semanticinteroperabilityforhealthnetwork) deliverable4.1 ... 288408 d4_1 initial m… ·...

64
Semantic Interoperability for Health Network Deliverable 4.1: Initial models covering the heart failure use case [Version 6, Dec 10, 2012] Call: FP7ICT20117 Grant agreement for: Network of Excellence (NoE) Project acronym: SemanticHealthNet Project full title: Semantic Interoperability for Health Network Grant agreement no.: 288408 Budget: 3.222.380 EURO Funding: 2.945.364 EURO Start: 01.12.2011 End: 30.11.2014 Website: www.semantichealthnet.eu Coordinators: The SemanticHealthNet project is partially funded by the European Commission.

Upload: others

Post on 31-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

 

 

 

Semantic  Interoperability  for  Health  Network    

Deliverable  4.1:  Initial  models  covering  the  heart  failure  use  case  

[Version  6,  Dec  10,  2012]  

 

Call:  FP7-­‐ICT-­‐2011-­‐7  

Grant  agreement  for:  Network  of  Excellence  (NoE)  

Project  acronym:  SemanticHealthNet  

Project  full  title:  Semantic  Interoperability  for  Health  Network  

Grant  agreement  no.:  288408  

Budget:  3.222.380  EURO  

Funding:  2.945.364  EURO  

Start:  01.12.2011  -­‐  End:  30.11.2014  

Website:  www.semantichealthnet.eu  

Coordinators:    

 

The   SemanticHealthNet  project   is  partially  funded  by  the  European  Commission.  

 

Page 2: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  2  of  64  

 

Document description Deliverable:   D4.1  Publishable  summary:  

The   SemanticHealthNet   (SHN)   project   faces   the   challenge   of   semantic  interoperability   (SIOp)  of  clinical   information.  Despite  multiple   initiatives  over   the  last  decade  major  problems  remain  unsolved.    A   key   requirement   to   SIOp   is   to   univocally   identify   the   meaning   of   clinical  information   throughout   different   systems   and   formalisms.   Currently,   many  different   representations   encode   the   same   semantic   content.   Following   the  SemanticHEALTH   roadmap,   this   should   be   addressed   by   a   closer   integration  between   information   models   as   used   in   electronic   health   records   and  terminologies  and  ontologies.  This  is  complicated  by  the  overlapping  zone  between  both,  which  multiplies  the  possible  different  representations  for  exactly  the  same  piece  of  clinical  information.      The  work  put  forward  by  the  SemanticHealthNet  WP4  departs  from  the  analysis  of  typical   examples   of   non-­‐interoperability,   coming   from   two   usage   scenarios,   viz.  transfer  of  meaningful   information   from  one  system  to  another  and  standardized  semantic   retrieval   across   content   from   different   systems.   WP4   has   started   to  analyse  how  the  semantic  equivalence  of  clinical  information  can  be  ascertained.  It  is   currently   developing   general   principles   and   guidelines   to   properly   identifying  which   things   have   to   be   represented   by   information   models   (mainly   openEHR,  EN13606   and   HL7)   and   which   by   ontologies   (mainly   SNOMED   CT)   in   order   to  represent  clinical   information  in  an  unambiguous  way.  This  general  principles  and  guidelines  are  reflected  in  the  semantic  resources  developed.    According  to  the  work  plan,  the  focus  should  be  in  (i)  chronic  heart  failure  and  (ii)  cardiovascular  prevention,  including  all  clinical  aspects  like  diagnosis,  observations,    or  medication.  This  will  drive  the  resources  to  be  developed.  The  first  project  year  has  focused  on  (i)  and  the  aspects  of  diagnostic  statements.    SemanticHealthNet   is   not   proposing   a   new   standard.   Instead   it   tries   to   formally  describe   the   current   interplay   between   information   structures   and   clinical  vocabularies  and  to   introduce  a  semantic   layer  by  which  all   facets  of  the  complex  meaning  of  components  of  the  electronic  health  record  can  be  addressed.  To  this  end,  WP4  makes  consequent  use  of  formal  ontologies  based  on  description  logics  and  Semantic  Web  standards.  This   is  documented  by   the  concrete  models   created  during   the   first  project   year,  which  are  described  in-­‐depth  in  this  document.  They  are  mainly  intended  as  easy-­‐to-­‐understand   exemplars,   built   to   demonstrate   the   feasibility   of   the   ontological  approach.    This  deliverable  provides  a  snapshot  of  work  in  progress.  Several   issues  are  under  discussion,  and  a  total  consensus  among  all  stakeholders  has  not  been  reached  yet.  Controversial   issues   are   addressed   at   several   places   in   the   text.   One   example   of  current   discussions   is   the   approximation   of   inherently   higher   order   referential  statements  ("diagnosis  is  about  clinical  situation")  by  means  of  subset  of  first-­‐order  logics.   Another   example   is   an   engineering   bottleneck,   which   consists   in   the  problem   of   eliciting   the   implicit   knowledge   contained   in   current   information  models  and  to  "upgrade"  the  static  elements  of  information  models  by  references  to  a  formal  ontology.          

Page 3: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  3  of  64  

   

Status:    Version:    Public:   □  No                  □  Yes  Deadline:    Contact:   Stefan  Schulz  [email protected]  Editors:   Catalina  Martínez-­‐Costa,  Stefan  Schulz      

Page 4: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  4  of  64  

Table of Contents

Table  of  Contents  ....................................................................................................................................  4  

1.   Introduction  and  objectives  ............................................................................................................  6  

1.1   The  SemanticHealthNet  Project  ..............................................................................................  6  

1.2   Approach  and  methods  ...........................................................................................................  8  

1.3   Objectives  ................................................................................................................................  9  

2   Background  ...................................................................................................................................  11  

2.1   EHR  standards  .......................................................................................................................  11  

2.2   SNOMED  CT  ...........................................................................................................................  11  

3   The  Semantic  Interoperability  (SIOp)  challenge  ............................................................................  13  

3.1   SIOp  Scenarios  .......................................................................................................................  13  

3.2   SIOp  and  Information  models  ...............................................................................................  14  

3.3   SIOp  and  SNOMED  CT  Situation  With  Explicit  Context  .........................................................  18  

4   Ontologies  and  Description  Logics  (DL)  .........................................................................................  20  

5   Shared  logical  framework  based  on  OWL  DL  ontologies  ..............................................................  22  

5.1   Information  vs.  clinical  reality  ...............................................................................................  22  

5.2   Information  entities  ..............................................................................................................  24  

5.3   Clinical  Situations  ..................................................................................................................  26  

5.4   Ontology-­‐based  binding  of  information  entities  to  clinical  situations  ..................................  27  

5.5   Negations  ..............................................................................................................................  32  

6   Discussion  on  alternatives,  options,  consequences  and  criteria  for  choice  ..................................  35  

6.1   Creation  of  clinical  models  ....................................................................................................  35  

6.2   Query  of  clinical  data  instances  of  isosemantic  models  ........................................................  36  

7   Models  and  Use  Cases  ...................................................................................................................  38  

7.1   Use  case  1  (Data  transfer)  .....................................................................................................  39  

7.1.1   Phase  1:  Semantic  clinical  information  extraction  ........................................................  39  

7.1.2   Phase  2:  Clinical  data  exchange  ....................................................................................  43  

7.1.3   Phase  3:  Syntactic  clinical  information  mapping  ...........................................................  44  

7.1.4   Comments  on  Use  case  1  ..............................................................................................  46  

7.2   Use  case  2  (Data  abstraction  for  querying)  ...........................................................................  47  

7.2.1   Comments  on  Use  case  2  ..............................................................................................  53  

8   Notes  about  the  deliverable  .........................................................................................................  54  

9   Annex  I  Heart  care  summary  use  case  ..........................................................................................  55  

Page 5: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  5  of  64  

10   Annex  II:  Clinical  Situation  .........................................................................................................  60  

11   Annex  III:  Notes  about  ContSys  .................................................................................................  63  

 

 

Page 6: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  6  of  64  

1. Introduction and objectives

1.1 The SemanticHealthNet Project

Semantic   interoperability   (SIOp)   of   clinical   data   is   a   vital   prerequisite   for   enabling   patient-­‐centred  care  and  advanced  clinical  and  biomedical  research.  SemanticHealthNet  (SHN)  will  develop  a  scalable  and   sustainable   pan-­‐European   organisational   and   governance   process   to   achieve   this   objective  across  healthcare  systems  and   institutions.  One   important  aspect   is   the  development  of  a   logical  –  ontological   framework   to   support   interoperability,   which   is   compliant   with   current   clinical  vocabularies  and  information  models,   in  particular  SNOMED  CT,  HL7  CDA,  ISO  13606  and  openEHR.  Alternatively   the   SHN   project   might   provide   guidance   to   implementers   of   the   Standards  Development  Organizations  (SDOs)  and  SNOMED  CT.  

According  to  the  work  plan,  the  clinical  focus  on  chronic  heart  failure  and  cardiovascular  prevention  (including  all   clinical   aspects   like  diagnosis,   observables,  medication)  will   drive   the   resources   to  be  developed.  We  expect  the  exemplars  in  cardiology  and  public  health  to  be  specific  enough  to  permit  comprehensive   development   and   validation   of   these   resources,   and   yet   typical   enough   for   wider  generalisation  of   the  methodology   and   its   governance.     SemanticHealthNet  will   capture   the  needs  articulated   by   clinicians   and   public   health   experts   for   evidence-­‐based,   patient-­‐centred   integrated  care  in  these  domains.  Existing  European  consensus  in  the  management  of  chronic  heart  failure  and  cardiovascular   prevention   will   then   be   integrated   in   EHR   architectures,   clinical   data   structures,  terminologies  and  ontology  by  leading  technical  experts.    

Clinical  and   Industrial  Advisory  Boards  will  provide   links  with  other  domains   in  which   these   results  can   be   used   beneficially.   The   involvement   of   health   authorities,   clinical   professionals,   insurers,  ministries  of  health,  vendors,  and  purchasers  will  ensure   that   the  project  approach  and  results  are  realistically  adoptable  and  viable.  This  work  will  also  build  on  the  SemanticHEALTH1  and  CALLIOPE2  roadmaps  for  eHealth  interoperability.  

A   business   model   to   justify   strategic   investments,   including   the   opportunity   costs   for   key  stakeholders  such  as  Standards  Development  Organisations  and  industry,  will  be  defined.  Links  with  the  epSOS  large  scale  pilot  and  the  eHealth  Governance  Initiative,  will  inform  the  shape  of  the  Virtual  Organisation  that  this  Network  will  establish  to  sustain  semantic  interoperability  developments  and  their  adoption.  

The   consortium   comprises   17   Partners   and   more   than   40   internationally   recognised   experts,  including  from  USA  and  Canada,  ensuring  a  global  impact.  

 

 

Partners      

                                                                                                                         1  Stroetmann,  V.  N.;  Kalra,  D.;  et  al.  (2009)  Semantic  Interoperability  for  Better  Health  and  Safer  Healthcare:  Research  and  Development  Roadmap   for   Europe:   SemanticHEALTH   Report.   European   Commission;   Luxembourg:   Office   for   Official   Publications   of   the   European  2  European  eHealth  Interoperability  Roadmap:      http://ec.europa.eu/information_society/activities/health/docs/cip/calliope-­‐roadmap-­‐122010.pdf    

Page 7: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  7  of  64  

1. Research  in  Advanced  Medical  Informatics  and  Telematics    (RAMIT)  –  BE  (Admin  Coordinator)  

2. Imperial  College  London  (Imperial)  –  UK  3. University  of  Hull  (UHULL)  –  UK  4. University  Hospitals  of  Geneva  (HUG)  –  CH  5. World  Health  Organization  (WHO)    6. The  University  of  Manchester  (UoM)  –  UK  7. Medical  University  of  Graz  (MUG)  –  AT  8. International  Health  Terminology  Standards  Development  Organisation  (IHTSDO)    9. Institut  National  de  la  Santé  et  la  Recherche  Médicale  (INSERM)  –  FR  10. Ocean  Informatics  (Ocean)    11. Health  Level  7  International  Foundation  (HL7  International)    12. EN13606  Association  (EN13606)    13. Empirica  Gesellschaft  für  Kommunikations-­‐  und  Technologieforschung  mbH  (EMPIRICA)  –  DE  14. Standing  Committee  of  European  Doctors  (CPME)  –  BE  15. European   Coordination   Committee   of   the   Radiological,   Electromedical   and   Healthcare   IT  

Industry  (COCIR)  –  BE  16. Whittington  NHS  Trust  (WHIT)  –  UK  17. European  Institute  for  Health  Records  (EuroRec)  (NoE  Coordinator)  

External  Experts  

1. Alan  Rector  (University  of  Manchester,  UK)  2. Daniel  Karlsson  (University  of  Linköping,  Sweden)  3. Diego  Boscá  (University  of  Valencia,  Spain)  4. Jesualdo  Tomás  Fernández  Breis  (University  of  Murcia,  Spain)  5. Mathias  Brochhausen  (University  of  Arkansas  for  Medical  Sciences,  USA)  6. Rahil  Qamar  (NHS  Connecting  for  Health  (CFH),  UK)  7. William  Hogan  (University  of  Arkansas  for  Medical  Sciences,  USA)  8. William  Goossen  (Hogeschool  Windesheim  and  Results  4  Care,  NL)  

Project  Plan  

Workstream  I:  

WP1:  Patient  care  exemplar  (heart  failure)  WP2:  Public  health  exemplar  (coronary  prevention)  WP3:  Stakeholder  validation  

Workstream  II:  

WP4:  Harmonised  resources  WP5:  Infostructure  and  tools  WP6:  Industrial  engagement  

 

Workstream  III:  

Page 8: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  8  of  64  

WP7:  Adoption  and  sustainability  WP8:  European  Virtual  Organisation  WP9:  Project  management,  dissemination,  promotion  

   

1.2 Approach and methods

Semantic   Interoperability   of   clinical   information  within   and   across   Electronic  Health   Record   (EHR)  systems  should  fulfil  the  following  conditions:    

• Clinical   information   is   represented   in  a  way  by   the  sending  system  that   it   is  understood  by  the  receiving  system  with  no  or  minimal  loss  of  accuracy.  

