a trigger object based analysisLower thresholds on leading/subleading jets as well as jet-HT → increase the trigger rate

Reduce the event content to fit in the bandwidth budget → store and perform analysis on trigger objects

ATLAS-CONF-2016-030 • Selections:

L1 jet with ET > 75 GeV

Two jets at HLT with pT > 85 GeV, |η| < 2.8

Offline: pT > 185 GeV |y*| < 0.6

y* selection helps in having a better turn-on

Smooth background with analytical function

Analysis performed on calo-jets @ HLT

Trigger: HT > 250 GeV (pT jet > 40 GeV)

mjj [450,1.6] TeV, |Δηjj| < 1.3

Page 28: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17

ATLAS TLA analysis

[TeV]Gm0.4 0.6 0.8 1

BR

[pb]

× A × σ

1−10

1

10

210

ATLAS Preliminary

-1=13 TeV, 3.4 fbs|y*| < 0.3 = 0.10G/mGσ = 0.07G/mGσ = Res.G/mGσ

[TeV]Gm0.6 0.8 1

BR

[pb]

× A × σ

1−10

1

10

210

ATLAS Preliminary

-1=13 TeV, 3.4 fbs|y*| < 0.6 = 0.10G/mGσ = 0.07G/mGσ = Res.G/mGσ

Model independent limit for narrow gaussian resonances

ATLAS-CONF-2016-030

ATLAS-CONF-2016-030

Coupling exclusion for Z’ leptphobic

25

Page 29: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17

ATLAS: direct vs indirect DM searches

[GeV]Z’

m

300 400 1000 2000 3000

qg

0.05

0.1

0.15

0.2

0.25

0.3

0.35-1 = 13 TeV; 3.4-15.7 fbs

PreliminaryATLASATLAS-CONF-2016-030Low-mass dijet (TLA)

ATLAS-CONF-2016-069High-mass dijet

ATLAS-CONF-2016-070)γDijet+ISR (

ATLAS-CONF-2016-070Dijet+ISR (jet)| < 0.8

12|y*

| < 0.623

|y*

| < 0.312

|y* | < 0.612

|y*

| < 0.612

|y*

Expected limitObserved limit

Summary of Z’→ dijet ATLAS searches

Mediator Mass [TeV]

0 0.5 1 1.5 2 2.5

DM

Ma

ss [

Te

V]

0.2

0.4

0.6

0.8

1

1.2

DM Simplified Model Exclusions August 2016PreliminaryATLAS

= 1DM

= 0.25, gq

g

Axial-vector mediator, Dirac DM

Per

turb

ativ

e un

itarit

y

DM M

ass = M

ediator Mass

×2

= 0.122

hcΩ

Thermal re

lic

= 0.122

hcΩ

Thermal re

lic

< 0

.12

2 h c

Ω

AT

LA

S-C

ON

F-2

016-0

30

Dije

t T

LA

Phys

. R

ev.

D. 91

0520

07 (

201

5)

Dije

t 8

Te

V

AT

LA

S-C

ON

F-2

016-0

69

Dije

t

arXiv:1604.07773

+jetmissTE

JHEP 06 (2016) 059

γ+missTE

AT

LA

S-C

ON

F-2

016-0

70

Dije

t+IS

RDM Interpretation

Comparison between direct DM searches in ETmiss+jet and ETmiss+γ and dijet bounds

Benchmark: Axial-Vector mediator with gq = gSM = 0.25 and gDM = 1

Given the coupling choice→ dijet bounds are much stronger than direct ones in the on-shell region

