seismic surface wave nondestructive testing system

35
SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM A thesis submitted in Fulfillment of the requirement for the award of the Degree of Master of Electrical Engineering Faculty of Electrical and Electronic Engineering Universiti Tun Hussein Onn Malaysia JULY 2015

Upload: ngonhu

Post on 31-Dec-2016

232 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM

SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM

A thesis submitted in

Fulfillment of the requirement for the award of the

Degree of Master of Electrical Engineering

Faculty of Electrical and Electronic Engineering

Universiti Tun Hussein Onn Malaysia

JULY 2015

Page 2: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM

ABSTRACT

The geophysical methods such as seismic surface wave offer advantages in the

geotechnical site investigation via non-destructive testing. The geophysical methods

have been widely used to detect any spatial material property changes which cannot be

seen through our naked eyes. Therefore, this research focused on a development of the

seismic wave technique of surface wave using in situ non-destructive testing. The

method presented in this research is by obtaining the surface wave phase velocity of two

different materials in order to develop the graph of phase velocity versus wavelength.

This researcher utilizes two different seismic surface wave techniques in one seismic

complete system. The two seismic surface wave techniques used are the Spectral

Analysis Surface Wave (SASW) and Continuous Surface Wave (CSW). This research

explores the effect of the relationship between source and receiver distance for both

methods. The experiments have been conducted on known materials; where the CSW

system has been used on a concrete mortar (hgh velocity). The ratio for this concrete

mortar is 1: 15; cement and sand, while 1 m x 1 m x 1.5 m for its dimension. Meanwhile,

the SASW system has been used to test for sofi soil (low velocity) conducted at the

Research Center for Soft Soil, UTHM test site. The CSW method is based on generating

a mono-frequency source using piezoelectric transducers in order to produce a high

seismic energy. For SASW method, an impact source using a hammer is used to

generate the lower range of seismic energy. The seismic recording used in this research

includes a pair of accelerometer sensors and National Instrument data acquisition

system. The collected data are stored, and processed after the completion of a data

acquisition session. The portable personal computer with the developed Matlab

programmed has been used to control the SASW and CSW systems and the data

acquisition during site investigation. The average phase velocity obtained in this

research for concrete mortar is 374.29 m/s which is between 0.05 m to 0.6 m

Page 3: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM

wavelength. Meanwhile, for SASW system the average phase velocity of soil at a

wavelength of 0.34 m to 3.5 m is 75.03 d s .

Page 4: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM

vii

ABSTRAK

Kaedah geofizikal seperti teknik gelombang seismik mempunyai kelebihan didalm

penggunaanya di tapak uji kaji dengan menggunakan telcnik yang tidak memusnah.

Kaedah yang digunakan di dalam projek ini adalah dengan mendapatkan halaju fasa

untuk mendapatkan anggaran lengkung serakan. Permukaan gelombang elastik boleh

merambat sepanjang permukaan bahan elastik. Amplitud akan berkurangan dengan

cepat mengikut kedalaman dm tenaga mereka hanya merambat pada lapisan cetek.

Pengujian gelombang pemukaan boleh diklasifikasikan sebagai ujian bukan pemusnah.

Objektif kajian ini adalah untuk membangunkan sistem pengujian gelombang

pemukaan berdasarkan teknik (CSW). Kajian ini memberi tumpuan terhadap sumber

isyarat dan kesan hubungan di antara sumber isyarat dan jarak penerima untuk

menentukan anggaran lengkung serakan bahan. Ujian ini telah dijalankan ke atas konkrit

mortar dengan nisbah 1: 15 simen dm pasir. Konkrit mortar ini dibina dengan

dimensinya 1 m x 1 m x 1.5 m. Kaedah (CSW) menggunakan mono frekuensi sebagai

surnber tenaga seismik oleh piezoelektrik sebagai sumber isyaratnya. Dua sensor

penerima digumkan untuk rnenangkap isyarat pengujian dalam kaedah ini.

Pembangunan perisian yang digunakan dalam kajian ini ialah dengan menggunakan

pengaturcaraan perisian Matlab untuk berkomunikasi dengan sistem gelombang

permukaan seismik. Ukuran eksperimen diproses menggunakan sistem perolehan data

untuk rnendapatkan halaju fasa sebagai fungsi panjang gelombang. Hasil uji kaji ini,

halaju purata yang diperolehi untuk: konkrit mortar ialah 374.29 m/s untuk kedalaman

0.05 n hingga 0.6 m &la halaju purata tanah untuk ujian SASW idah 75.03 d s

untuk kedalaman 0.34 m hingga 3.5 m. Oleh itu sistem ini telah dibuktikan dapat

digunakan bagi tujuan penenhan halaju fasa bagi bahan yang telah diketahui.