• Humans   and   computer   can   query   and   aggregate   meaningful   EHR   data   across   different  systems.    

Although  much   of   the   investment   in   EHRs   has   been   at   national   levels,   the   challenge   of   semantic  interoperability   is   a   global   one,   not   only   to   support   cross-­‐border   health   care   but   also   to   support  large-­‐scale   multi-­‐national   research   and   valid   international   comparisons.   Multiple   initiatives   have  been  taken  by  different  Standards  Development  Organizations  (SDOs),  but  major  challenges  remain  unsolved.   A   basic   requirement   is   to   univocally   identify   the  meaning   of   clinical   information   across  systems   and   to   create   convergence   among   a   large   range   of   heterogeneous   representations.  Nowadays  there  are  three  layers  of  artefacts  to  represent  the  meaning  of  clinical  information:  

1. Generic   information  models   for   representing  EHR  data   such  as   the  provided  by   ISO  13606,  openEHR  and  the  HL7  Clinical  Statement  Pattern  (HL7  CSP).  

2. Clinical   element   definitions   like   ISO   13606/openEHR   archetypes,   Detailed   Clinical   Models  (DCMs)  or  Intermountain  CEMs  that  are  re-­‐usable  models  that  describe  all  the  items  around  a   topic   such   as   BP  measurement   or   a   laboratory   analysis   test   result;   and   clinical   data   set  definitions   or   templates   such   as   HL7   CDA   or   ADL   templates,   consisting   of   specific  combinations  of  clinical  element  definitions,  for  a  particular  use  case  or  purpose,  tailored  to  the  needs  of  structured  data  acquisition,  use  and  exchange.    

3. Clinical  vocabularies  such  as  LOINC,  ICD  and  SNOMED  CT,  the  latter  being  increasingly  based  on  formal-­‐ontological  principles  and  logic.      

Terminologies   link   different   (intra-­‐   and   interlingual)   language   expressions   (terms)   to   common  meaning  identifiers   (often  called  concepts).  Ontologies  provide  ordering  schemes   for  domain  entities  by   formally  describing  classes  and  properties.   SNOMED  CT   is  a  hybrid   in   this   sense,  as   it   is  not  only  a   repository  of  terms  but  also  an  ontology  that  describes  and  categorizes  the  clinical  entities  the  terms  denote.  It  is  the  latter,   which   is   of   interest   in   SemanticHealthNet.  We   will   therefore   consider   SNOMED   CT   as   a   clinical  ontology.  We  will  use  the  term  "clinical  vocabulary"  for  all  systems  of  semantic  reference,  whether  formal  or  not.  

For   semantic   interoperability   a   linkage   (binding)   between   information   models   and   ontologies   is  indispensable.   In   the   final   report  of  SemanticHEALTH   it   is   stated  that  sharing  clinical  meaning  does  not   automatically   imply   identical   terms   and   data   structures:   different   physical   or   logical   EHR  representations  may  have  a  common  meaning,   i.e.   they  may  be  semantically  equivalent.  Therefore  

Page 9: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  9  of  64  

the  goal  of  semantic   interoperability   is  to  be  able  to  recognize  and  process  semantically  equivalent  information   homogeneously,   even   if   instances   are   heterogeneously   represented.   The   sources   of  variety   are   different   combinations   of   information   models,   ontologies,   or   isosemantic   encodings  within   the   same   information   model   or   ontology,   e.g.   pre-­‐   vs.   post-­‐coordinated   expressions   in  SNOMED  CT.  Different  encodings  of  the  same  clinical  information  exist,  i.e.,  where  the  same  meaning  is  represented  in  different  vocabularies  to  provide  more  granular  and  precise  meanings.  For  instance,  in  LOINC,  there  are  about  130  entries  for  blood  pressure.    

Nevertheless,  the  main  challenge  we  know  of  in  real  projects  to  do  with  clinical  models  is  not  binding  to  external  ontologies  but  the  implied  ontological  relationships  between  information  items  that  are  currently  only  controlled  by  human  intelligence.    

According  to  the  same  report,   the  use  of  ontologies   like  SNOMED  CT,  together  with  EHR  standards  should  be  embedded  into  a  framework  capable  of  identifying  equivalent  clinical  information  even  if  heterogeneously   represented.   In   order   to   achieve   this   goal,   SemanticHEALTH   recommends   that  formal  ontologies  should  play  an  important  role  to  univocally  represent  the  meaning  of  each  clinical  information   item   and   to  map   semantically   equivalent   expressions  within   and   between   EHRs,   thus  supporting   semantic   interoperability.     Formal   ontologies   consist   of   logical   axioms   that   convey   the  meaning   of   terms   for   a   particular   community3.   The   set   of   logical   axioms   that   define   a  representational   unit   (concept,   class,   represented   by   a   unique   preferred   name)   is   named   its  intensional   definition.   Dependable   exchange   of   clinical   data   requires   that   a   common   intensional  definition  per  representational  unit  exists.  In  this  way,  ontologies  are  based  on  the  understanding  of  the  members  of  a  community  and  help  to  reduce  ambiguity  in  communication4.  

Throughout  life  sciences,  ontology  resources  have  increasingly  been  developed  in  the  last  years,  and  more  and  more  experience   in  ontology   theory  and  engineering  has  been  accumulated   in   the   (bio-­‐)  medical   informatics   community.     OWL5,   the   Web   Ontology   Language,   supported   by   the   Protégé  editor6   and   several   description   logics   reasoners   has   been   established   as   a   de   facto   standard   in  biomedical  ontology  research  and  practice.  It  represents  a  compromise  between  expressiveness  and  computing  power,  thus  encompassing  known  limitations  in  either  aspect.  

1.3 Objectives

SemanticHealthNet   WP4   will   adapt,   modify,   combine,   and   apply   existing   formalisms   rather   than  developing  new  ones.  The  major  outputs  will  be:  

• Specific   information   resources   for   heart   failure,   heart   disease   prevention   and   other  conditions   (in   partnership   with   collaborating   EC   projects),   on   the   basis   of   which   generic  solutions  can  be  built;  

                                                                                                                         3   Bishr   Y,   Pundt  H,   Kuhn  W,  Radwan  M.  Probing   the   concept  of   information   communities   -­‐   a   first   step   toward   semantic  interoperability.  Interoperating  Geographic  Information  Systems.  1999;495:203215.  4  Hakimpour  F,  Geppert  A.  Global  Schema  Generation  Using  Formal  Ontologies.   In:  Proceedings  of   the  21st   International  Conference  on  Conceptual  Modeling.  ER  '02.  London,  UK;  2002.  p.  307-­‐321.  5  OWL  2  Web  Ontology  Language  Document  Overview.  http://www.w3.org/TR/owl2-­‐overview/  6  Protégé.  http://protege.stanford.edu/  

Page 10: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  10  of  64  

• Semantic   resources   and  methodologies   for  meeting   requirements   for   serving   populations,  including  public  health  and  health  service  management  and  research,  intended  for  use  across  heterogeneous  data  sources;  

• A   generalized   methodology   for   harmonizing   the   semantics   between   different   information  models   and   clinical   vocabularies   such   as   terminologies,   ontologies,   and   classification  systems.   This  methodology   is   to   be   applied   and   scaled   in   the   coming   years   to   the   rest   of  health  care,  to  be  co-­‐coordinated  and  governed  by  the  Virtual  Organization;  

• Recommendations  for  further  R&D  by  SDOs  and  research  funding  organizations  such  as  the  EC.  

Page 11: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  11  of  64  

2 Background

2.1 EHR standards

In   the   last   twenty   years  many   countries   have  made  big   research  efforts   towards   Electronic  Health  Records  (EHR).  Several  EHR  standards  such  as  HL7  (CDA)  or  ISO  13606  and  EHR  specifications  such  as  OpenEHR  were  proposed  in  order  to  standardize  the  way  clinical  information  is  represented.      

Each  of   these  EHR  standards  and  specifications  proposes  to  structure  clinical   information  based  on  their  own  reference  model.  Each  model  has  established  a  nested  data  structure   that  organizes   the  content   of   the   clinical   record.   The   granularity   and   semantic   explicitness   of   these   structures   differs  from   one   specification   to   the   other.   For   instance,   in   OpenEHR   there   is   a   predefined   structure   for  instructions  or  observations,  whereas  in  ISO  13606  there  is  a  generic  concept  that  is  used  for  both  of  them.  This  means  that  if  ISO  13606  is  used  then  important  contextual  information,  e.g.  whether  what  is  represented  refers  to  an  observation  or  an  instruction,  will  have  to  be  provided  by  other  resources  such  as  a  clinical  terminologies  or  modelling  patterns  on  the  archetype  level  as  those  will  be  part  of  the  renewed  ISO  13606  standard.    

Moreover,   current   information   models   offer   freedom   to   structure   the   same   clinical   record  information  by  using  a  broad  array  of  different  combinations  of  information  model  entities  and  there  are   many   inbuilt   assumptions   implied   in   the   structural   relationships   established   between   these  information  entities.    

Regardless  of  which  information  model  is  chosen,  it  is  not  sufficient  on  its  own  to  encode  content  in  an   interoperable  way.  A   clinical   vocabulary   is   required   to  express   specific   content  and   information  model   entities   include   the   possibility   to   link   each   of   the   information   model   entities   to   some  standardized  coded  content    (such  as  SNOMED  CT  codes).  However,  the  same  clinical  vocabulary  can  be  linked  to  a  clinical  model  at  different  levels  of  granularity.  All  this  aspects  will  be  later  discussed.  

2.2 SNOMED CT

The  use  of  a  system  of  standardized  semantic  reference  is  essential  for  the  interoperability  of  clinical  information.   Among   many,   SNOMED   CT   –   the   Systematized   Nomenclature   of   Medicine   -­‐   Clinical  Terms  –  is  certainly  the  most  comprehensive  one7.  Originally  developed  by  the  College  of  American  Pathologists  (CAP),  it  is  the  result  of  the  merger  of  SNOMED-­‐RT  (Reference  Terminology)  and  the  NHS  Clinical  Terms  v3  (Read  Codes  or  CTV3).  SNOMED  CT  is  owned,  maintained,  and  further  developed  by  the  IHTSDO  (International  Health  Standards  Development  Organization)8.    

SNOMED   CT   includes   more   than   311,000   concepts,   to   which   terms   in   several   languages   are  connected.  The  concepts  are  uniquely  identified  by  a  concept  ID  (i.e.  the  concept  22298006  refers  to  Myocardial   infarction)   and   embedded   into   a   complex   taxonomy.   Many   concepts   are   further  described   or   defined   using   description   logic   axioms.   SNOMED   CT   can   therefore   be   regarded   as   a  terminology   system   rooted   in   a   formal   ontology,   which  will   allow   integrating   it   into   the   semantic  framework  of  SemanticHealthNet.                                                                                                                              7  http://en.wikipedia.org/wiki/SNOMED_CT  8  http://www.ihtsdo.org    

Page 12: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  12  of  64  

This   will   certainly   provide   significant   advantages   but   there   are   also   known   drawbacks   and   therefore  challenges,   especially   due   to   its   limitation   to   the   EL++   dialect,   a   rather   inexpressive   variant   of   OWL   DL,  which,   e.g.,   lacks   negation   and   universal   restrictions.     Although   SNOMED   CT’s   ongoing   redesign   efforts  increasingly   consider   principles   of   formal   ontology,   its   top-­‐level   categories   and   relations   reflect  more   the  legacy   of   its   predecessors   than   the   precepts   of   formal   ontologies.   In   addition,   SNOMED   CT   also   includes  characteristic  of  information  models.  Particularly  in  the  Findings  and  Situation  hierarchies  we  find  complex  clinical   expressions   like   Chronic   disease   -­‐   treatment   changed,   Family   history   of   radiation   therapy,   or  Suspected   deep   vein   thrombosis   that   refer   to   complex   clinical   situations   and  not   to  medical   processes   or  objects.  These  have  arisen  precisely  because  SNOMED  CT   is  often  used   in   situations   in  which   there   is  NO  information  model,  as  the  legacy  of  UK  primary  care  is  that  a  record  consists  of  a  list  of  codes.    The  upshot  is  that  much  content  that  belongs  in  the  information  model  is  in  the  codes  because  there  was  nowhere  else  to  put  it.  This  might  lead  to  conflicting  semantics,  when  applied  in  the  various  information  models  and  it  brings  us   to  a   central   concern  of  SemanticHealthNet  –   the  notion  of   the  context   in  which  a   clinical   statement   is  made  or  a  code  is  used.  

