search for new physics in events with same-sign isolated dileptons … · 2011. 7. 20. · at the...

1
Predrag Milenovi ć , Institute for Particle Physics, ETH Zürich on behalf of the CMS collaboration (GeV) T miss E 0 50 100 150 200 250 300 350 400 450 500 0 0.2 0.4 0.6 0.8 1 > 50 GeV T miss E > 100 GeV T miss E > 120 GeV T miss E = 7 TeV s CMS Simulation, HT (GeV) 0 100 200 300 400 500 600 700 800 0 0.2 0.4 0.6 0.8 1 HT > 200 GeV HT > 400 GeV = 7 TeV s CMS Simulation, Processes with prompt same-sign dileptons: qq WZ, qq ZZ, qq qqW ± W ± , 2 × (qq W ± ), qq ttW, qq WWW Evaluated using simulation, 10 - 40% contribution, assigned 50% systematic uncertainty Processes with opposite-sign dileptons and charge mis-reconstruction: Z + jets l ± l ± + jets, top-pair l ± l ± + jets Evaluation completely based on data, < 10% contribution, 20% systematic uncertainty Processes with one or two fake leptons: top-pair l ± + jets, W + jets l ± + jets, single-top l ± + jets, QCD jets Evaluation completely based on data, dominant, below 50% systematic uncertainty fake leptons: leptons originating from heavy-flavor decays and misidentified light flavor jets Predicted Measured (in)efficiencies Reconstructed Tight leptons: leptons passing the final selection criteria; Loose leptons: leptons passing loosened criteria, but not the final selection criteria; [email protected] We identify four search regions and one baseline selection region: H T > 400 GeV, miss. E T > 120 GeV [cMSSM, low m0 region] H T > 200 GeV, miss. E T > 120 GeV [simplified model of squark-gluino production] H T > 400 GeV, miss. E T > 50 GeV [cMSSM, high m0 region] H T > 80 GeV, miss. E T > 100 GeV [pMSSM with sneutrino as the LSP] H T > 80 GeV, miss. E T > 30 GeV [to asses the performance of the methods] The four search regions are consistent with our search motivations and are chosen to maximize the sensitivity of the analysis to several new physics scenarios. We analyze events for three dilepton selections / categories: Strategy 3 Experiment Compact Muon Solenoid experiment at the Large Hadron Collider 1 Events with same-sign isolated lepton pairs from hadron collisions are rare in the Standard Model but appear naturally in SUSY [1-3] and other new physics scenarios [4-7]. Two guiding principles: L Astrophysical evidence for the dark matter [8] suggests us to search for the final states with significant missing E T . L Observable new physics signals are likely to be produced by strong interactions and we thus expect significant hadronic activity in association with the two same-sign leptons. Search is signature-based, as independent from a particular model as possible Motivation 2 Baseline Backgrounds 4 Search region Control regions Intrinsic to the physics process 2 prompt (true dileptons) 1 prompt, 1 fake (ttbar, W + jets) 2 fake (QCD jets) 2 tight 1 tight, 1 loose 2 loose Data-driven background prediction methods: L Two sets of complimentary methods are used to measure the backgrounds for the low-p T and high-p T dilepton categories (two predictions are shown next to each other in plots below) [9,10] L A similar method is used to measure the backgrounds for the hadronic τ h dilepton category [9,10] Predictions in the baseline selection region: L Baseline selection region is expected to be largely dominated by the background events. It is used for each of the three dilepton categories in order to assess the performance of methods with a statistically meaningful sample. A very good agreement between the predicted and observed number of events and between complementary background prediction methods. Predictions 5 Low-p T High-p T Hadronic τ h Yields and predictions for each search region and the dilepton category: L We observe no evidence of an excess over the background predictions and we set the 95% CL S upper limits on the number of new physics events (using the modified frequentist method [11]): Limits on the new physics events in 0.98 fb -1 of data In case of lepton selections with complementary prediction methods, limits are set using the background estimate that provides the more conservative limit. L The limits include uncertainties on the signal efficiency of 14%, 17%, and 20% for the low-p T , high-p T , and hadronic τ h di-lepton categories respectively. Results 6 Low-p T and Hadronic τ h High-p T Dilepton category Low-p T Had. τ h High-p T H T [GeV], ME T [GeV] 400, 120 400, 50 200, 120 400, 120 400, 120 400, 50 200, 120 80, 100 predicted 2.3 ± 1.2 5.3 ± 2.4 6.6 ± 2.9 2.9 ± 1.7 1.4 ± 0.7 4.0 ± 1.7 4.5 ± 1.9 10 ± 4 observed 1 7 6 3 0 5 3 7 upper limit CL S 95% 3.7 8.9 7.3 5.8 3.0 7.5 5.2 