Page 5: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM
Page 6: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM
Page 7: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM
Page 8: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM
Page 9: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM
Page 10: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM
Page 11: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM
Page 12: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM
Page 13: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM
Page 14: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM
Page 15: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM
Page 16: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM
Page 17: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM
Page 18: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM
Page 19: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM
Page 20: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM
Page 21: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM
Page 22: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM
Page 23: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM
Page 24: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM
Page 25: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM
Page 26: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM
Page 27: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM
Page 28: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM
Page 29: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM
Page 30: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM
Page 31: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM
Page 32: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM
Page 33: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM
Page 34: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM

REFERENCES

Abbiss C.P. (1983) Calculation of elasticities and settlements for long periods of time

and high strains from seismic measurements. Geotechnique, 33(4): 397-405.

Abbiss C.P (2001). Deformation of landfill from measurements of shear wave velocity

and damping. Geotechnique, 5 1 (6): 483-492.

Aizawa. K., Uyeshima, M. & Nogami, K. (2008). Zeta potential estimation of volcanic

rocks on 11 island are-type volcanoes in Japan: Implication for the generation of

local self-potential anomalies. Journal of Geophysical Research 113: doi:

10.102912007JB005058. Issn:0148-0227

Al-Hunaidi M.O. (1993) Insight on the SASW non-destructive testing method. Canadian

Geotechnical Journal, 20: 94-0-950.

Al-Hunaidi, M.O. 1992a. Difficulties with phase spectnun unwrapping in SASW

nondestructive testing of pavements. Canadian Geotechnical Journal, 29(3): 506

51 1

American Society for Testing Materials (2000), Standard Guide for Using the Seismic

Refraction Method for Subsurface Investigation. United States: D 5777.

Babuska, V. & Cara, M., 1991, Seismic anisotropy in the earth: Kluwer Academic

Publishers.

Ballard, RF. & Mclean, F.G. (1975) "Seismic field methods for in-situ moduli." In

Proceeding Conference on in situ Measurement of Soil Properties. Special

Conference Geotechnical Engineering Division ASCE, 1975, Raleigh, North

Carolina, 1 : 12 1 - 150.

Campanella, R.G. & Davies, M.P., 1994. The seismic piezocone: a practical site

investigation tool. In: Woods, R.D. (Ed.), Geophysical Characterization of Sites.

Oxford & IBH Publ. Co.

Chen, L. et al., 2004. On arrangement of source and receivers in SASW testing. Soil

Dynamics and Earthquake Engineering, 24(5), pp.389-396. Available at:

http://l~ghub.elsevier.comlretrieve/piSO267726104000 18 1 [Accessed April 12,

20 133

Clayton, C.R.I. (201 1) Stift'ness at small strain: research and practice. Geotechnique, 61

(1): 5-37.

Page 35: SEISMIC SURFACE WAVE NONDESTRUCTIVE TESTING SYSTEM

Clinton M.W. The impact of source type, source offset, and receiver spacing on

experimental MASW data at Soft-over-stiff sites. ProQuest LLC. 2000

Cho, M., Joh, S., Kwon, S. A., Kang, T. & Fellow, P. (2007). Nondestructive In-Place

Strength Profiling of Concrete Pavements by Resonance Search Technique, (07).

Giao P.H., Chung S.G., Kim D.Y. & Tanaka, H. (2003) Electric imaging and laboratory

testing for geotechnical investigation of Pusan clay deposits. Journal of Applied

Geophysics, 52 (2003): 157-1 75.

Gunn, D. A*, Survey, B. G. & Centre, K. D. (ad.). Assessment of railway embankment

stiffness using continuous surface waves.

Ganji, V., Gucunski, N. & Maher, A. (1997) Detection of underground obstacles by

sasw method numerical aspects. Journal of Geotechnical and Geoenvironmental

Engineering, ASCE, 123(3): 2 12-2 19.

Hartmann, William M., "Signals, Sound, and Sensation," American Institute of Physics,

New York, 1997

Heisey, J.S., Stokoe, K.H. & Meyer, A.H. (1982) "Moduli of pavement systems fiom

spectral analysis of surface waves." In Strength and deformation characteristics of

pavements. Transportation Research Record 852, Transportation Research Board,

National Research Council, Washington, D.C., pp. 22-3 1.

Hsu, P. H. Schaum 's Theoly and Problems: Signals and Systems, McGraw-Hill 1995

Ismail, M. A,, Nayan, K. A. M., Sarnsudin, A. R. & Rafek, A. G. (2012).

Characterization of Road Pavement using Spectral Analysis of Surface Waves (

SASW ), (July), 221-226

Ivanov, J., Miller, R. D., Xia, J., Steeples, D. & Park, C. B. (2006). Joint analysis of

refractions with surface waves: An inverse solution to the rehction-traveltime

problem. Geophysics, 71 (6),

Jones R.B.1958. In situ measurement of the dynamic properties of soil by vibration

methods. Geotechnique 8, 1-2 1. Jean-L.B. "Geotechical Engineering unsaturated

ans saturated soils". John wiley & sons, Inc, Hoboken, New Jersey. 2013

Khan, Z., Majid, A., Cascante, G., Hutchinson, D.J. & Pezeshkpow, P. (2006)

Characterization of a cemented sand with the pulse-velocity method. Canadian

Geotechical Journal, 43(3): 294-309.