SemanticHealthNet  proposed  to  be  as  inclusive  as  possible  with  regard  to  all  possibilities  of  encoding,  also   those   SNOMED   CT   concepts   which   represent   lengthy   clinical   statements   rather   than   clinical  entities  themselves.  It  therefore  does  not  take,  primarily,  a  prescriptive  attitude  in  the  sense  that  it  would   recommend   just   not   to   use   certain   SNOMED   CT   concepts,   even   more   correct   alternatives  existing   that   are   preferable   from   an   ontological   point   of   view.   Therefore,   the   interpretation   of  context-­‐laden   SNOMED   CT   concepts   in   a   consistent   way   with   the   EHR   information   models   will  require   of   the   definition   of   some   semantic   patterns   throughout   the   project.   The   SNOMED   CT  hierarchy   Situation   with   explicit   context   will   require   a   detailed   examination.   The   standard   EL++  description  logics  cannot  be  used  for  many  of  the  concepts  contained  therein.  An  alternative  solution  using   richer   description   logics   is   currently   under   progress   within   SemanticHealthNet.   This   is   an  important   aspect   in   the   goal   of   developing   an   overall   viewpoint   on   SNOMED   CT   for  SemanticHealthNet.  

Another   difficulty   is   ambiguity   in   SNOMED   CT.     Numerous   concepts   occur   more   than   once,   with  slightly  different  shades  in  meaning.  E.g.  for  systolic  blood  pressure  SNOMED  CT  offers  two  possible  encodings,   namely   the   observable   entity   (i.e.   72313002   |systolic   blood   pressure|)   or   the   clinical  finding   (i.e.   163030003   |on   examination   -­‐   Systolic   BP   reading|).   According   to   SNOMED   CT,  observables   are   used   to   code   elements/entities,   which   a   value   can   be   assigned,   while   findings  represent   the   result   of   a   clinical   observation,   assessment   or   judgement.   Clinical   models   bind  information   entities   to   observables   or   clinical   findings   in   an   idiosyncratic   way   and   this   hampers  semantic  interoperability.  Therefore  it  is  necessary  to  provide  some  guidelines  and  general  principles  of   their  use.  The   IHTSDO  Observable  Entities  SIG   from   IHTSDO   is  already   studying  how   to   remodel  them  in  order  to  avoid  these  problems.    

Important  performance   issues  matter  when   reasoning   is  done.    Reasoners   such  as  Snorocket  or  ELK  have  been  optimized  for  large-­‐size  ontologies  like  SNOMED  CT  and  provide  high-­‐performance  implementation  of  the  polynomial-­‐time  classification  algorithm  for  EL++.    Snorocket,  e.g.,  classifies  SNOMED  CT  in   less  than  a  minute  and  has  been   included   in  the   IHTSDO  Workbench  software.  The  possibility  of  extracting  value  sets  for  specific  use  cases  will  also  be  studied  in  order  to  make  feasible  the  use  of  SNOMED  CT  in  the  EHR.  

 

Page 13: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  13  of  64  

3 The Semantic Interoperability (SIOp) challenge

According   to   the   SemanticHEALTH   report,   full   semantic   interoperability   consists   of   the   ability   of  information  systems  to  automatically  access,  interpret  and  present  all  necessary  medical  information  required  and  located  in  another  system.  Neither  language  gaps  nor  technological  differences  should  prevent   the   receiver   system   to   seamlessly   integrate   the   received   information   into   the   local   record  thus  providing  a  complete  picture  of  the  patient’s  health  as  if  it  would  have  been  collected  locally.  

This  SIOp  definition  is  overly  ambitious.  In  practice  we  will  have  to  accept  limitations  to  the  degree  of  SIOp   that   can   be   achieved.   It   is   implausible   that   we   achieve   less   ambiguous   communication   via  information   systems   than   we   can   face-­‐to-­‐face   communications.   Misunderstandings   of   words   and  descriptions  are  inevitable.  The  intention  to  send  EHR  data  from  one  system  and  to  insert  into  a  very  different  one  and  process  them  homogeneously  is  rather  unrealistic.  Therefore  a  compromise  to  the  desired  level  of  SIOp  to  obtain  for  different  use  cases  will  have  to  be  found.  

3.1 SIOp Scenarios

There   are   at   least   four   kinds  of   SIOp   scenarios:   (1)   data   acquisition   and   communication   at   patient  level   for   routine  care,   (2)  data  acquisition  and  communication  at  patient   level   for   clinical   trials,   (3)  statistical   aggregation   of   patient   information   (1   or   2)   for   research   purposes,   (4)   aggregation   for  health   management   and   health   service   remuneration.   The   degree   of   detail   required   for   each   is  different,  although  the  technical  issues  may  be  similar.    

SemanticHEALTH  had  investigated  which  are  the  most  promising  areas  according  to  the  costs  and  benefits  for   different   degrees   of   SIOp   and   different   purposes,   for   shorter-­‐term   investment.   For   instance,   the  achievement  of  partial  SIOp  for  a  minimal  data  set  is  expected  to  yield  high  added  value  at  moderate  cost.  A  high  degree  of  SIOp  of  EHRs  for  direct  patient  care  purposes  would  be  very  costly,  but  could  also  yield  very  significant   benefits.   For   the   purposes   of   public   health   research,   striving   for   partial   SIOp   should   come   at  moderate   costs   and   yield   high   benefits.   Finally,   a   high   degree   of   SIOp   for   the   purpose   of   research   and  knowledge  sharing  would  yield  very  significant  benefits,  albeit  at  high  costs.  

With   regards   to   costs   SemanticHEALTH   also   stated   that   the   implementation   and   the   utilisation   are  main  issues  to  be  considered,  being  this  last  one  critical  for  the  realization  of  benefits.  Although  it  has  long  been  the  goal  that  all  data  should  be  collected  in  the  course  of  routine  care  the  experience  has  suggested  limits  due  to  time  and  financial  constraints  that  may  make  it  impractical  to  collect  data  in  the  detail  required  using  the   present   systems.   Some   other   costs   will   include   the   local   customization   of   terminologies,   change  management  that  requires  additional  training  and  education,  and  the  harmonisation  of  data  collections.  The  commitment  of  large  vendors  to  interoperable  solutions  (except  HL7v2,  LOINC,  DICOM)  has  been  limited.  

SemanticHEALTH  concluded  that  the  costs  of  SIOp  are  justified  by  the  benefits,  first  of  all  the  speed  and  accuracy  of  accessing  meaningful  health   related  data.  Key  aspects  pertain   to   the  medical   staff  saving   work   time,   gaining   efficiency   and   clinical   outcomes   through   better   access   to   patient  information   across   disciplines,   care   settings   and   countries.   A   special   focus  must   be   put   on   patient  safety.  Other  benefits  will  be  the  strengthening  of  the  patient  role  in  the  doctor-­‐patient  relationship,  the  decrease  of  the  reaction  time  to  global  threats  such  as  pandemics,  or  the  greater  confidence  in  the  information  used  for  audit,  planning  and  performance  management.  

Page 14: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  14  of  64  

3.2 SIOp and Information models

EHR  standards  had  been  devised  to  structure  and  organize  clinical   information   in  a  way  that  would  be  easy  to  communicate  and  process.  But  they  allow  many  different  ways  of  representing  the  same  clinical   information,   not   only   between   different   information   model   standards   but   also   within   the  same   standard.   The   binding   of   information   entities   to   clinical   vocabularies   is   meant   to   provide  explicit   semantic   to   the   clinical   content   represented   by   these   structural   models.   Bindings   were  developed   to   comply   with   different   kinds   of   vocabularies,   and   clinical   vocabularies   can   be   used  within   multiple   different   information   model   frameworks.   There   are   two   consequences.   Firstly,  present   EHR   standards   include   their   own   vocabulary,  with  mostly   hidden   (non  explicit)   ontological  assumptions.   Secondly,   vocabularies   include  context-­‐laden  concepts,  which   correspond   to   complex  clinical   statements   rather   than   to   terms.   As   a   result   there   is   a   zone   of   overlap   between   EHR  information  models  and  clinical  vocabularies,  which  provokes  that  exist  different  representations  for  exactly  the  same  clinical  information.  This  is  one  of  the  main  barriers  to  SIOp,  i.e.  the  lack  of  a  strict  separation   between   the   information   represented   by   clinical   vocabularies   and   by   EHR   information  models.    

As  a  very  simple  example  of  this  overlapping  zone  Figure  (Figure  3-­‐1)  shows  three  representations  of  the   statement   "cancer   confirmed".   In   the   upper   left   part   it   is   represented   by   using   an   EHR  information  model  (e.g.  OpenEHR)  and  by  means  of  two  information  entities:  one  representing  the  disease  diagnosed   (cancer)   and  other   representing   the   status  of   the  diagnosis   (confirmed).  On   the  other   hand,   in   the   right   upper   part   it   has   been   represented   using   the   single   SNOMED  CT   concept  cancer  confirmed.  But,  does  it  alter  anything  of  the  nature  of  a  cancer  to  "be  confirmed"?  The  answer  is  no;  what  can  be  confirmed  is  its  diagnosis,  i.e.  the  information  that  is  referring  to  the  SNOMED  CT  concept.  Finally,   in   the  bottom  part  of   the  same   figure,   the  same  statement  has  been  represented  using  OpenEHR  information  model  entities  (for  the  diagnosis  and  its  status)  and  SNOMED  CT  (for  the  disease  diagnosed).  Note  that  there  is  no  explicit  semantic  link  between  the  information  entities  that  represent  the  diagnosis  and  its  status.  

confirmed

cancerCancer Diagnosis,confirmed

Terminology concept Information entity

confirmed

cancer

CancerTerminology concept

EHR$Informa,on$Model$(openEHR)$ Terminology$(SNOMED$CT)$

EHR$Informa,on$Model$/$Terminology$

395099008$|cancer$confirmed|$

 

Figure  3-­‐1  Information  model  &  clinical  vocabulary  representing  the  statement  "cancer  confirmed".  Top  left:  all  information  is  in  the  information  model.  Top  right:  all  information  is  in  a  

SNOMED  CT  concept.  Bottom:  the  information  model  represents  the  epistemic  part  of  the  statement  and  refers  to  SNOMED  CT,  which  represents  the  ontological  part.    

 

Page 15: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  15  of  64  

Different   clinical  models   that   represent   the   same   semantic   content  but   in   a   different  way   (usually  different  structure)  are  named  isosemantic  models.  According  to  the  SemanticHEALTH  roadmap,  for  achieving   SIOp   both   (information)   structure   and   vocabulary   are   needed.   It   means   that   it   is   not  enough   with   a   set   of   codes   without   any   information   structure   and   vice-­‐versa.   Thus,   the   SHN  challenge   consists   of   detecting   the   information   that   is   semantically   equivalent   among   isosemantic  models.   This   will   require   to   develop   general   principles   and   guidelines   to   properly   identify   which  things  have  to  be  represented  by  EHR  information  models  and  which  ones  by  clinical  vocabularies,  so  that  information  is  represented  in  an  unambiguous  way.  These  general  principles  and  guidelines  will  be  reflected  in  the  semantic  resources  (ontologies)  developed.  

Information   models   represent   the   entities   in   which   information   is   recorded.   These   entities   are  (immaterial)  information  objects  like  documents,  headings,  sections,  entries,  etc.  They  represent  the  contextual   and   epistemic   aspects   in   the   EHR   and   they   usually   provide   answers   to   the   questions  "where"   (e.g.   healthcare   facility),   "when"   (e.g.   date   time),   "who"   (e.g.   clinician)   and   "how"   (e.g.  clinical   process),   whereas   the   referent   in   the   real   world   is   referred   to   by   "what"   (e.g.   clinical  condition)9  questions.    

This  brings  us  to  a  general  theory  of  reference10.  In  human  discourse,  but  also  in  representational  artefacts  like  pictures,  the  existence  of  some  specific  information  entity  (an  image,  a  sentence)  about  a  type  T  does  not  necessarily   imply   the  existence  of  any   instance  of  T   in   the  world.  Examples  of   this  abound   in  medical  documentation.  Doctors  talk  about  details  of  a  planned  operation  without  knowing  whether  this  operation  will  ever  take  place.  They  prescribe  a  drug  regime  without  knowing  whether  the  patient  will  ever  take  the  medicines.  A  child  is  suspected  of  bacterial  meningitis  and  is  treated  as  such  although,  retrospectively,  there  was   only   a   viral   infection.   Nevertheless,   the   medical   concept   of   meningitis   is   present   in   the   physician's  deliberations  just  as  it  is  documented  and  coded  in  the  record,  albeit  in  the  context  of  suspicion.    

