second harmonic te 21 gyrotron backward wave oscillator 報 告 人:吳 庭 旭 指 導 教...

12
Second Harmonic TE21 Gyrotron Backward Wave Oscillator 報 報 報 報 報 報 報 報 報 報 報報 報報報報報報 報報報

Upload: collin-robinson

Post on 20-Jan-2018

233 views

Category:

Documents


1 download

DESCRIPTION

Basic Mechanism of Gyrotron X axis Y axis Z axis

TRANSCRIPT

Page 1: Second Harmonic TE 21 Gyrotron Backward Wave Oscillator 報 告 人:吳 庭 旭 指 導 教 授:葉…

Second Harmonic TE21 Gyrotron Backward Wave

Oscillator

報 告 人:吳 庭 旭 指 導 教 授:葉 義 生 老師

南台科技大學 電機所

Page 2: Second Harmonic TE 21 Gyrotron Backward Wave Oscillator 報 告 人:吳 庭 旭 指 導 教 授:葉…

Introduction to Gyro-BWO The gyrotron backward-wave oscillator (gyro-BWO) is a

promising source of coherent millimeter wave radiation based on the electron cyclotron maser instability on a backward waveguide mode.

The gyro-BWO is a nonresonant structure, so that the frequency can be tuned over a wide range by changing the magnetic field or the beam voltage.

The magnetic field is proportional to the relativistic electron cyclotron frequency, so the magnetic field of a gyrotron operating at the cyclotron harmonic is nearly 1/s of that of a gyrotron operating at the fundamental cyclotron.

Page 3: Second Harmonic TE 21 Gyrotron Backward Wave Oscillator 報 告 人:吳 庭 旭 指 導 教 授:葉…

Basic Mechanism of Gyrotron

X axis

Y axis Z axis

Page 4: Second Harmonic TE 21 Gyrotron Backward Wave Oscillator 報 告 人:吳 庭 旭 指 導 教 授:葉…

Boundary conditions (gyro-BWO)Fields of the circularly polarized TEmn mode

Field equation

The relativistic equation of motion

Computer Models of Nonlinear Simulation Code

N

j zj

jjjjj

mnmn

bz zfzv

ztrzW

ωKxI

izfkdzd

12

22

2

)()(),,,()(8

)(Ev

)()(' 11 zfikzf z

)()(' 22 zfikzf z

BBvceEeP

dtd

0

)(2 )()( mtimnmmnz erkJzfkB

Page 5: Second Harmonic TE 21 Gyrotron Backward Wave Oscillator 報 告 人:吳 庭 旭 指 導 教 授:葉…

Saturated Behavior

0 2 4 6 8 1 0 1 2z (cm )

0

2

4

6

8

10

12

f

L = 5 .0 cm6 .07 .2

10 .012 .0

gyro-BWOTE21(2)

Z1 Z2

(b)

(a)

Ref [5]

Page 6: Second Harmonic TE 21 Gyrotron Backward Wave Oscillator 報 告 人:吳 庭 旭 指 導 教 授:葉…

Start-Oscillation Conditions of Various Transverse Modes

-1 0 -8 -6 -4 -2 0 2 4 6 8 1 0k z (cm -1)

0

20

40

60

80

10 0

12 0f

(GH

z)

s= 1s= 2

T E 2 1T E 1 1

s= 3T E 0 11

3

2

T E 3 1

gyro-BWOTE21(2)

beam mode

waveguide mode

operating point

Page 7: Second Harmonic TE 21 Gyrotron Backward Wave Oscillator 報 告 人:吳 庭 旭 指 導 教 授:葉…

Start-Oscillation Conditions of Various Transverse Modes

-1 0 -8 -6 -4 -2 0 2 4 6 8 10k z (cm -1)

0

20

40

60

80

10 0

12 0

f (G

Hz) s= 1

T E 1 1

s= 3

T E 3 1

B 0= 7 .0 k GB 0= 8 .5 k G

(2)21TE(1)11TE(3)31TE

6 .5 7 .0 7 .5 8 .0 8 .5 9 .0 9 .5B 0 (k G )

0

4

8

12

16

20

24

I st (A

)

TE21(2)

TE11(1)

TE31(3)

13.7A

(b)

(a)

-1 0 -8 -6 -4 -2 0 2 4 6 8 1 0k z (cm -1)

0

20

40

60

80

10 0

12 0

f (G

Hz)

s= 3T E 3 1

V b= 70 k VV b= 14 0 k V

(2)21TE(3)31TE

6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0V b (k V )

02 04 06 08 0

1 0 01 2 01 4 0

I st (A

)

TE31(3)

TE21(2)

13.7A

(b)

(a)

Page 8: Second Harmonic TE 21 Gyrotron Backward Wave Oscillator 報 告 人:吳 庭 旭 指 導 教 授:葉…

Start-Oscillation Conditions of Various Axial Modes

6 .5 7 .0 7 .5 8 .0 8 .5 9 .0 9 .5B 0 (k G )