6.0 [1] R. Barnett, J. Gunion, and H. Haber, “Discovering supersymmetry with like sign dileptons”, Phys. Lett. B 315 (1993) 349. doi:10.1016/0370-2693(93)91623-U. [2] M. Guchait and D. P. Roy, “Like sign dilepton signature for gluino production at the CERN LHC including top quark and Higgs boson effects”, Phys. Rev. D 52 (1995) 133. doi:10.1103/PhysRevD.52.133. [3] H. Baer et al., “Signals for minimal supergravity at the CERN Large Hadron Collider II: Multilepton channels”, Phys. Rev. D 53 (1996) 6241. doi:10.1103/PhysRevD.53.6241. [4] H. Cheng, K. Matchev, and M. Schmaltz, “Bosonic supersymmetry? Getting fooled at the CERN LHC”, Phys. Rev. D 66 (2002) 056006. doi:10.1103/PhysRevD.66.056006. [5] R. Contino and G. Servant, “Discovering the top partners at the LHC using same-sign dilepton final states”, JHEP 06 (2008) 026. doi:10.1088/1126-6708/2008/06/026. [6] F. Almeida et al., “Same-sign dileptons as a signature for heavy Majorana neutrinos in hadron-hadron collisions”, Phys. Lett. B 400 (1997) 331. doi:10.1016/S0370-2693(97)00143-3. [7] Y. Bai and Z. Han, “Top-antitop and Top-top Resonances in the Dilepton Channel at the CERN LHC”, JHEP 04 (2009) 056. doi:10.1088/1126-6708/2009/04/056. [8] G. Bertone, D. Hooper, and J. Silk, “Particle dark matter: Evidence, candidates and constraints”, Phys. Rept. 405 (2005) 279. doi:10.1016/j.physrep.2004.08.031. [9] CMS Collaboration, “Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy at the LHC”, JHEP 1106 (2011) 077. doi:10.1007/JHEP06(2011)077 [10] CMS Collaboration, “Search for new physics with same-sign isolated dilepton events with jets and missing energy”, CMS-PAS-SUS-11-010, CERN, 2011. [11] Particle Data Group Collaboration, “Review of particle physics”, J. Phys. G 37 (2010) 075021. doi:10.1088/0954-3899/37/7A/075021. References 9 Background estimates derived from data for all major background sources No evidence for new physics observed Set 95% CL S upper limits on the number of new physics events in 0.98 fb 1 of data Conclusions 8 Interpretation 7 Low-p T [ee, μμ, eμ] High-p T [ee, μμ, eμ] Hadronic τ h [τe, τμ, ττ] Constrained MSSM model: Exclusion Limits extended Model independent information: L We provide approximate efficiency models for the lepton, H T and missing E T selections in a parametric form that can be used to test a broad range of specific physics models. Parameterized efficiencies for H T and missing E T : H T miss.E T Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich collected in proton–proton collisions at c.m. energy of 7 TeV Luminosity until 28.06.2011 (GeV) T H 0 100 200 300 400 500 600 700 (GeV) miss T E 0 50 100 150 200 250 300 350 400 μ μ ee μ e Search Region 1 Search Region 2 Search Region 3 CMS Preliminary -1 = 0.98 fb int. L /e) > 5/10 GeV μ ( T p (GeV) T H 0 100 200 300 400 500 600 700 (GeV) miss T E 0 50 100 150 200 250 300 350 400 μ μ ee μ e Search Region 1 Search Region 2 Search Region 3 Search Region 4 CMS Preliminary -1 = 0.98 fb int. L ) > 20/10 GeV 2 /l 1 (l T p (GeV) T H 0 100 200 300 400 500 600 700 (GeV) miss T E 0 50 100 150 200 250 300 350 400 τ μ τ e τ τ Search Region 1 CMS Preliminary -1 = 0.98 fb int. L ) > 5/10/15 GeV τ /e/ μ ( T p ee μ μ μ e Total Events 0 10 20 30 40 50 60 70 80 90 = 7 TeV s , -1 =0.98 fb int CMS preliminary L Data bkg prompt-fake bkg fake-fake bkg SS prompt-prompt bkg OS prompt-prompt ee μ μ μ e Total Events 0 20 40 60 80 100 = 7 TeV s , -1 =0.98 fb int CMS preliminary L Data bkg prompt-fake bkg fake-fake bkg SS prompt-prompt bkg OS prompt-prompt >120 miss T >400 E T H >50 miss T >400 E T H >120 miss T >200 E T H >100 miss T >80 E T H Events 0 2 4 6 8 10 12 14 = 7 TeV s , -1 =0.98 fb int CMS preliminary L Data bkg prompt-fake bkg fake-fake bkg SS prompt-prompt bkg OS prompt-prompt Search for new physics in events with same-sign isolated dileptons at CMS >120 miss T >400 E T H >50 miss T >400 E T H >120 miss T >200 E T H >120 miss T >400 E T , H τ Events 0 2 4 6 8 10 12 14 16 18 = 7 TeV s , -1 =0.98 fb int CMS preliminary L Data bkg prompt-fake bkg fake-fake bkg SS prompt-prompt bkg OS prompt-prompt τ e τ μ τ τ Total Events 0 2 4 6 8 10 12 14 16 18 = 7 TeV s , -1 =0.98 fb int CMS preliminary L Data bkg prompt-fake bkg fake-fake bkg SS prompt-prompt bkg OS prompt-prompt (GeV) 0 m 0 200 400 600 800 1000 (GeV) 1/2 m 200 400 600 800 (500)GeV q ~ (500)GeV g ~ (700)GeV q ~ (700)GeV g ~ (900)GeV q ~ (900)GeV g ~ (1100)GeV q ~ (1100)GeV g ~ = 7 TeV s , -1 = 0.98 fb int CMS Preliminary, L ) > 0 μ = 0, sign( 0 = 10, A β tan ± 1 χ LEP2 ± l ~ LEP2 = LSP τ NLO Observed Limit NLO Expected Limit ) -1 = 35 pb int NLO Observed Limit (2010, L