Information   entities   as   used   in   clinical   documents   do   not   necessarily   refer   to   entities   of   proven  existence  on   the   side  of   the  patient.  On   the  one  hand   they  are  about   states  of  human  knowledge  (e.g.   what   a   health   professional   thinks,   hypothesizes,   plans),   and   subsequent   speech   acts   that  manifest   themselves   in   record  entries  with  words   like   "suspected",   "confirmed",   "ordered"  etc.  On  the  other  hand  there  are  clinical  codes  that  denote  types  of  clinical  entities  (concepts).  SNOMED  CT  often  provides  intensional  definitions  for  a  type  or  concept11,  whereas  its  extension  is  the  class  of  all  particular  entities  of  this  type.  In  SNOMED  CT,  e.g.  254701007|basalioma|  represents  the  class  of  all  (individual)  basalioma  and  the  axioms  attached  convey  invariant  features  for  an  entity  to  qualify  as  a  basalioma,  e.g.   that   it   is   located  at   the   skin.  However,  we   should  be  able   to   talk  about  basalioma,  without  referring  (or  without  knowing  whether  we  refer)  to  any  particular  entity  in  the  extension  of  the  abovementioned  concept.    

It   is   tempting   to   draw,   in   theory,   a   clear   line   between   these   two   types   of   semantic   artefacts,  viz.  models   of   information   and  models   of   the   domain.   As  we   have   demonstrated   clinical   vocabularies  often  blend  ontological  with  epistemic  aspects,  as  shown  with  the  SNOMED  CT  concept  395099008  |Cancer   confirmed   (situation)|  where   cancer   is   a  disease   (i.e.   a   clinical   entity),  whereas   the  whole  statement  is  a  diagnosis  (the  information  that  it  is  confirmed  being  an  attribute  of  the  diagnosis).  It  is  even  more  apparent  with  a  concept  such  as  160244002  |No  known  allergies  (situation)|.  It  exists  due  

                                                                                                                         9  See  also  related  discussions  in  the  CIMI  and  SIAMS  projects:      http://informatics.mayo.edu/CIMI/images/c/c6/GF_EN13606_SIAMS_for_CIMI.pdf    10  http://plato.stanford.edu/entries/reference/  11  We  do  not  distinguish  between  "Type",  "Class",  and  "Concept"  in  this  text.    

Page 16: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  16  of  64  

to   coding   convenience,  whereas   from  a  purist   point   of   view,  only   the   clinical   entity  allergy   should  come   from   a   clinical   vocabulary,   and   the   epistemic   "envelope"   should   be   represented   by   an  information  model.  

In  SNOMED  CT  both  concepts  are  placed  under  the  Situation  with  Explicit  Context  concept  model  category.  Here,   concepts   include  epistemic   information   (i.e.  what   is   known  about   a   situation)   such  as   "confirmed",  mixed   with   contextual   information   such   as   the   temporal   reference   (e.g.   "past"),   and   the   reference   to   a  clinical   concept,  which  may   or  may   not   be   instantiated   in   the   particular   case   (e.g.   "cancer"   or   "allergy").  Therefore,   as   earlier   mentioned   (see   Section   2.2),   this   segment   of   SNOMED   CT   will   require   of   a  reinterpretation  in  order  to  use  their  terms  in  a  consistent  way  within  the  EHR.  

In  practice,  the  line  between  both  kinds  of  entities  is  difficult  to  draw  because  SNOMED  CT  and  other  ontologies   and   terminologies   provide   concepts   that   include   information   entity   aspects,   but   also  information   model   entities   provide   some   implicit   meaning   that   should   be   represented   using   the  clinical  vocabulary  (see  Figure  3-­‐1).    

Examples   are   OBSERVATION   or   EVALUATION   from   the   openEHR   or   HL7   information   models.   An  example  of  information  models  including  both  epistemic  and  ontological  information  is  shown  below  (see  Figure  3-­‐2)  with  an  excerpt  from  the  OpenEHR  diagnosis  archetype12:  

EVALUATION[at0000.1] matches { -- Diagnosis data matches { ITEM_TREE[at0001] matches { -- structure items cardinality matches {1..*; ordered} matches { ELEMENT[at0002.1] matches { -- Diagnosis value matches { DV_CODED_TEXT matches { defining_code matches {[ac0.1]} -- Any term that 'is_a' diagnosis }}} ELEMENT[at0.32] occurrences matches {0..1} matches { --Status value matches { DV_CODED_TEXT matches { defining_code matches { [local:: at0.33, -- provisional at0.34] -- working }}}} ... CLUSTER[at0011] occurrences matches {0..*} matches { -- Location items cardinality matches {1..2; ordered} matches { ELEMENT[at0012] occurrences matches {0..1} matches { -- Body Site value matches { DV_CODED_TEXT matches { defining_code matches {[ac0000]}-- Any term that describes a body site }}}}} ...

Figure  3-­‐2  Excerpt  of  the  OpenEHR  diagnosis  archetype The   information   model   entity   "ELEMENT[at0002.1]"   and   the   information   model   entity  "CLUSTER[at0011]"   should   together   specify,   possibly   by  means   of   reference   to   classes   in   a   clinical  ontology,   the   focus   condition   of   the   diagnosis.   On   the   other   hand,   the   entity   "ELEMENT[at0.32]"  specifies  the  epistemic  status  of  the  diagnosis,  i.e.  whether  it  is  a  provisional  or  a  working  diagnosis.  

                                                                                                                         12  OpenEHR  Clinical  Knowledge  Manager:  http://openehr.org/knowledge/.    

Page 17: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  17  of  64  

Thus,  as  in  the  case  of  clinical  vocabularies  mixing  representation  of  clinical  entities  with  contextual  and   epistemic   information   described   above,   also   in   information  modelling   the   boundary   between  representation  of  clinical  and  information  entities  is  unclear.  

This  is  a  known  problem  that  has  already  been  addressed  in  other  works.  The  HL7  community,  as  a  result  of  the   Terminfo   Project13,   provided   a   guide   for   the   use   of   SNOMED   CT   in   the   HL7   V3   Clinical Statement  pattern.  Sundvall  et  al.14,  highlighted  the  difficulty  to  bind  clinical  information  models  to  clinical  vocabularies  and   presented   a   tool   that   supports   the   binding   of   openEHR   archetypes   to   SNOMED  CT.   The  UK  National  Health  System  (NHS)  has  also  developed  a  guide  on  terminology  binding  in  the  context  of  the  Logical  Record  Architecture   (LRA)15   following  an  EN13606  based   logical  model.   In   the   ISO  DTS  13972  on  Detailed   clinical  models16,  characteristics  and  processes,  guidance  is  given  to  define  a  concept  as  represented  in  a  detailed  clinical   model   using   terminology   clinical   vocabulary,   and   further   how   to   link   specific   data   elements   and  specific  values  to  codes.  Principles  of  modelling  clinical  information  are  suggested  by  SIAMS17.  This  project  aims   at   the   creation   of   standardised   generic   semantic   patterns,   in   order   to   provide   harmonization   with  other   resources   such   as   ContSys   (CEN/ISO   System   of   Concepts   for   Continuity   of   Care),   HISA   (Health  Information  Services  Architecture),   coding   systems,   value   sets,   ontologies   and  archetypes.  More   recently,  the  Mayo  Clinic,  in  the  context  of  the  SHARPn  project  on  the  secondary  use  of  EHR  data  has  developed  CEM  (Clinical   Element   Model)18,   and   as   CIMI   (Clinical   Information   Model   Initiative)19,   both   aim   to   provide   a  common   format   for   the   representation  of  clinical   information   in  a  way   that   is   semantically   interoperable,  what  implies  to  provide  a  method  for  doing  the  terminology  /  ontology  binding.    

To   identify   clinical   information   independently   of   how   it   is   represented   is   a   hard   task,   but   not  impossible.   For   instance,   comparing   different   information   models   that   were   built   to   collect  information   on   the   same   clinical   topic,   e.g.   blood   pressure,   reveals   that   several   aspects   of   the  information   remain   consistent,   independent   of   the   modelling   approach.   These   consistent  components   are   the   reference   to   the   clinical   topic   (e.g.   blood   pressure),   the   explicit   listing   of   the  separate  data  elements   (systolic  blood  pressure,  diastolic  blood  pressure,  average  blood  pressure),  and   influencing   factors   (such   as   single   data   elements   for   body   position,   level   of   exercise,   body  location  for  measurement,  instrument  used),  value  set  expression  (such  as  standing,  sitting  and  lying  for  body  position)  and  precise  code  bindings  to  these  specifics.  In  addition  explicit  relationships  can  be   defined,   as   are   data   types   for   observations   and   more.   All   these   information   components   are  available   in   specific   OpenEHR   and   13606   archetypes,   HL7   templates,   and   Detailed   Clinical   Model  instances.  

We  prefer  to  call  this  "information  on  a  topic"  and  not  "concept".  Statements  like  "Archetypes  are  used  in  openEHR   to   model   clinical   concepts"20   are   misleading.   The   meaning   of   concepts   such   as   Arterial   Blood  Pressure  is  represented  in  ontologies,  e.g.  that  it  is  a  pressure;  that  it  is  a  property  of  blood  in  the  arteries,  etc.  A  clinical  model  on  blood  pressure  defines  the  data  elements  required  to  collect  information  around  a  clinical  concept  such  as  blood  pressure,  according  to  a  given  clinical  context.    

                                                                                                                         13  Using  SNOMED  CT  in  HL7  Version  3;  Implementation  Guide,  Release  1.5:      http://www.hl7.org/v3ballot/html/infrastructure/terminfo/terminfo.html  14  Sundvall  E,  Qamar  R,  Nystrom  M,  Forss  M,  Petersson  H,  Karlsson  D,  et  al.  Integration  of  tools  for  binding    archetypes  to  SNOMED  CT.  BMC  Medical  Informatics  and  Decision  Making.  2008;8(Suppl1):S7  15  Logical  Record  Architecture  for  Health  and  Social  Care:      http://www.connectingforhealth.nhs.uk/systemsandservices/data/lra  16  ISO/CD  TS  13972  Health  informatics  -­‐-­‐  Detailed  clinical  models,  characteristics  and  processes  17  http://informatics.mayo.edu/CIMI/images/c/c6/GF_EN13606_SIAMS_for_CIMI.pdf  18  SHARPn  project:  http://informatics.mayo.edu/sharp/  19  CIMI  initiative:  http://informatics.mayo.edu/CIMI/  20  http://en.wikipedia.org/wiki/OpenEHR    

Page 18: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  18  of  64  

SemanticHealthNet   is,   at   this   stage,  mostly  descriptive  but   less  prescriptive.   Instead  of   introducing  new   models   it   proposes   a   formal-­‐ontological   framework   that   can   be   used   to   logically   describe  existing  structures  and  then  to  provide  SIOp  between  different  representations  of  the  same  clinical  information  by  using  different  but  isosemantic  models.  Being  descriptive  does  not  prevent  to  provide  recommendations   to   Standard   Development   Organizations,   especially   if   the   current   approaches  address  patient  safety  issues.  Not  a  new  "standard"  is  defined  but  a  semantic  layer  is  specified  that  should  be  able  of  mediating  among  clinical  models  and  clinical  vocabularies,  which  will  require  of  the  definition  of  semantic  patterns.  This  does  not  mean,  however,  that  SHN  will  not  issue  good  practice  recommendations  in  order  to  prevent  repeating  the  mistakes  of  the  past.  

Models  that  will  be  created  within  SemanticHealthNet  are  therefore  intended  as  exemplars.  They  are  built  to  demonstrate  the  feasibility  of  the  SemanticHealthNet  approach,  which  attempts  to  make  the  ontology   model   binding   explicit   by   adhering   to   strict   modelling   principles   grounded   in   formal  ontologies.  We  consider   the  accumulated  experience  on  ontological  modelling  and  upper-­‐ontology  creation   as   a   useful   resource.   Our   hypothesis   is   that   strict   adherence   to   these   principles   would  reduce,  but  not  eliminate,  the  abovementioned  representational  variety  (see  Section  5).  

3.3 SIOp and SNOMED CT Situation With Explicit Context

As  mentioned  in  Section  2.2,  SemanticHealthNet  proposed  to  be  as  inclusive  as  possible  with  regard  to   all   possibilities   of   encoding.   This   includes   keeping   all   some   SNOMED   CT   hierarchies   within   its  scope.   The   consistent   use   of   context-­‐laden   SNOMED  CT   concepts   (from   the   Situation  with   explicit  context   hierarchy)   within   information   models   is   currently   subject   to   discussions   within   the  consortium.  The  SNOMED  CT  documentation  states  that  a  concept  includes  context  information  if  its  name  explicitly  represents  information  that  might  otherwise  be  represented  by  another  less  context-­‐rich   concept   in   a   particular   structural   placement   within   a   record.   If   context   is   embedded   in   the  meaning   of   a   concept   then   context   elements   typically   alter   the   meaning   in   such   a   way   that   the  resulting   concept   is   no   longer   a   subtype   of   the   original   one.   In   order   to   represent   these   kinds   of  concepts  they  propose  a  context  model.  For  example,  the  model  for  Skin  Cancer  Unknown  would  be  expressed  as  followed:  

Skin  Cancer  Unknown  ISA    Situation-­‐with-­‐explicit-­‐context  

[SubjectRelationshipContext]  Subject  of  record  [AssociatedFinding]  Skin  cancer  [TemporalContext]  Current  or  specified  time          [FindingContext]  Unknown  

 If   instead  we  would  like  to  say  that  there  is  No  Skin  Cancer,  the  value  of  [FindingContext]  has  to  be  changed   to   Known   absent.   As   it   can   be   observed,   in   the   same   SNOMED   CT   concept   epistemic  information   (what   is   known   about   the   situation),   such   as   Suspected   or   Changed,   is   mixed   with  contextual  information  (e.g.  the  temporal  reference),  and  the  reference  to  a  clinical  concept,  which  may  or  may  not  be   instantiated   in   the  particular  case.  As  much  as   this  may  seem  justified,  at   least  pragmatically,   it  becomes  problematic  when   the  above   frame-­‐like   representation   is   translated   into  description  logics,  following  the  official  conversion  routine21:  

                                                                                                                         21  We  use  Manchester  Syntax.  Classes  (Concepts)  are  written  by  Italics,  object  properties  (relations)  by  Bold  face  

Page 19: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  19  of  64  

Skin  Cancer  Unknown  subClassOf    Situation  with  explicit  context  and  

SubjectRelationshipContext  some  Subject  of  record  and    AssociatedFinding  some  Skin  cancer  and    TemporalContext  Current  or  specified  time  and    FindingContext  some  Unknown    

As  existentially  quantified  relations  are,  besides  taxonomic  (IsA)  links,  the  only  way  EL++  offers  to  link  two  SNOMED  CT  concepts,  unintended  interpretations  arise,  such  as,  e.g.,  that  for  each  instance  of  the  concept  (each  record  entry)  Skin  Cancer  Unknown  there   is  at   least  one  instance  of  Skin  Cancer.  This  is  an  obvious  contradiction  to  the  intended  meaning.  