26

Page 30: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17

monojet ATLAS

[GeV]Am0 500 1000 1500 2000

[GeV

]r

m

0

200

400

)expm 1 ±Expected limit (

)PDF, scaletheorym 1 ±Observed limit (

Perturbativity Limit

Relic Density

ATLAS -1 = 13 TeV, 3.2 fbs

Axial Vector MediatorDirac Fermion DM

= 1.0r

= 0.25, gqg95% CL limits

r

= 2

mAm

[GeV]rm1 10 210 310 410

]2-p

roto

n) [c

mr (

SDm

42<10

39<10

36<10

33<10

30<10XENON100LUXPICO-2LPICO-60Axial Vector Mediator

90% CL limits

Dirac Fermion DM = 1.0

r = 0.25, gqg

ATLAS -1 = 13 TeV, 3.2 fbs

27

Page 31: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17

monojet ATLAS

[GeV]rm1 10 210 310 410

]2-p

roto

n) [c

mr (

SDm

42<10

39<10

36<10

33<10

30<10XENON100LUXPICO-2LPICO-60Axial Vector Mediator

90% CL limits

Dirac Fermion DM = 1.0

r = 0.25, gqg

ATLAS -1 = 13 TeV, 3.2 fbs

[GeV]rm1 10 210 310 410

]2-n

eutro

n) [c

mr (

SDm

43<10

41<10

39<10

37<10

35<10

33<10LUXAxial Vector Mediator

90% CL limits

Dirac Fermion DM = 1.0

r = 0.25, gqg

ATLAS -1 = 13 TeV, 3.2 fbs

28

Page 32: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17

monojet CMS

Even

ts /

GeV

2−10

1−10

1

10

210

310

410

510 Data

)+jetsννZ(

)+jetsνW(l

WW/ZZ/WZ

Top quark

+jetsγZ(ll)+jets,

QCD

= 125 GeVH

Higgs Invisible, m

= 1.6 TeVmedAxial-vector, m

(13 TeV)-112.9 fb

CMSmonojet

Dat

a / P

red.

0.5

1

1.5

[GeV]missTE

200 400 600 800 1000 1200

pred

σ(D

ata-

Pred

.)

2−02

Even

ts /

GeV

2−10

1−10

1

10

210

310

41012.9 fb-1 (13 TeV)

CMSmono-V

Data

)+jetsννZ(

)+jetsνW(l

WW/WZ/ZZ

Top quark

+jetsγ(ll), γZ/

QCD

= 125 GeVH

Higgs invisible, m

= 1.6 TeVmedAxial-vector, m

Dat

a / P

red.

0.5

1

1.5

[GeV]missTE

300 400 500 600 700 800 900 1000

pred

σ(D

ata-

Pred

.)

2−02

29

Page 33: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17

monojet CMS

30

Page 34: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17

monojet CMS

31

Page 35: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17 32

Scalar and PseudoScalar DD limits

[GeV]DMm10 210

/s)

3 v

> (c

<

30−10

29−10

28−10

27−10

26−10

25−10

24−10

CMS obs. 90% CL

FermiLAT

(13 TeV)-112.9 fb

CMS = 1

DM = 1, g

qPseudoscalar med, Dirac DM, g

[GeV]DMm1 10 210 310

]2 [c

mD

M-n

ucle

onSIσ

46−10

45−10

44−10

43−10

42−10

41−10

40−10

39−10

38−10

37−10

36−10

35−10

34−10

CMS obs. 90% CLLUXCDMSLitePandaX-IICRESST-II

(13 TeV)-112.9 fb

CMS = 1

DM = 1, g

qScalar med, Dirac DM, g

• Collider results are compared to direct detection experiments as 90% CL upper limits on DM-nucleon cross section

• Exclusion in (mMED,mDM) translated into spin-independent / spin-dependent cross section via (arXiv:1407.8257)

Vector/Scalar interaction

Axial/Pseudo-scalar

Collider searches provides strongest limits for spin-independent

DM-nucleon cross section for low DM masses, i.e. < 10 GeV

Collider searches provides strongest limits for

annihilation cross section from Fermi-LAT

arXiv:1703.01651

Page 36: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17

monojet CMS: DD limits

33

Page 37: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17

CMS ttbar+DM

[GeV]MEDM10 210

0σ/

σup

per l

imit

on

1

10

210 Median expected 95% CL

σ 1±Expected

σ 2±Expected

Observed

(13 TeV)-12.2 fb=1 GeV

DM=1, m

DM=1, g

qScalar, Dirac, g CMS

Preliminary

[GeV]MEDM10 210

0σ/

σup

per l

imit

on

1

10

210 Median expected 95% CL

σ 1±Expected

σ 2±Expected

Observed

(13 TeV)-12.2 fb=1 GeVDM=1, m

DM=1, g

qPseudoscalar, Dirac, g CMS

Preliminary

[GeV]TmissE

Even

ts /

40 [G

eV]

5

10

15

20

25

Data QCD ll→Z νν→ZSingle Top ttV VV W + Jets(1l)tt (2l)tt

(x20) 100 GeVφM 1 GeV,χ

ps: M

(13 TeV)-12.2 fb

CMSPreliminary

[GeV]TmissE

200 250 300 350 400 450

MC

Dat

a

0.5

1

1.5

[GeV]missTE

200 300 400

Even

ts /

20 G

eV

10

20

30

40

50

60

70

80 Data(2l)tt(1l)tt

W + JetsVVVtt

Single Topνν→Z

ll→ZQCDpseudoscalar:

(13 TeV)-12.2 fb

CMSPreliminary

=1 GeVDM

=100 GeV, mMEDm (x20)

[GeV]missTE

200 250 300 350 400 450Dat

a / B

kg

0.5

1.0

1.5

[GeV]TmissE

Even

ts /

20 [G

eV]