Upload: others

Post on 20-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Predrag Milenović , Institute for Particle Physics, ETH Zürich on behalf of the CMS collaboration

    effEntries 24286Mean 272.8RMS 131.8

    (GeV)TmissE

    0 50 100 150 200 250 300 350 400 450 5000

    0.2

    0.4

    0.6

    0.8

    1

    effEntries 24286Mean 272.8RMS 131.8

    > 50 GeVTmissE

    > 100 GeVTmissE

    > 120 GeVTmissE

    = 7 TeVsCMS Simulation,

    effEntries 4999Mean 495.8RMS 178.9

    HT (GeV)0 100 200 300 400 500 600 700 800

    0

    0.2

    0.4

    0.6

    0.8

    1

    effEntries 4999Mean 495.8RMS 178.9

    HT > 200 GeV

    HT > 400 GeV

    = 7 TeVsCMS Simulation,

    Processes with prompt same-sign dileptons: qq → WZ, qq → ZZ, qq → qqW±W±, 2 × (qq → W±), qq → ttW, qq → WWW Evaluated using simulation, 10 - 40% contribution, assigned 50% systematic uncertainty

    Processes with opposite-sign dileptons and charge mis-reconstruction: Z + jets → l±l± + jets, top-pair → l±l± + jets Evaluation completely based on data, < 10% contribution, 20% systematic uncertainty

    Processes with one or two fake leptons: top-pair → l± + jets, W + jets → l± + jets, single-top → l± + jets, QCD jets Evaluation completely based on data, dominant, below 50% systematic uncertainty fake leptons: leptons originating from heavy-flavor decays and misidentified light flavor jets

    Predicted Measured (in)efficiencies

    Reconstructed

    Tight leptons: leptons passing the final selection criteria; Loose leptons: leptons passing loosened criteria, but not the final selection criteria;

           [email protected]

    Search for new physics in events with same-sign isolated dileptons at CMS

    We identify four search regions and one baseline selection region: ①①  HT > 400 GeV, miss. ET > 120 GeV [cMSSM, low m0 region] ②②  HT > 200 GeV, miss. ET > 120 GeV [simplified model of squark-gluino production] ③③  HT > 400 GeV, miss. ET > 50 GeV [cMSSM, high m0 region] ④④  HT > 80 GeV, miss. ET > 100 GeV [pMSSM with sneutrino as the LSP]

    HT > 80 GeV, miss. ET > 30 GeV [to asses the performance of the methods] The four search regions are consistent with our search motivations and are chosen to maximize the sensitivity of the analysis to several new physics scenarios. We analyze events for three dilepton selections / categories:

    Strategy 3

    Experiment

    Compact Muon Solenoid experiment at the Large Hadron Collider

    1

    Events with same-sign isolated lepton pairs from hadron collisions are rare in the Standard Model but appear naturally in SUSY [1-3] and other new physics scenarios [4-7]. Two guiding principles:   Astrophysical evidence for the dark matter [8] suggests us to search for the final states

    with significant missing ET.   Observable new physics signals are likely to be produced by strong interactions and we

    thus expect significant hadronic activity in association with the two same-sign leptons. Search is signature-based, as independent from a particular model as possible

    Motivation 2

    Baseline  

    Backgrounds 4

    Search region

    Control regions

    Intrinsic to the physics process

    2 prompt(true dileptons)

    1 prompt, 1 fake(ttbar, W + jets)

    2 fake(QCD jets)

    2 tight 1 tight, 1 loose 2 loose

    Data-driven background prediction methods:   Two sets of complimentary methods are used to measure the backgrounds for the low-pT and

    high-pT dilepton categories (two predictions are shown next to each other in plots below) [9,10]   A similar method is used to measure the backgrounds for the hadronic τh dilepton category [9,10]

    Predictions in the baseline selection region:   Baseline selection region is expected to be largely dominated by the background events. It is

    used for each of the three dilepton categories in order to assess the performance of methods with a statistically meaningful sample.

    A very good agreement between the predicted and observed number of events and between complementary background prediction methods.

    .

    Predictions 5

    Low-pT High-pT Hadronic τh

    Yields and predictions for each search region and the dilepton category:

      We observe no evidence of an excess over the background predictions and we set the 95% CLS upper limits on the number of new physics events (using the modified frequentist method [11]):

    Limits on the new physics events in 0.98 fb-1 of data

    In case of lepton selections with complementary prediction methods, limits are set using the background estimate that provides the more conservative limit.

      The limits include uncertainties on the signal efficiency of 14%, 17%, and 20% for the low-pT, high-pT, and hadronic τh di-lepton categories respectively.

    Results 6

    Low-pT and Hadronic τh High-pT

    Dilepton category Low-pT Had. τh High-pT HT [GeV], MET [GeV] 400, 120 400, 50 200, 120 400, 120 400, 120 400, 50 200, 120 80, 100

    predicted 2.3 ± 1.2 5.3 ± 2.4 6.6 ± 2.9 2.9 ± 1.7 1.4 ± 0.7 4.0 ± 1.7 4.5 ± 1.9 10 ± 4 observed 1 7 6 3 0 5 3 7

    upper limit CLS 95% 3.7 8.9 7.3 5.8 3.0 7.5 5.2 6.0

    [1] R. Barnett, J. Gunion, and H. Haber, “Discovering supersymmetry with like sign dileptons”, Phys. Lett. B 315 (1993) 349. doi:10.1016/0370-2693(93)91623-U. [2] M. Guchait and D. P. Roy, “Like sign dilepton signature for gluino production at the CERN LHC including top quark and Higgs boson effects”, Phys. Rev. D 52 (1995) 133. doi:10.1103/PhysRevD.52.133. [3] H. Baer et al., “Signals for minimal supergravity at the CERN Large Hadron Collider II: Multilepton channels”, Phys. Rev. D 53 (1996) 6241. doi:10.1103/PhysRevD.53.6241. [4] H. Cheng, K. Matchev, and M. Schmaltz, “Bosonic supersymmetry? Getting fooled at the CERN LHC”, Phys. Rev. D 66 (2002) 056006. doi:10.1103/PhysRevD.66.056006. [5] R. Contino and G. Servant, “Discovering the top partners at the LHC using same-sign dilepton final states”, JHEP 06 (2008) 026. doi:10.1088/1126-6708/2008/06/026.

    [6] F. Almeida et al., “Same-sign dileptons as a signature for heavy Majorana neutrinos in hadron-hadron collisions”, Phys. Lett. B 400 (1997) 331. doi:10.1016/S0370-2693(97)00143-3. [7] Y. Bai and Z. Han, “Top-antitop and Top-top Resonances in the Dilepton Channel at the CERN LHC”, JHEP 04 (2009) 056. doi:10.1088/1126-6708/2009/04/056. [8] G. Bertone, D. Hooper, and J. Silk, “Particle dark matter: Evidence, candidates and constraints”, Phys. Rept. 405 (2005) 279. doi:10.1016/j.physrep.2004.08.031. [9] CMS Collaboration, “Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy at the LHC”, JHEP 1106 (2011) 077. doi:10.1007/JHEP06(2011)077 [10] CMS Collaboration, “Search for new physics with same-sign isolated dilepton events with jets and missing energy”, CMS-PAS-SUS-11-010, CERN, 2011. [11] Particle Data Group Collaboration, “Review of particle physics”, J. Phys. G 37 (2010) 075021. doi:10.1088/0954-3899/37/7A/075021.