Page 20: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  20  of  64  

4 Ontologies and Description Logics (DL)

Ontologies  

Increasingly   clinical   vocabularies,   particularly   SNOMED  CT   and   the   upcoming   ICD-­‐11,   are   based   on  ontologies.  Computer  scientists  envision   (formal)  ontologies  mostly  as  explicit   formal  specifications  of   an   abstract,   simplified   view   of   the   world,   a   so-­‐called   conceptualization,   which   is   bound   to   a  specific  purpose22,  driven  by  requirements  for  intelligent  systems.  More  recently  it  has  been  stressed  that   ontology   building   should   strive   at   axiomatically   describe   objective   reality   beyond   a   specific,  application-­‐oriented   realm,  based  on   the  philosophical  discipline  of  Ontology  as   the   study  of  what  there  is23.    

In   the   last   decade,   the   term  Applied  Ontology24   has   been   increasingly   used   for   interdisciplinary   ontology  research   and   engineering   projects   that   integrate   the   computer   science   and   philosophy   perspectives.    Ontological  analyses  ("what  is  x?")  need  to  be  distinguished  from  epistemological  analysis  ("how  do  I  know  that  x  is?").  The  Semantic  Web  has  established  to  create  standards  for  meaningful  exchange  of  information,  thus  mainly  contributing  to  the  creation  of  standards  like  RDF(S),  SKOS,  and  OWL.  Among  them,  only  OWL  fulfils  our  requirements  for  using  formal  ontologies  within  SHN.    There  are  several  philosophical  tendencies  regarding  the  commitment  to  reality.  One  approach,  Scientific  Realism  has  been  very  actively  propagated  by  ontologists   like  Barry  Smith25.  To  date,  many  biomedical  ontologies  subscribe,  more  or   less   strictly   to   this  approach,   some   aspects   of   which   are   easily   reconciled   with   the   thinking   of   medical   practitioners   and  biomedical  researchers.    

In  SemanticHealthNet  we  follow  the  line  of  Applied  Ontology  with  the  purpose  of  providing  semantic  interoperability  to  clinical  information.  This  requires  to  learn  from  all  these  different  interpretations  and  to  apply  this  knowledge  to  achieve  our  purpose.    

Representation  

There   are   several   languages   used   in   ontology   engineering.   The   most   popular   one   is   OWL   (Web  Ontology   Language),   recommended   by   the   W3C   as   ontology   language   for   the   Web,   based   on  Description   Logics   (DL),   which   are   subsets   of   first-­‐order   logics.   OWL   allows   for   the   use   of   DL  reasoners  such  as  Fact++,  Pellet  or  Hermit.  There  are  two  OWL  versions,  OWL  1  and  OWL  2.  We  will  refer  here  to  OWL  2  DL  in  general  and  OWL-­‐EL  in  particular.  The  latter  one  is  used  by  SNOMED  CT.    As  it  provides  polynomial  time  for  reasoning,  it  easily  scales  up  to  huge  ontologies  like  SNOMED  CT.    However,  it  lacks  negation  and  value  restrictions.    The  practical  scalability  of  reasoning  is  crucial  for  the  adoption  of   semantic   technologies   in   real   settings.  More  and  more  expressive  ontologies  have  been  built  in  the  last  years  and  current  DL  reasoners  cannot  efficiently  reason  with  them.      

 

 

                                                                                                                         22  Gruber  T.  Toward  principles  for  the  design  of  ontologies  used  for  knowledge  sharing.    International  Journal  of  Human  Computer  Studies,  43(5-­‐6):907-­‐928,  1995.  23  Quine  W.  ”On  What  There  Is”,  Review  of  Metaphysics  2:  21-­‐38.    Reprinted  in  From  a  Logical  Point  of  View  (Cambridge:  Harvard  University  Press,  1953).  pages  1-­‐19,  1948.  24  Gruber,  T.  (2008).  Liu,  Ling;  Özsu,  M.  Tamer.  eds.  Ontology.  Springer-­‐Verlag.  ISBN  978-­‐0-­‐387-­‐49616-­‐0.  25   Barry   Smith   and   Werner   Ceusters,   Ontological   Realism   as   a   Methodology   for   Coordinated   Evolution   of   Scientific  Ontologies,  Applied  Ontology,  5,  2010,  139–188.  

Page 21: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  21  of  64  

Upper  level  Ontologies  

Upper   level  ontologies  provide  a  basic,  mostly  domain-­‐independent  set  of  categories,  relations  and  axioms,  which  are  easily  reusable  across  specific  domain  applications.  Without  them,  if  we  give  one  modelling  task  to  different  people  the  resulting  representations  will  be  heterogeneous  and  of  limited  interoperability.   Upper   level   ontologies   are   meant   to   address   this   problem   by   standardising   the  development   process   and   restricting   the   choices   of   ontology   engineers.   Examples   of   upper   level  ontologies   are   BFO   (Basic   Formal   Ontology)26,   DOLCE   (Descriptive   Ontology   for   Linguistic   and  Cognitive   Engineering)27,   GFO   (General   formal   ontology)28   or   SUMO   (Suggested   Upper   Merged  Ontology)29.  Under  upper   level  ontologies,   top-­‐domain  ontologies   further  elaborate  an  upper   level  ontology  to  a  specific  domain.  BioTop30  is  an  example  for  this.  The  rationale  of  its  creation  had  been  to   constrain   upper   level   categories   by   a   set   of   canonical   relations,   derived   from   the  OBO  Relation  Ontology  (RO),  at  a  time  where  BFO  was  restricted  to  a  mere  taxonomy  of  mutually  disjoint  classes,  without   including   any   relations   and   related   axioms.   In   SemanticHealthNet  we  will   use   its   reduced  version,  BioTopLite31,  with  the  focus  of  representing  clinical  information  entities.  

The   uppermost   level   of   BioTopLite   exhibits   ten   mutually   disjoint   top   categories:   Condition,   Disposition,  ImmaterialObject,   MaterialObject,   InformationObject,   Quality,   Role,   ValueRegion,   Process   and   Time.  BioTopLite   borrows   relations   (OWL   object   properties)   from   the   RO,   viz.   proper-­‐part-­‐of,   located-­‐in,   has-­‐participant,   but   it   extends   this   scope   by   additional   relations   such   as   has-­‐realization,   inheres-­‐in   etc.   It  contains  numerous  axioms,   such  as  domain/range  restrictions  of  object  properties,   relationship  chains,  as  well  as  existential  and  value  restrictions  at  the  level  of  class  definitions.  BioTopLite  users  are  recommended  not  to  add  new  object  properties,  as  the  existing  ones  are  considered  to  be  exhaustive.  Thus,  the  building  of  domain   ontologies   under   BioTopLite   heavily   constrains   the   freedom   of   the   ontology   engineer,   which   is  intended,  as  this  warrants  a  higher  predictability  of  the  domain  ontologies  produced.  As  many  spontaneous  design   decisions   bear   the   risk   of   violating   constraints,   it   is   therefore  mandatory   to   classify   the   ontology  (using  DL  classifiers  like  Fact++  or  HermiT),  even  after  minor  modification  steps.  

Maintenance  and  interoperability  issues  

The  medical   domain   is   constantly   evolving  which   requires   changes   and   adaptations   of   ontologies.  New   concepts   are   added   and   existing   ones   are   retired.   Versioning   mechanisms   will   therefore   be  necessary   to   deal   with   these   changes.   Specific   techniques   and   tools   would   have   to   be   defined   to  make   reliable   use   of   ontologies.   Resolvable,   persistent   identifiers   for   classes   and   relations   in   an  ontology  (URIs)  are  an  important  mechanism  to  assure  interoperability  across  version  changes.  In  the  life  sciences  domain  there  are  initiatives  such  as  Identifiers.org32  for  providing  persistent  URIs  used  to  identify  data  for  the  scientific  community.    Another  important  issue  will  be  how  to  establish  links  between  the  clinical  model  and  the  ontology  communities,   which   allow   adding   new   content   to   ontologies   in   reliable   way,   avoiding   local  definitions.  Much  experience  on  this  has  been  collected  in  the  OBO  Foundry  project  with  ontologies  like  the  Gene  Ontology  using  a  request  tracker  mechanism33.      

                                                                                                                         26  http://www.ifomis.org/bfo    27  http://www.loa.istc.cnr.it/DOLCE.html    28  http://www.onto-­‐med.de/ontologies/gfo/    29  http://www.ontologyportal.org/    30  http://www.imbi.uni-­‐freiburg.de/ontology/biotop/    31  http://purl.org/biotop/biotoplite.owl    32  http://identifiers.org    33  http://sourceforge.net/tracker/?group_id=36855&atid=440764  

Page 22: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  22  of  64  

5 Shared logical framework based on OWL DL ontologies

5.1 Information vs. clinical reality

In   Section   3   the   lack   of   a   strict   separation   between   information   and   clinical   entities   has   been  identified   as   one   of   the  main   barriers   to   SIOp.   In   this   section  we  will   introduce   the   shared   logical  framework  we  propose  in  order  to  clearly  establish  the  boundary  between  both.  We  will  show  how  the  framework  proposed  will  allow  detecting  semantic  equivalent  information  from  different  clinical  models.  

The   framework   is   based   on   the   following   assumption:   Clinical   information   exists   as   soon   as   it   is  created,  whereas  the  existence  of   the  referent  can  mostly  not  be  taken  for  granted:  Diagnoses  are  often   hypothetical,   findings   may   be   error-­‐prone,   symptoms   biased.   Diagnostic   statements   may  contradict  themselves,  although  the  underlying  clinical  reality  is  the  same.  Therefore  we  do  not  claim  the   (material)   existence   of   the   referent   of   a   statement   in   a   clinical   model.   This   is   exemplified   by  Figure  5-­‐1.  The  rectangles  divide  the  realm  of  Information  (healthcare  context)  and  the  realm  of  the  clinical  reality,  here  called  the  Possible  Patient  Scenario   (described  by  ontology  classes),   in  order  to  make   clear   that   this   world   can   only   be   possibly   grasped   by   the   statements  made   in   an   EHR.   The  outermost   orange   box   (i.e.   information)   provides   all   the   health   care   information   related   to  healthcare   delivery   stakeholders   (e.g.   the   clinician),   the   healthcare   facility,   and   the   times   of  consultation  and  recording.   It  also   includes  the  representation  of  an  EHR  excerpt  defined  to  record  the   past   history   of   a   patient   and   their   clinical   diagnosis   by   using   information   entities   according   to  some  EHR  standard  (e.g.  openEHR).    The  innermost  green  box  (Possible  Patient  Scenario)  consists  of  clinical  concepts  or  types  (e.g.  cancer,  diabetes,   lung,  etc.),  as   introduced  by  a  clinical  ontology   like  SNOMED  CT.  This  means  the  formal  description  of  things  described  by  medical  terms,  as  the  possible  scenario  of  the  patient  and  the  clinical  situations  in  which  he  or  she  participates.    

In   the   present   clinical  models   this   information   is   often   represented   only   by  means   of   information  entities  or  codes  from  a  clinical  vocabulary,  or  by  arbitrary  combinations  of  the  two.  Our  hypothesis  is   that   the   use   of   the   shared   logical   framework   proposed   should   provide   an   unambiguous  representation  of  clinical  information  (i.e.  unambiguous  way  of  relating  the  different  kind  of  entities).  There   are   some   experiences   of   this   in   the   context   of   the   Detailed   Clinical  Modeling   approach,   in  which  the  medical  context,  data  element  specification  and  terminology  /  ontology  binding  have  been  combined34.  

                                                                                                                         34  ISO  DTS  13972.  Health  informatics  -­‐-­‐  Detailed  clinical  models,  characteristics  and  processes.  Geneva,  ISO.  

