self deployable self powered networking aerostatldt.stanford.edu/~educ39107/pomi/wind/imelda.pdf ·...

18
SelfDeployable SelfPowered Networking Aerostat Paul Kim Chief Technology Officer & Assistant Dean Stanford University School of Education

Upload: vanduong

Post on 05-Apr-2018

232 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Self Deployable Self Powered Networking Aerostatldt.stanford.edu/~educ39107/pomi/wind/Imelda.pdf · Self‐Deployable Self‐Powered Networking Aerostat Self-deployable aerostat helium

Self‐Deployable Self‐Powered Networking Aerostat

Paul KimChief Technology Officer & Assistant DeanStanford University School of Education

Page 2: Self Deployable Self Powered Networking Aerostatldt.stanford.edu/~educ39107/pomi/wind/Imelda.pdf · Self‐Deployable Self‐Powered Networking Aerostat Self-deployable aerostat helium

This apparatus is designed to self‐deploy a network node or network infrastructure for emergencies or special purposes that require an emergency radio service, wireless communication channel, broadcasting station, network relay station, etc. when conventional network services become disabled or damaged.

This apparatus consists of major components such as a self‐deployable compressed helium containers, wind turbine, tethering mechanism, network device, motor controlled winch, and protective eggshell to house the apparatus.

When triggered by a sensor (earth quake, flood, bomb, or any other predefined triggering event), the eggshell hatches itself and compressed helium is deployed into the wind turbine which is made of balloon, it self‐lifts in the air while the winch unrolls the tether mechanism. When the wind turbine positions in a preconfigured high altitude, it harvests electricity from the wind. When it is deployed, it turns on the networking device and starts to function as preconfigured as a wireless network node or station (e.g., self‐broadcasting radio emergency information, cellular network antenna, emergency internet router, network relay station, etc.). The wind turbine recharges the battery on board.

The protective eggshell contains a motorized winch attached to a linear electricity generator and a controlled board. When there is high wind the linear electricity generator generates electricity to recharges the control board.

Page 3: Self Deployable Self Powered Networking Aerostatldt.stanford.edu/~educ39107/pomi/wind/Imelda.pdf · Self‐Deployable Self‐Powered Networking Aerostat Self-deployable aerostat helium

Self‐Deployable Self‐Powered Networking Aerostat

Self-deployable aerostat helium balloon to steadily position the wind turbine

Self-hatching protective egg

Network device 1Electric power generator(Brushless DC motor type)

Wind

Tethering mechanism

Winch

Helium filled wind turbine aerostat

Linear electric power generator

Altitude control board

Broadcasting or relaying radio signal

Helium canister – auto-detaches when the positioning aerostat is fully inflated

Helium canister – auto-detaches when the wind turbine aerostat is fully inflated

Winch controlling motor

Battery

Triggering event sensor

Wire connecting power generator and the network device

Network device 2

Wing

Wind dynamics

Battery

Page 4: Self Deployable Self Powered Networking Aerostatldt.stanford.edu/~educ39107/pomi/wind/Imelda.pdf · Self‐Deployable Self‐Powered Networking Aerostat Self-deployable aerostat helium

DescriptionsHelium filled wind turbine aerostat – when triggered this aerostat self‐inflates. For bigger size wind turbines, the wind turbine wings are covered with solar power cells to supplement the electricity generation.

Linear electric power generator – this recharges the battery on the ground when there is strong wind. It may trigger the winch to lower the aerostats or raise the aerostat when there is not enough wind or it is risky (potentially damaging or losing the aerostat) to operate at the current altitude. It generates electricity as the tether moves or swings according to wind dynamics.

Tethering mechanism – this holds the aerostats, but has no electric wire connecting the ground control board with the aerostats. It is used to positions, raises, or lowers the aerostats.

Network device 1 – it is pre‐configured to perform various wireless networking tasks, but also post‐reconfigurable based on needs. This network device turns it on and off based on the power level of the on‐board battery.

Network device 2 – it can communicate with the network device 1 based on needs. Through Network device 1, controller from a remote location can send a signal to disconnect the tether, unwind the tether, etc. This network device turns it on and off based on the power level of the on‐board battery.

Triggering event sensor – this may be configured to send the hatching signal when there is an event (e.g., 8.0 magnitude earthquake)

Self‐hatching protective egg – Water‐proof sealed. Upon receiving the signal, it deploys the aerostats. It is heavy enough to hold down the aerostats with tethering and is made of floating buoy so it can float on water if the area is flooded.

Page 5: Self Deployable Self Powered Networking Aerostatldt.stanford.edu/~educ39107/pomi/wind/Imelda.pdf · Self‐Deployable Self‐Powered Networking Aerostat Self-deployable aerostat helium

Relevant PatentsUS PATENT 733500B2 – Helium balloon‐based wind turbine

Page 6: Self Deployable Self Powered Networking Aerostatldt.stanford.edu/~educ39107/pomi/wind/Imelda.pdf · Self‐Deployable Self‐Powered Networking Aerostat Self-deployable aerostat helium

US PATENT 7188808 B1Wind dynamic‐based power generation

Page 7: Self Deployable Self Powered Networking Aerostatldt.stanford.edu/~educ39107/pomi/wind/Imelda.pdf · Self‐Deployable Self‐Powered Networking Aerostat Self-deployable aerostat helium