0

10

20

30

40

50

60

I st (A

)

3 2= 1

13.7A

(a)

| f(z

)|| f

(z)|

| f(z

)|

(a ) = 1

(b ) = 2

0 1 2 3 4 5 6 7z (cm )

(c ) = 3

6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0V b (k V )

0

20

40

60

80

I st (A

)

32

= 1

14.1A

(b)

Page 9: Second Harmonic TE 21 Gyrotron Backward Wave Oscillator 報 告 人:吳 庭 旭 指 導 教 授:葉…

Start-Oscillation Conditions of Various Axial Modes

6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0V b (k V )

trans

it an

gle(

radi

an)

3 4

3 5

3 6

3 7

f (G

Hz)= 3

= 2

= 1

987654320

(b)

)/)(( 0c0 zzz vLsvkω

6 .5 7 .0 7 .5 8 .0 8 .5 9 .0 9 .5B 0 (k G )

trans

it an

gle(

radi

an)

3 4

3 5

3 6

3 7

3 8

3 9

f (G

Hz)

987654320

= 3

= 2

= 1

(a)

The electron transit angle provides the total phase variation of the backward wave as experienced by the electrons in the interaction space. The electron transit angle is defined as

Page 10: Second Harmonic TE 21 Gyrotron Backward Wave Oscillator 報 告 人:吳 庭 旭 指 導 教 授:葉…

Performance of the Gyro-BWOs

6 .5 7 .0 7 .5 8 .0 8 .5 9 .0 9 .5B 0 (k G )

0

50

10 0

15 0

20 0

Pou

t (kW

)

3 4

3 5

3 6

3 7

3 8

f (G

Hz)

1 2 A

1 5 A

6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0V b (k V )

0

50

10 0

15 0

20 0

P out (k

W)

3 4 .2

34 .4

34 .6

34 .8

35 .0

35 .2

35 .4

f (G

Hz)1 5 A

12 A

(b)(a)

Page 11: Second Harmonic TE 21 Gyrotron Backward Wave Oscillator 報 告 人:吳 庭 旭 指 導 教 授:葉…

Conclusions The simulated results show that the field amplitude increases with

the interaction length until the length reaches the relaxation length in the gyro-BWO.

The electron transit angle of each axial mode has unique value, almost independent of the magnetic field and beam voltage, unless the oscillation frequency closes to the waveguide cutoff.

The gyro-BWO is predicted to yield a peak output power of 137 kW with an efficiency of 9.5 % at a beam voltage of 120 kV, beam current is 12 A and electron beam with an axial velocity spread .

TE21(2)

%8/ zz vv

Page 12: Second Harmonic TE 21 Gyrotron Backward Wave Oscillator 報 告 人:吳 庭 旭 指 導 教 授:葉…

References1. G. S. Kou, S. H. Chen, L. R. Barnett, H. Y. Chen, and K. R. Chu, “Experimental

study of an injection-locked gyrotron backward-wave oscillator,” Phys. Rev. Lett., vol. 70, no. 7, pp. 924-927, 1993.

2. T. H. Chang, K. F. Pao, C. T. Fan, S. H. Chen, and K. R. Chu, “Study of axial modes in the gyrotron backward-wave oscillator,” in Proc. Third IEEE International Vacuum Electronics Conference, 2002, pp. 123-124.

3. A. T. Lin, K. R. Chu, C. C. Lin, C. S. Kou, D. B. Mcdermott, and N. C. Luhmann, Jr., “Marginal stability design criterion for gyro-TWT, and comparison of fundamental with second harmonc operation,” Int. J. Electron., vol. 72, no. 5, pp. 813-885, 1992.

4. Y. S. Yeh, C. L. Hung, C. W. Su, T. S. Wu, Y. Y. Shin, and Y. T. Lo, “W-band second-harmonic gyrotron traveling wave amplifier with distributed-loss and severed structures,” Int. J. Infrared and Millimeter Waves, vol. 25, no. 1, 2004.

5. S. H. Chen, K. R. Chu, and T. H. Chang, “Saturated behavior of the gyrotron backward-wave oscillator,” Phys. Rev. Lett., vol. 85, no. 12, pp. 2633-2636, 2000.

6. S. H. Chen, T. H. Chang, K. F. Pao, C. T. Fan, and K. R. Chu, “Linear and time-dependent behavior of the gyrotron backward-wave oscillator,” Phys. Rev. Lett., vol. 89, no. 26, pp. 268303-1-268303-4, 2002.

7. K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H. Chen, T. T. Yang, and D. J. Dialetis, “Theory and experiment of ultrahigh-gain gyrotron traveling wave amplifier,” IEEE Trans. Plasma Sci., vol. 27, no. 2, pp. 391-404, 1999.

8. S. H. Chen, K. R. Chu, and T. H. Chang, “Saturated behavior of the gyrotron backward-wave oscillator,” Phys. Rev. Lett., vol. 85, no. 12, pp. 2633-2636, 2000.