Page 23: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  23  of  64  

 

Figure  5-­‐1  Information  entities  /  Ontology  (possible  patient  scenario)  

Our  approach  consists  of  developing  a  Common  Model  of  Meaning  (CMM)   in  which  the  distinction  between   information  /  vocabulary   (ontology,   terminology)   is  clearly   identified,  and  which  allows  to  combine  both  SNOMED  CT  and  EHR  standards  in  an  unambiguous  way,  by  following  certain  patterns  (see   Figure   5-­‐2).   The  CMM   is   based   in   formal   ontologies.  However,   as   it  will   be   further   discussed,  ontologies  do  not  have  to  be  used  to  represent  the  whole  model  but   just  some  parts  of   it  that  will  allow  detecting  semantic  equivalences  among  different  representations  of  clinical  information.  

Common Model

Of Meaning

Terminology

SNOMED CT

EHR standards

Information Entities

Figure  5-­‐2  Common  Model  of  Meaning  mapping (Figure  5-­‐3  depicts  our  common  framework  that  consists  of  the  following  three  ontologies:  

• Top-­‐level  ontology:   as   top-­‐level  ontology,  BioTopLite   is  used   (see  Section  4).   It  will  help   to  constrain  the  way  in  which  information  and  domain  ontologies  combine.  

• Domain  ontology:  as  ontology  for  representing  the  healthcare  domain,  parts  of  SNOMED  CT  will   be   used.   Its   concepts   are   treated   as   classes35   in   the   sense   of   OWL.   Classes   aggregate  individual   entities   according   to   their   invariant   features.   They   inherit   their   basic   properties  from  top-­‐level  ontology  categories  like  Process,  Quality,  Condition.    

• EHR  Information  entity  ontology:  information  entities  are  outcomes  of  clinical  actions,  such  as  observations,  investigations,  or  evaluations.  They  refer  to  clinical  concepts  and  represent  

                                                                                                                         35  Apart  from  "Linkage  concepts",  which  correspond  to  OWL  object  properties  

Page 24: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  24  of  64  

the  epistemic  and  contextual  aspects  of   the   information   (e.g.  past  history,   confirmed).  The  concepts   of   this   ontology   will   be   represented   as   subclasses   of   the   top-­‐level   category  Information   object   of   BioTopLite.   This   category   is   disjoint   from   all   other   categories,   i.e.  nothing  can  be  both  an  information  entity  and,  e.g.  a  process,  quality,  or  a  material  entity.  

The  framework  proposed  will  make  use  of  description  logics  (OWL-­‐DL),  supported  by  reasoners  such  as  HermiT.  Figure  5-­‐3  depicts  the  architecture.  In  order  to  provide  SIOp,  we  propose  to  annotate  the  information  entities  of  clinical  models  by  using  DL  expressions  conforming  to  the  shared  logical  and  ontological   framework   presented.   In   this   way,   by   means   of   using   a   DL   reasoner   the   equivalence  between  the  different  DL  expressions  can  be  computed.  For  instance,  if  we  want  to  obtain  the  past  history  of  some  disease  from  some  patient,  and  there  are  three  possible  encodings  for  representing  that  information,  we  want  to  obtain  it  independently  of  the  encoding  used.  This  means  that  the  use  of  a  DL  reasoner  should  tell  us  if  they  have  the  same  or  similar  meaning.  

 

Figure  5-­‐3  Architecture  schema  of  the  approach  

5.2 Information entities

The  ontology  of  EHR   information  entities  aims   to  describe   the  contextual  and  epistemic  aspects  of  information.  They  are  created  as  the  result  of  the  execution  of  processes.  To  what  this   information  actually  refers  will  be  subject  of  further  deliberation.    

A  natural  candidate  for  an  information  artefact  ontology  would  be  the  Information  Artifact  Ontology  (IAO)36.  There   is   one  major   drawback   of   using   IAO   in   our   proposal:   in   IAO   all   information   entities   refer   to   some  entity   that  has   to  exist   in   reality.   In  SHN,  however,  we  have   to   include   the  cases   in  which  an   information  entity   refers   to  some  type  of   things   (or  concept),   for  which  no   instance  exist   in  our   realm  of   interest.  For  instance,  there  is  information  about  a  (supposed)  tumour  of  a  patient  X,  who  is,  in  reality,  healthy.    

In   SHN,   information  entities  have  been  put  under   the  BioTopLite   category   information  object.  This  class  is  defined  as  a  piece  of  information  that  exists  independently  of  any  potential  material  carrier.  As  subclasses  of  information  object  we  have  placed  the  following  classes:  

• SHN_clinical_information_item:   it   is  a  clinical   information  entity   that   refers   to  some  clinical  situation  of  a  patient  in  which  he/she  might  have  some  clinical  condition(s).  

• SHN_clinical_information_set:   it   is   a   clinical   information   entity   that   aggregates   other   data  items  of  the  same  type  that  have  something  in  common.  

                                                                                                                         36  http://code.google.com/p/information-­‐artifact-­‐ontology/    

Page 25: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  25  of  64  

• SHN_clinical_composition:  it  is  a  collection  of  clinical  information  entities  that  refers  to  some  patient  healthcare  situation.  

Additionally,   the   SHN_InformationObjectAttribute   class,   which   has   been   created   as   subclass   of   the  BioTopLite  Quality  category   in  order  to  represent  qualities  of   information  entities  such  as  some  epistemic  terms   (e.g.   suspected,   probable,   etc.).  We   are   aware   that   ascribing   qualities   to   information   entities  may  contradict  assumptions   in  certain  upper-­‐level  ontologies.  They  should  rather  be  considered  attributions  to  statements  as  qualities   in  a   strict   sense.   So   far   they  are  primitives,  but   they   could  be   fully  defined   in   the  future.  For  instance,  "confirmed  diagnosis"  would  then  be  a  diagnosis  that  is  the  outcome  of  a  confirmation  process.  

The   central  part  of   the   Figure  5-­‐4  provides  a   graphical   representation  of   the  present   status  of   the  EHR  ontology  of   information  entities.   It  will   be   further  developed   throughout   the  project.   The   left  and  right  parts  of  the  same  figure  correspond  to  the  clinical  process  and  clinical  domain  ontologies  (SNOMED   CT).   Clinical   information   will   be   represented   by   using   the   information   entity   and   the  domain   ontologies.   However   it   is   also   important   to   represent   how   the   information  was   obtained.  Thus,   it   is   also   necessary   to   define   a   Clinical   process   ontology   that   represents   all   the   healthcare  activities,   tasks,   etc.   (and   their   interactions)   involved   in   the   generation   of   some   specific   clinical  information.   This  will   require   also   defining   the   boundary   between   the   context   represented   by   the  information  entities  (epistemic),  and  by  the  clinical  process  involved  in  the  acquisition  and  record  of  the   clinical   information   and   how   they   relate   each   other.   In   the   left   part   of   the   figure   it   can   be  observed   that   the   relation   outcomeOf   relates   the   clinical   process   and   the   information   entity  ontologies.  We  consider   that   clinical   information   referred   to  by   information  entities   is  obtained  as  the  result  (outcomeOf)  of  the  performance  of  some  clinical  action(s)  (clinical  process  model).  

At  this  moment  further  developments  on  this  are  still  a  matter  of  research  in  the  project.  Standards  such  as  ContSys37,   or   the   ContSys   based   implementation   made   by   the   Swedish   National   Board   of   Health   and  Welfare,  and  how  they  relate  with  the  SNOMED  CT  Procedure  hierarchy  in  the  presented  approach  will  be  future  subject  of  study.    

 

Figure  5-­‐4  Relationship  between  Clinical  Processes,  Information  Entities  and  SNOMED  CT  ontologies.  Clinical  concepts  are  referred  to  but  need  not  be  instantiated  (even  "confirmed"  di  

diagnoses  can  be  wrong)    

                                                                                                                         37   ContSys   CEN/ISO   13940,   currently   in   the   process   of   being   harmonised   with   CEN/ISO   13606   in   SIAMS  http://www.contsys.net    

Page 26: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  26  of  64  

5.3 Clinical Situations

In   order   to   fully   understand   the   previous   figure   it   is   necessary   to   introduce   the   notion   of  Clinical  situation.  An  analysis  of  the  SNOMED  CT  terms  under  the  category  "clinical  finding  ",  together  with  their   taxonomic   links   had   shown   that   an   interpretation   of   these   finding   concepts   as   clinical  conditions  (pathological  entities)  is  problematic.  For  instance,  the  Tetralogy  of  Fallot38  is  in  SNOMED  a  subconcept  of  Pulmonic  valve  stenosis.  As  seen  as  pathological  entities  one  would  rather  assert  that  Tetralogy  of  Fallot  has  Pulmonic  valve  stenosis  as  part.  However,  the  taxonomic  relation  is  acceptable  if  Tetralogy  of  Fallot  means  "patients  while  having  a  tetralogy  of  Fallot",  and  Pulmonic  valve  stenosis  means  "patients  while  having  a  stenosis  of  the  pulmonic  valves".  We  assume  that  this  kind  of  wanted  inferences  had  originated  the  design  of  the  findings  hierarchy.    

We   have   therefore   proposed   to   interpret   SNOMED   finding   concepts   as   clinical   situations,   e.g.   as  phases   of   a   patient's   life   during  which   a   certain   condition   (structure,   disposition,   process)39   exists  during  all  time.     A   clinical   situation   can   also   include  more   than  one   condition.   In   that   case,   a   clinical   situation   of   a  person   with   two   conditions   a   and   b   would   be   classified   as   a   subtype   of   clinical   situation   with  condition  a  and  as  a  subtype  of  clinical  situation  with  condition  b.  

We   have   formally   analysed   and   described   the   relationship   between   a   clinical   condition   (finding,  disorder)  and  a  clinical  situation40  (see  Annex  II:  Clinical  Situation).  We  have  introduced  the  relation  includes  as  linking  situations  to  conditions.  In  the  finding  hierarchy  this  relation  would  correspond  to  the  role  group  relation41,42.    

Although   the   complete   notion   of   clinical   situation   cannot   be   fully   defined   in   OWL,   the   following  subclass  axiom  holds,  e.g.  for  ClinicalSituationWithLungCancer  (the  SCT  finding  concept  lung  cancer):  

ClinicalSituationWithLungCancer  equivalentTo                                                             (includes  some    

(finding_site  some  LungStructure)  (associated_morphology  some  MalignantNeoplasm))  

This   is   just   an   ontological   clarification   of   what   is   implicitly   meant   by   ClinicalSituationWithLungCancer.  IHTSDO   in   order   to   carry   out   the   harmonization   between   SNOMED   CT   and   the   new   ICD-­‐11   disease  classification  is  studying  the  interpretation  of  SNOMED  CT  disorders  as  clinical  situations.  It  is  still  subject  to  discussion  whether  all  SNOMED  CT  finding  concepts  are  principally  to  be  interpreted  as  denoting  situations  (under  the  above  definition).  In  this  case,  the  whole  expression  would  conflate  into  the  SNOMED  CT  concept  lung  cancer.    

                                                                                                                         38  http://en.wikipedia.org/wiki/Tetralogy_of_Fallot  39Schulz   S,   Spackman   K,   James   A,   Cocos   C,   Boeker   M.   Scalable   representations   of   diseases   in   biomedical   ontologies.   J  Biomed  Semantics.  2011  May  17;2  Suppl  2:S6.  40  Andrade  A,  Martínez-­‐Costa  C,  Brochhausen  M,  Spackman  K,  Schulz  S.  The  Ontology  of  Clinical  Situations.  Currently  under  review  at  JAMIA.  41  Spackman  KA,  Dionne  R,  Mays  E,  Weis  J.  Role  grouping  as  an  extension  to  the  description  logic  of  Ontylog,  motivated  by  concept  modeling  in  SNOMED.  Proc  AMIA  Symp.  2002:712-­‐6.  42   Schulz   S,   Hanser   S,   Hahn   U,   Rogers   J.   The   semantics   of   procedures   and   diseases   in   SNOMED   CT.Methods   Inf   Med.  2006;45(4):354-­‐8.  

Page 27: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  27  of  64  

5.4 Ontology-based binding of information entities to clinical situations

Once   clinical   situations   have   been   introduced  we  will   show   how   clinical   situations   represented   by  SNOMED  CT  concepts  are  bound  to  the  ontology  of  information  entities.  This  is  done  by  the  primitive  relation  isAbout  as  defined  in  the  IAO  ontology  for  relating  an  information  artefact  to  an  entity  (e.g.  clinical  entity).  The  following  OWL  DL  expression  (a)  shows  how  would  be  represented  the  fact  that  the  patient  is  diagnosed  with  lung  cancer.  

SHN_clinical_information_item  and    isAbout  QUANTIFIER  ClinicalSituationWithLungCancer                            (a)   In  this  expression  SHN_clinical_information_item  will   represent  the  outcome  of  a  diagnosis,   in  case  we  subscribe  to  the  definition  of  diagnosis  is  defined  as  "the  identification  by  a  medical  provider  of  a  condition,  disease,  or   injury  made  by  evaluating  the  symptoms  and  signs  presented  by  a  patient"43.    The  relation  isAbout  is  linked  by  a  quantifier  to  the  clinical  concept.    