US PATENT 7129596 B2Floating wind turbine

Page 8: Self Deployable Self Powered Networking Aerostatldt.stanford.edu/~educ39107/pomi/wind/Imelda.pdf · Self‐Deployable Self‐Powered Networking Aerostat Self-deployable aerostat helium

US PATENT 4073516Floating wind turbine

Page 9: Self Deployable Self Powered Networking Aerostatldt.stanford.edu/~educ39107/pomi/wind/Imelda.pdf · Self‐Deployable Self‐Powered Networking Aerostat Self-deployable aerostat helium

US PATENT 4486669Lowering or raising wind turbine to maximize wind power generation

Page 10: Self Deployable Self Powered Networking Aerostatldt.stanford.edu/~educ39107/pomi/wind/Imelda.pdf · Self‐Deployable Self‐Powered Networking Aerostat Self-deployable aerostat helium
Page 11: Self Deployable Self Powered Networking Aerostatldt.stanford.edu/~educ39107/pomi/wind/Imelda.pdf · Self‐Deployable Self‐Powered Networking Aerostat Self-deployable aerostat helium

Most Recent Relevant Research

Page 12: Self Deployable Self Powered Networking Aerostatldt.stanford.edu/~educ39107/pomi/wind/Imelda.pdf · Self‐Deployable Self‐Powered Networking Aerostat Self-deployable aerostat helium

Most Recent Relevant Research

Page 13: Self Deployable Self Powered Networking Aerostatldt.stanford.edu/~educ39107/pomi/wind/Imelda.pdf · Self‐Deployable Self‐Powered Networking Aerostat Self-deployable aerostat helium

Most Recent Relevant Research

Page 14: Self Deployable Self Powered Networking Aerostatldt.stanford.edu/~educ39107/pomi/wind/Imelda.pdf · Self‐Deployable Self‐Powered Networking Aerostat Self-deployable aerostat helium

2009 Most Recent Relevant Research

Page 15: Self Deployable Self Powered Networking Aerostatldt.stanford.edu/~educ39107/pomi/wind/Imelda.pdf · Self‐Deployable Self‐Powered Networking Aerostat Self-deployable aerostat helium

ABSTRACT

Many rural and remote communities around the world see themselves

on the wrong side of the digital divide. In particular, there isevidence to suggest that there is a growing digital divide betweenurban and rural areas in terms of broadband Internet access withpeople living in rural areas having fewer choices and pay higher

prices for slower speeds. This is true even in developed countries.Motivated by the above observations, there has been an increasing

interest in deploying and researching low cost rural wireless networkswith active community participation. This paper presents an

overview of our efforts in this direction in deploying a rural WiFibasedlong distance mesh network testbed in the Scottish Highlandsand Islands. We highlight the unique aspects of our testbed thatdifferentiate it from other existing rural wireless testbeds. We alsooutline some of the research issues that are currently being investigatedin this project.

WiNS-DR’08, September 19, 2008, San Francisco, California, USA.

Most Recent Relevant Research

Page 16: Self Deployable Self Powered Networking Aerostatldt.stanford.edu/~educ39107/pomi/wind/Imelda.pdf · Self‐Deployable Self‐Powered Networking Aerostat Self-deployable aerostat helium

ABSTRACT

Self-powered wireless mesh networks have gained popularity as a cheap alternative for providing Internet access in many rural areas of the developed and, especially, the developing world. The quality of service that these networks deliver is often bounded by such rudimentary issues as the unavailability of electrical energy. Dependence on renewable energy sources and variable power consumption make it difficult to predict the available energy and provide guarantees on communication performance. To facilitate energy trend estimation we develop an energy flow modelthat accounts for communication and energy harvesting equipment hardware specifications; high resolution, time-varying weather information; and the complex interaction among them. To show the model’s practical benefits, we introduce an energy-aware routing protocol, Lifetime Pattern-based Routing (LPR), specifically tailored for self-powered wireless networks. LPR’s routing decisions are based on energy level estimations provided by the energy flow model. Our protocol balances the available energy budget across all nodes; as a result, power failures are distributed among all participating parties. Using traces captured from a live network, we use simulation to show that LPR outperforms existing work in rural-area wireless network routing.

Most Recent Relevant Research

Page 17: Self Deployable Self Powered Networking Aerostatldt.stanford.edu/~educ39107/pomi/wind/Imelda.pdf · Self‐Deployable Self‐Powered Networking Aerostat Self-deployable aerostat helium

Applications

Emergency network, rescue mission, resource deployment , critical announcement of safety & health information (e.g., epidemic, impending Tsunami), medical consultation conference, rapid medical training, special training, continuous education, critical wireless communication backbone, point‐to‐point or relayed network, emergency cellular network, broadcasting, etc.

Page 18: Self Deployable Self Powered Networking Aerostatldt.stanford.edu/~educ39107/pomi/wind/Imelda.pdf · Self‐Deployable Self‐Powered Networking Aerostat Self-deployable aerostat helium

Benefits

• Quickly deployable from the ground;• Less susceptible to disasters, disruption, power‐outage;

• Broadcasting or communication networking capability;

• Airdrop possibility;• Pre & post configurable;• Deployable in outer planets;• When there is no wind by air motion,  there could be other hybrid power generation device depending on the given condition.