    R e f e r e n c e s 9

    ü  Background estimates derived from data for all major background sources ü  No evidence for new physics observed ü  Set 95% CLS upper limits on the number of new physics events in 0.98 fb−1 of data

    Conclusions 8

    Interpretation 7

    Low-pT [ee, µµ, eµ]

    High-pT [ee, µµ, eµ]

    Hadronic τh [τe, τµ, ττ]

    Constrained MSSM model: Exclusion Limits extended

    Model independent information:   We provide approximate efficiency models for

    the lepton, HT and missing ET selections in a parametric form that can be used to test a broad range of specific physics models.

    Parameterized efficiencies for HT and missing ET:

    HT miss.ET

    Eidgenössische Technische Hochschule ZürichSwiss Federal Institute of Technology Zurich

    collected in proton–proton collisions at c.m. energy of 7 TeV

    Luminosity until 28.06.2011  

    (GeV)TH0 100 200 300 400 500 600 700

    (GeV

    )m

    iss

    TE

    0

    50

    100

    150

    200

    250

    300

    350

    400µµ

    eeµe

    Search Region 1Search Region 2Search Region 3

    CMS Preliminary -1 = 0.98 fbint.L/e) > 5/10 GeVµ(

    Tp

    (GeV)TH0 100 200 300 400 500 600 700

    (GeV

    )m

    iss

    TE

    0

    50

    100

    150

    200

    250

    300

    350

    400µµ

    eeµe

    Search Region 1Search Region 2Search Region 3Search Region 4

    CMS Preliminary -1 = 0.98 fbint.L) > 20/10 GeV2/l1(lTp

    (GeV)TH0 100 200 300 400 500 600 700

    (GeV

    )m

    iss

    TE

    0

    50

    100

    150

    200

    250

    300

    350

    400τµτeττ

    Search Region 1

    CMS Preliminary -1 = 0.98 fbint.L) > 5/10/15 GeVτ/e/µ(

    Tp

    ee µµ µe TotalEv

    ents

    0102030405060708090

    = 7 TeVs, -1=0.98 fbint

    CMS preliminary LDatabkg prompt-fakebkg fake-fakebkg SS prompt-promptbkg OS prompt-prompt

    ee µµ µe Total

    Even

    ts

    0

    20

    40

    60

    80

    100

    = 7 TeVs, -1=0.98 fbint

    CMS preliminary LDatabkg prompt-fakebkg fake-fakebkg SS prompt-promptbkg OS prompt-prompt

    >120missT

    >400 ET

    H

    >50missT

    >400 ET

    H

    >120missT

    >200 ET

    H>100

    missT

    >80 ETH

    Even

    ts

    0

    2

    4

    6

    8

    10

    12

    14

    = 7 TeVs, -1=0.98 fbint

    CMS preliminary LDatabkg prompt-fakebkg fake-fakebkg SS prompt-promptbkg OS prompt-prompt

    Search for new physics in events with same-sign isolated dileptons at CMS

    >120missT

    >400 ET

    H

    >50missT

    >400 ET

    H

    >120missT

    >200 ET

    H

    >120missT

    >400 ET, Hτ

    Even

    ts

    02468

    1012141618

    = 7 TeVs, -1=0.98 fbint

    CMS preliminary LDatabkg prompt-fakebkg fake-fakebkg SS prompt-promptbkg OS prompt-prompt

    τe τµ ττ Total

    Even

    ts

    02468

    1012141618

    = 7 TeVs, -1=0.98 fbint

    CMS preliminary LDatabkg prompt-fakebkg fake-fakebkg SS prompt-promptbkg OS prompt-prompt

    (GeV)0m0 200 400 600 800 1000

    (GeV

    )1/

    2m

    200

    400

    600

    800

    (500)GeVq~

    (500)GeVg~

    (700)GeVq~

    (700)GeVg~

    (900)GeVq~

    (900)GeVg~

    (1100)GeVq~

    (1100)GeVg~

    = 7 TeVs, -1 = 0.98 fbint

    CMS Preliminary, L

    ) > 0µ = 0, sign(0

    = 10, Aβtan

    ±

    1χ∼LEP2

    ±l~LEP2

    = LSPτ∼ NLO Observed LimitNLO Expected Limit

    )-1 = 35 pbint

    NLO Observed Limit (2010, L

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False

    /CreateJDFFile false /Description > /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ > /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ]>> setdistillerparams> setpagedevice