We  will  refine  the  above  expression  as  follows  (b):  

         DiagnosisWithLungCancer  equivalentTo  SHN_clinical_information_item  and  isAbout  some  ClinicalSituationWithLungCancer                      (b)    

                                                                         and  outcomeOf  some  DiagnosingAction                                

If   the   diagnosis   included   more   than   a   condition   such   as   lung   cancer   and   diabetes   it   would   be  represented  as  (c):  

                           DiagnosisWithLungCancer&Diabetes  equivalentTo    Diagnosis  and  isAbout  some  ClinicalSituationWithLungCancer          

                                               and  isAbout  some  ClinicalSituationWithDiabetes                                                                                            (c)    

with   SHN_clinical_information_item   and   outcomeOf   some   DiagnosingAction   being   equivalent   to  Diagnosis.  

Then,  the  above  diagnosis  (c)  would  be  classified  as  a  subtype  of  a  diagnosis  with  lung  cancer  and  as  subtype  of  diagnosis  with  diabetes.  A  query  for  getting  all  patients  with  lung  cancer  would  therefore  provide  those  who  have  lung  cancer  and  also  diabetes.  

DiagnosingAction   is   defined   in   the   Clinical   Process   ontology   shown   in   the   left   part   of   Figure   5-­‐4.   This  ontology  will   represent   the   different   healthcare   processes,   activities,   etc.   and   their   interactions,   that  will  provide  clinical  information.    

Diagnoses  as  an  outcome  of  cognitive  processes  do  not  necessarily  correspond  to  existing  entities  on  the  side  of   the  patient.  Diagnostic   statements  may  convey  some  probability  or  certainty,   they  may  express  merely  suspicions  or  at-­‐risk  situations,  and  they  can  be  plainly  wrong.  It  would  therefore  be  inadequate  in  our  framework  to  make  existential  assumptions  like  in  (d),  in  which  it  is  stated  that  all  lung  cancer  diagnosis  imply  the  existence  of  lung  cancer:  

                                                                 LungCancerDiagnosis  equivalentTo                                                                                              Diagnosis  and  isAbout  some  ClinicalSituationLungCancer                                                              (d)  

                                                                                                                         43  http://www.thefreedictionary.com/diagnosis  

Page 28: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  28  of  64  

In  standard  Description  logics  (as  used  in  biomedical  ontologies),  backed  by  the  realist  ontology  paradigm,  formal  expressions  are  supposed  to  have  single  interpretations  and  are  therefore  evaluated  to  true  or  false.  This  precludes  having  sets  of   interpretations,   i.e.  possible  worlds,  would  have   the  advantage   to   represent  contingent  information.  In  our  case,  this  would  allow  us  to  express  LungCancerDiagnosis  as  something  that  possibly  refers  to  real  lung  cancer44.  Modal  logics  could  overcome  this  problem,  but  they  are  not  supported  by  the  ontology  formalisms  that  are  in  practical  use  in  the  biomedical  community.    

The   impossibility   of   expressing   contingent   information   in   OWL-­‐DL   and   the   unacceptability   of  asserting  existence  where  existence  cannot  be  guaranteed  require  some  robust  approximation.  This  is   the   reason  why  we  propagate   the   use   of   the   universal   quantifier   (only)   for   relating   information  entities  with  other  entities.    

By  stating    

                                                           Diagnosis_X  equivalentTo    Diagnosis  and  isAbout  only  X                                                                                            (e)  

we  restrict  ourselves  to  state  that  the  Diagnosis  of  this  type  is  about  X  in  case  it  is  about  anything,  or  reformulated  to  a  semantically  equivalent  statement:  

                                                           Diagnosis_X  equivalentTo    Diagnosis  and  not  (isAbout  some  (not  X))                                                (f)  

i.e.  it  is  not  about  anything  else  than  X.    

We  will  come  back  to  discuss  the  shortcomings  of  this  approach  and  discuss  alternatives.    

The  epistemic  state  of  an  information  entity  like  a  diagnosis  can  be  further  specified  by  assigning  an  appropriate  attribute  to  the  information  entity,  e.g.  that  the  diagnosis  is  suspected:    

                     SuspectedLungCancerDiagnosis  equivalentTo  Diagnosis  and  isAbout  only  ClinicalSituationWithLungCancer  

                                                                                                             and  hasInformationObjectAttribute  some  Suspected                                                      (g)    

Once  the  diagnosis  is  confirmed,  it  can  be  represented  by  modifying  it  as  follows:      

                   LungCancerDiagnosis  equivalentTo                                                                      Diagnosis  and  isAbout  only  ClinicalSituationWithLungCancer                                                                    (h)                                                                                                            and  hasInformationObjectAttribute  some  Confirmed    

It   is  still  subject  to  debate  whether  this  expression  –  in  case  of  confirmed  diagnosis,  the  expression  (h)  should  be  enhanced  as  follows:  

                 LungCancerDiagnosis  equivalentTo  Diagnosis  and  isAbout  only  ClinicalSituationWithLungCancer                                            and  isAbout  some  ClinicalSituationWithLungCancer          

                                                                                                             and  hasInformationObjectAttribute  some  Confirmed                                                    (i)    

This  would  require  that  a  confirmed  diagnosis  can  never  be  false.  A  counterargument  would  be  that  the   qualification   of   a   diagnosis   as   confirmed   is   an   act   in   the   responsibility   of   the   physician,  which                                                                                                                            44  The  lack  of  expressing  possibilities  in  standard  DL  [Rector.owled.2008]  [doi:    10.1186/1471-­‐2105-­‐8-­‐377]  

Page 29: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  29  of  64  

could  nevertheless  be  based  on  wrong  information.  Querying  clinical  data  on  "confirmed"  diagnoses  and   comparing   them   to   a   ground   truth,   e.g.   from   pathology,  would   be   a   relevant   task   for   quality  assurance.  The  decision  of  what  is  the  taken  as  the  ground  truth  would  nevertheless  depend  on  the  use  case.   It  would   therefore  be  safer   for   the   representation  of   clinical   information   if  no  existential  claim  is  made  at  all  at  the  level  of  recording.  The  existence  of  entities  at  the  patient's  side  could  then  only  be  made  when  it  comes  to  data  analysis.    

Our  solution  is  challenged  by  the  frequent  cases  in  which  the  basic  diagnosis  is  confirmed  but  the  cause  of  the  disease  is  only  suspected.  We  are  on  the  safe  side  if  represent  this  by  two  separate  information  entities:  

LungCancerConfirmedDiagnosis  equivalentTo                        Diagnosis  and  isAbout  only  ClinicalSituationWithLungCancer                                                              and  hasInformationObjectAttribute  some  Confirmed                                                                                                                                    (j)  

LungCancerCausedByHeavyCigaretteSmokerSuspectedDiagnosis    equivalentTo                            Diagnosis  and  isAbout  only  (ClinicalSituationWithLungCancer                                                                                                  and  dueTo  some  ClinicalSituationOfHeavyCigaretteSmoker)                                                                  and  hasInformationObjectAttribute  some  Suspected                                                                                                                                (k)  

We  would  get  undesired  results  if  we  create  enhance  (j)  in  terms  of  an  existential  statement    

LungCancerConfirmedDiagnosis  equivalentTo                      Diagnosis  and  isAbout  some  ClinicalSituationWithLungCancer                                                          and  isAbout  only  ClinicalSituationWithLungCancer                                                            and        hasInformationObjectAttribute  some  Confirmed                                                                                                                                  (i)    

This  implies  that  a  patient  situation  of  the  type  ClinicalSituationWithLungCancer  exists.    

                                                       cs123  Type  ClinicalSituationWithLungCancer  

If  we  apply  (k)  to  this,  then  c123  could  be  reclassified  as  an  instance  of  ClinicalSituationWithLungCancer  and  dueTo   some   SituationOfHeavyCigaretteSmoker.   This   would   clearly   be  wrong.   To   be   safe,   every   diagnosis  should  be  represented  as  a  separate  statement  that  refers  to  the  clinical  concept  only  via  value  restriction.  We  hypothesize  that  this  provides  sufficient  reasoning  power.  However,  further  going   interpretations  that  assert  the  existence  of  entities  on  the  side  of  the  patients  should  be  aware  of  this  problem.    

The  expression   (j)  describes   that   the  patient  has  been  diagnosed  with   lung   cancer  and   the  expression   (k)  states   that   the  possible   cause  of   the   lung   cancer   is   smoking.   Therefore,   the  EHR  of   the  patient  would  be  annotated   with   the   two   above   expressions.     This   representation   will   allow   obtaining   this   patient   as   an  answer  to  the  query  "Give  me  all  patients  with  lung  cancer"  and  also  as  the  answer  to  the  query  "Give  me  all  patients  with  lung  cancer  caused  probably  by  smoking".    

All   additional   assertions,   e.g.   who   made   the   diagnosis,   when   it   was   made   etc.   (i.e.   healthcare  context)  can  also  be  added  to  the  above  DL  expression  as  follows:  

 Diagnosis  and  isAbout  only  (Cancer  and  hasLocus  some  Lung)                                                                                          WHAT?                  and  (outcomeOf  some  (DiagnosingAction  and                                                                                                                                        HOW?                                hasParticipant  some  (HumanOrganism  and  bearerOf  some  ClinicianRole))  and    WHO?                                hasPointInTime  some  (PointInTime  and  denotedBy  some  DateTime)  and                WHEN?                                hasLocus  some  HealthcareFacility)                                                                                                                                                          WHERE?                    and  hasInformationObjectAttribute  some  Suspected    

Page 30: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  30  of  64  

However,   even   if   using  description   logics   syntax   for   a   global   representation  of   information  models  plus  ontologies,   the   reasoning  would  be   restricted   to   the   filler   of   the   isAbout   relation,  which  may  become   arbitrarily   complex,   according   to   the   degree   of   postcoordination   needed.   All   additional  assertions,  e.g.  who  made  the  diagnosis,  when  it  was  made  etc.  could  then  be  made  at  A-­‐box  (data)  level  or  being  represented  by  the  information  structures.    

This  would  appropriately  address  the  fact  that  DL  representations  follow  an  open  world  semantics,  whereas  information  models  –  at  least  implicitly  –  follow  a  closed  world  semantics.  From  the  implementation  side  it  would  be  important  to  distinguish  two  steps:  DL  reasoning  and  querying  would  be  restricted  to  the  WHAT  clause,  whereas   database   querying  would   be   addressed   by   the  HOW,  WHO,  WHEN,   and  WHERE   clauses.  This  is  in  line  with  the  current  debates  at  CIMI,  but  requires  more  in-­‐depth  analysis.    

Once  the  shared  logical  framework  has  been  introduced,  next  we  will  explain  how  it  can  be  used  in  order  to  detect  semantic  equivalent  expression  and  thus,  for  enabling  semantic  interoperability.  

In   order   to   provide   semantic   interoperability,   we   propose   to   annotate   the   information   entities   of  clinical  models  by  using  DL  expressions   conforming   to   the   shared   logical   framework  explained  and  then,  by  using  a  DL  reasoner  the  equivalence  between  the  different  DL  expressions  will  be  computed.  Figure    5-­‐5  shows  three   isosemantic  models   for  representing  that  the  patient  does  not  have  a  past  history  of  diabetes.  By  using  a  DL  reasoner  we  will  know  if  the  information  represented  by  the  three  forms  is  the  same  or  not  (semantically  equivalent  or  not).    

       

 

Figure  5-­‐5  No  past  history  of  diabetes  mellitus  

The  way  how   the  binding  between   information  entities   and   clinical   entities   or   concepts   should  be  ontologically   expressed,   is   currently   subject   to   intensive   discussions.   It   has   to   be   further   analysed  whether   the   relation   isAbout   appropriately   captures   this   purpose.   Information   artefacts   in   clinical  models  are  fractal.  A  whole  archetype  is  about  many  different  things,  and  only  its  atomic  structures  can  be  expected  to  be  about  one  thing  only,  e.g.  about  one  (kind  of)  disorder,  like  in  the  diagnostic  statement   "Confirmed   diagnosis   of   congestive   heart   failure".   Even   this   statement   is,   additionally,  about   a   patient.   Using   isAbout   in   a   broader   sense   would   then   violate   the   use   of   the   universal  restriction   operator   "only".   We   therefore   introduce   subrelations   such   as   isAboutSituation   or  isAboutSubjectOfRecord.    

Page 31: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  31  of  64  

The   bigger   problem,   however,   is   that   a   complete   account   of   "statements   about"   would   require  higher  logics,  whereas  we  are  bounded  to  a  subset  of  first-­‐order  logics.  The  challenge  is  therefore  to  find  appropriate  "logical  approximations",  i.e.  first  order  projections  of  higher  order  statements.  The  approach   underlying   our   current   models   and   examples   makes   use   of   universal   quantification  (isAboutSituation  only).    

The   issue   is   that   the   diagnostic   statement   is   second   order.   It   is   about   understanding   how   the  information    entity  relates  to  the  clinical  class,  but  not  necessarily  to  any  member  of  that  class.      

Higher  order  statements  can  be  expressed  in  OWL  full  (or  in  OWL  2  with  "puns"45)  as  follows:  

  TentativeDiagnosis  and  isAboutSituation  value  HeartFailureSituation  

The  keyword  value  indicates  that  the  statement  is  about  the  class  HeartFailureSituation  (OWL  Full)  or  a  pun  on  that  class  (OWL-­‐DL).  