20

40

60

80

100

120

140

160

180 Data QCD ll→Z νν→ZSingle Top ttV VV W + Jets(1l)tt (2l)tt

(x20) 100 GeVφM 1 GeV,χ

ps: M

(13 TeV)-12.2 fb

CMSPreliminary

[GeV]TmissE

200 250 300 350 400 450

MC

Dat

a

0.5

1

1.5

[GeV]missTE

200 300 400

Even

ts /

20 G

eV

20

40

60

80

100

120

140

160Data(2l)tt(1l)tt

W + JetsVVVtt

Single Topνν→Z

ll→ZQCDpseudoscalar:

(13 TeV)-12.2 fb

CMSPreliminary

=1 GeVDM

=100 GeV, mMEDm (x20)

[GeV]missTE

200 250 300 350 400 450Dat

a / B

kg

0.5

1.0

1.5

Semi-leptonicInclusive hadronic

2 RTT 1 RTT

CMS-EXO-16-006

CMS-EXO-16-006

34

Page 38: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17 35

ATLAS ttbar+DM

) [GeV]ϕm(50 100 150 200 250 300 350 400 450 500

) [G

eV]

χm

(

0

50

100

150

200

250

300

21.9 2.3 3.32.82.5 3 1.7

3.2 3.1

2.4

)χ) < 2 m(

ϕm(

= g

q =

Lim

it on

g

χ χ → ϕ production, ϕ + tt

=13 TeVs, -1L = 13.3 fb

Scalar Mediator

ATLAS Preliminary

)expσ1 ±Expected limit, g = 3.5 (

Observed limit, g = 3.5

[GeV]φm0 50 100 150 200 250 300 350 400 450 500

[GeV

m

020406080

100120140160180200

Observed limit)expσ1±Expected limit (

Contours for g=3.5

3.3

1.92.1

3.2

1.8

1.7

3.4

3.0

2.5

2.43.1

2.4

2.0

2.1

χ

> 2 m

φm

= gq

= gχ

DM+tt scalar mediator, g

ATLAS Preliminary-1 = 13 TeV, 13.2 fbs

Lim

it on

g

[GeV]Am0 50 100 150 200 250 300 350 400 450

[GeV

m

020406080

100120140160180200220

Observed limit)expσ1±Expected limit (

Contours for g=3.5

3.3

2.9

1.71.7

2.9

1.73.2

1.6

2.6 3.0

2.7

2.2

1.62.5

1.8

2.1

1.6

χ

> 2 mAm

= gq

= gχ

DM+tt pseudo-scalar mediator, g

ATLAS Preliminary-1 = 13 TeV, 13.2 fbs

Lim

it on

g

) [GeV]am(50 100 150 200 250 300 350 400 450 500

) [G

eV]

χm

(

0

50

100

150

200

250

300

2 2.3 2.9 3.52.7

3.3 2.6 2.3

3.2)χ) < 2 m(

am(

= g

q =

Lim

it on

g

χ χ → a production, a + tt

=13 TeVs, -1L = 13.3 fb

Pseudoscalar Mediator

ATLAS Preliminary

)expσ1 ±Expected limit, g = 3.5 (

Observed limit, g = 3.5

ATLAS-CONF-2016-077

ATLAS-CONF-2016-077

ATLAS-CONF-2016-076

ATLAS-CONF-2016-076

ATLAS-CONF-2016-050

ATLAS-CONF-2016-050

Page 39: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17 36

Higgs invisible

Page 40: Search for Dark Matter Mediators - Institut national de

Raffaele Gerosa22/03/17

Higgs invisible

inv.)→B(H 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

q

0

1

2

3

4

5

6

7

8

9

10

Combined13 TeV7+8 TeV

ObservedExpected

(13 TeV)-1 (8 TeV) + 2.3 fb-1 19.7 fb≤ (7 TeV) + -14.9 fb

PreliminaryCMS

DM mass [GeV]1 10 210 310

]2D

M-n

ucle

on c

ross

sec

tion

[cm

46−10

45−10

44−10

43−10

42−10

41−10

40−10

39−10

LUX (2015)

CDMSlite (2015)

Scalar DM

Fermion DM

(13 TeV)-1 (8 TeV) + 2.3 fb-1 19.7 fb≤ (7 TeV) + -14.9 fb

Preliminary CMS inv.)<0.20→B(H 90% CL limits

inv.)→B(H 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

q

0

1

2

3

4

5

6

7

8

9

10

CombinedVBF-taggedVH-taggedggH-tagged

ObservedExpected

(13 TeV)-1 (8 TeV) + 2.3 fb-1 19.7 fb≤ (7 TeV) + -14.9 fb

PreliminaryCMS

37