Expressed  this  way,  the  statement  is  "It   is  tentatively  believed  that  this  patient  situation  belongs  to  the   class   of   HeartFailureSituations."     In   this   reading   there   is   no   need   for   any   heart   failure,  hypothetical   or   otherwise,   because   the   statement   is   second   order   and   about   a   statement   that  references   the   class   of   situations   including   heart   failure   rather   than   any   individual   heart   failure  situation.  (If  the  tentative  belief  turns  out  to  be  true,  then  an  instance  of  HeartFailureSituation  must  exist,   but   not   otherwise,   and   we   may   never   know).   Using   classes   themselves   in   this   way   is   an  alternative  for  general  issues  around  value  sets46.        

The  use  of  value  and  puns  requires  implementing  auxiliary  mechanisms  to  achieve  all  the  intended  results,  since  OWL  reasoners  do  not  understand  the  link  between  the  individual  HeartFailureSituation  and  the  class  HeartFailureSituation.    

A   more   radical   but   possibly   more   practical   solution   would   be   to   say   that   what   we   should   be   doing   is  querying  the  ontology  rather  than  formulating  a  class  definition.    Queries  are  second  order,   i.e.  about  the  ontology,   but   allow   negation   as   failure.     Possible   query   languages   include   SPARQL   1.1   with   the   OWL  entailment   semantics   (just   being   implemented   but   not   easily   available   at   the   moment).     A   possible  temporising,  or  even  longer  term  solution  might  be  a  language  such  as  Ocean  Informatics'  query  language  TQL.     It   would   allow   for   expressions   such   as   "Hypertension   except   hypertension   in   Pregnancy"   with   the  expected  semantics  of  negation  as  failure  rather  than  provable  falsehood.      It  also  allows  compensation  for  "idiosyncrasies"  in  SNOMED  or  other  terminologies.  In  a  natural  extension  of  Manchester  syntax  this  could  look  like:      

  TentativeDiagnosis  and  isAbout  query  (SELECT  X:  WHERE  X  subClassOf  HeartFailureSituation)    

This  is  just  a  way  of  selecting  a  collection  of  classes  as  values  rather  than  a  single  class.    As  with  OWL  full  or  puns,  it  would  need  additional  mechanism  beyond  standard  OWL  reasoners.      

 

                                                                                                                         45  "Puns"  are  a  approximation  for  the  OWL  full  intent  that  avoids  the  reasoner  having  to  deal  with  higher  order  constructs  at  the  cost  of  allowing  them  to  be  expressed  but  reasoning  about  them  totally  separately.)  46  A  Rector,  R  Qamar,  T  Marley:  Binding  ontologies  and  coding  systems  to  electronic  health  records  and  messages,  Applied  Ontology  4  (2009),  51-­‐69.    http://www.cs.man.ac.uk/~rector/papers/Terminology-­‐binding-­‐final-­‐revision-­‐embedded-­‐single-­‐rector%20copy.pdf    

Page 32: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  32  of  64  

5.5 Negations

Negations  are  crucial  in  medical  documentation.  From  a  representational  point  of  view  the  problem  is   that   negations   can   occur   at   several   places,   both   in   the   information  model   and   in   the   ontology.  Figure  5-­‐5  depicts  three  possibilities  to  express  that  there   is  no  past  history  of  diabetes.   In  the  two  first   ones   the   negation   is   represented   in   the   information  model,   in   the   heading   (e.g.  No   Previous  History)  and  as  a  check  list  (e.g.  Yes,  No,  Unknown)  respectively.  In  the  third  one  it  is  represented  in  classes  from  SNOMED  CT  (Not  diabetic).  

In   Figure   5-­‐6   we   have   added   free   text   annotations   for   each   information   entity   into   which   the  representation  of  the  statement  No  history  of  diabetes  can  be  dissected.    They  describe  the  meaning  of   each   of   the   information   entities   used   to   represent   the   clinical   statement.   In   this   case   these  annotations  include  the  values  selected  for  the  patient  (green  comments).  

Figure  5-­‐6:  Free  text  annotations  -­‐  no  past  history  of  diabetes  –  

If   we   transform   the   above   free   text   annotations   into   DL   expressions,   for   each   of   the   three  representations  we  will   obtain   the   following   expressions   for   each   of   the   information   entities   (see  Table  5-­‐1).  Note   that  each   table  corresponds   to  one  of   the   representations  and   that   the  dark  grey  row  represents  the  green  free  text  comments  (i.e.  value).  

Textual  description   DL  annotation  

No  Previous  History  InformationEntity  and  isAboutSituation  only                              ClinicalSituationWithoutDisorder                            and  outcomeOf  some  HistoryTakingAction  

Value  (Diabetes)  InformationEntity  and  isAboutSituation  only                              ClinicalSituationWithoutDiabetes                                                              and  outcomeOf  some  HistoryTakingAction  

 

 

 

1  

2  

3  

1  

Page 33: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  33  of  64  

 

Textual  description   DL  annotation  

Past  History  InformationEntity  and  isAboutSituation  only  ClinicalSituation                                                                    and  outcomeOf  some  HistoryTakingAction                                  

Value  (No  diabetes)  

InformationEntity  and  isAboutSituation                          only  ClinicalSituationWithoutDiabetes                                                                    and  outcomeOf  some  HistoryTakingAction  

 

Textual  description   DL  annotation  

Past  History   InformationEntity  and  isAboutSituation  only  ClinicalSituation                                                                    and  outcomeOf  some  HistoryTakingAction                                  

Value  (No  diabetes)  

InformationEntity  and  isAboutSituation  only  ClinicalSituationWithoutDiabetes                                                                    and  outcomeOf  some  HistoryTakingAction  

 

Table  5-­‐1  Isosemantic  DL  annotations  for  no  past  history  of  diabetes  

SNOMED  CT  currently  does  not  allow  the  use  of  negation  and  disjunction,  whereas  OWL  DL  supports  both.  Negation  can  be  embedded  in  the  clinical  situation  definition  as  in  the  following  approximative  definition:  

ClinicalSituationWithoutX  equivalentTo             ClinicalSituation  and  not  hasProcessualPart  some  X    

 

Assuming   that   in   SNOMED   CT   clinical   findings   are   interpreted   as   clinical   situations   as   introduced  above,  this  will  require  adding  negation  and  disjointness  capabilities  to  SNOMED  CT,  what  means  to  move  SNOMED  CT   to   the  OWL  DL   representation.  Kaiser  Permanente   is   currently   investigating   the  benefits  and  effects  on  classification  performance  of  introducing  limited  negation  into  SNOMED  CT.    

We  have  created  three  instances  in  the  ontology  corresponding  to  each  of  the  three  forms,  and  we  have  added  them  the  corresponding  axioms  of   the  previous   tables.   If  we   launch   the  reasoner,  and  make   a   query   to   retrieve   all   the   patients   with   no   past   history   of   diabetes,   it   will   show   the   three  instances  as  result:  

 

Figure  5:  DL  reasoning  result  -­‐  no  past  history  of  diabetes  –    

2  

3  

Page 34: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  34  of  64  

However,   if  we  make  a  query   for   obtaining   the  patients  without  past   history  of   condition,  we  will  only   get   the   instance   from   form  1   (No_Past_History_Diabetes_F1).   This   is   due   to   the   fact   that  not  having  a  past  history  of  diabetes  mellitus  does  not  imply  not  having  a  past  history  of  any  condition.  

 

 

Figure  5-­‐6:  DL  reasoning  result  –  no  past  history  of  condition  -­‐    

Page 35: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  35  of  64  

6 Discussion on alternatives, options, consequences and criteria for choice

In  the  context  of  SemanticHealthNet  it  has  been  proven  necessary  to  discuss  the  options  we  have  for  representing  clinical  information  and  which  criteria  should  be  followed  in  order  to  choose  the  most  suitable   representation.  We  think   that  more   than  one   representation   is  needed,  depending  on   the  specific  purpose.  We  have  identified  two  main  use  cases:  

1) Creation  of  clinical  models  2) Query  of  clinical  data  instances  of  isosemantic  models  

 

6.1 Creation of clinical models

A   representation   for   the   definition   of   clinical   models   will   check   their   syntactic   and   semantic  consistency.  For  instance,  in  the  context  of  the  definition  of  openEHR  and  ISO  1306  archetypes,  ADL  was  selected  as  representational  language  and  the  Archetype  Object  Model  as  the  constraint  model.  There  are  already  several  archetype  editors  available  that  allow  checking  the  syntactic  correctness  of  the  models  created  (with  regard  to  the  ADL  grammar).  However,  to  check  whether  these  models  are  semantically   correct   is   something   that   at   present   is   not   supported   by   these   tools.   The   semantic  consistency   of   clinical   models   must   take   into   consideration   not   only   the   consistency   of   the  information   model   (Reference   Model)   itself   but   also   the   consistency   with   regard   the   semantic  provided   by   the   bindings.   In   order   to   support   the   definition   of   new   models,   more   than   one  representation   formalism   might   be   needed.   For   instance,   a   graphical   representation   which   is  targeted  to  the  clinician  and  which  defines  the  model  (e.g.  kind  of  mind  map);  another  one  to  check  the   syntactic   consistency   (e.g.  ADL  parser)   and  another  one   for   checking   the   semantic   consistency  (e.g.  ontology)  of  the  model.  

Although   ontologies   are,   in   theory,   the   most   suitable   representation   to   be   used   to   ensure   semantic  consistency  of   the  models,  we  have  to  admit   that  this  would  require  very  expressive  representations  that  are  currently  not  available  for  SNOMED  CT.  At  least  rough  category  constraints  can  be  obtained  by  declaring  (most  of)  the  SNOMED  CT  hierarchies  as  mutually  disjoint.  Thus,  violations  of  category  restrictions  (e.g.  that  a  diagnostic  statement  is  about  a  drug)  could  be  prevented.  SemanticHealthNet  is  current  analyzing  ways  of  how   to   define   value   sets   referring   to   SNOMED   CT   concepts.   The   idea   formulated   in   the   above   model  (including  closed-­‐world  SPARQL  queries  into  OWL  axioms)  could  be  taken  up  and  adapted  to  this  purpose.      

As  part  of   the  clinical  model   creation   task,   there  are  some  other   related  activities   that  can  benefit  from   the   representation   formalism  used.  Examples  of   this   are  quality   assurance  of  models,   clinical  data  validation  or  management  of  clinical  models.  This  last  task  will  comprise  searching  activities  and  detection  of  inconsistencies  among  clinical  models  (e.g.  wrong  specializations).  

Clinical  models  as  the  proposed  by  Mayo  Clinic,  the  Clinical  Element  Model  (CEM)47,  or  the  one  that  will  result  from  the  CIMI  initiative  are  examples  of  modelling  proposals  that  might  be  suitable  for  the  creation  of  models.    They  are  prescriptive  proposals,  i.e.  they  define  rules  that  clinical  models  have  to  follow  when  created.      

                                                                                                                         47  http://informatics.mayo.edu/sharp/index.php/CEMS    

Page 36: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  36  of  64  

6.2 Query of clinical data instances of isosemantic models

Opposed  to  the  prescriptive  nature  of  the  modelling  proposal  for  defining  new  models,  this  second  use  case  focuses  on  the  representation  of  clinical  data  from  isosemantic  models,  in  order  to  support  the  homogeneous  query  of  data  from  heterogeneous  medical  repositories.   It  assumes  that  present  hospital   information  systems  represent  clinical   information  using  different  EHR  models  (proprietary  or   based   on   some   standard),   and   the   cost   of   implementing   a  map   to   a   new  model   that   supports  semantic  interoperability  is  too  high.    

A  representation  that  fits  these  requirements  should  provide  a  semantic  layer  to  current  information  systems.  This  semantic  layer  would  sit  between  these  information  systems  and  a  sophisticated  query  system.  Their  main  roles  will  be  to  provide  a  consistent  semantic  representation  of  clinical  data  and  to  allow  detecting  semantic  equivalences  among  them.  Thus,  a  sophisticated  query  system  will  use  the  results  from  the  semantic  layer  in  order  to  build  queries  for  retrieving  data  from  heterogeneous  medical  repositories.    

For  building  the  semantic  layer,  we  assume  that  the  approach  presented  in  this  document,  in  Section  5,  could  be  one  of  the  most  suitable  options.    

However,  the  costs  of  providing  this  semantic  layer  do  not  have  to  be  underestimated.  This  approach  requires  the  effort  of  creating  a  semantically  consistent  representation  to  present  clinical  data.  This  is  a  tedious  and  not  trivial  task,  which  cannot  be  achieved  without  a  very  good  support  by  appropriate  informatics  tools.      

In  order  to  make  this  approach  feasible,  a  clinical  model  editor  should  internally  support  the  creation  of   this   semantic   representation.   It   could   access   the   ontology   resources  we   propose   during  model  design,   an   author   could   then   be   guided   to   construct   well   formed   models   that   are   consistent  internally,   and   as   consistent   as   is   appropriate   with   other   models   that   have   previously   been  developed   and   published.   In   fact,   it   is   at   this   point   is   where   both   use   cases,   (1)   clinical   models  creation  and  (2)  query  of  clinical  data  instances  of  isosemantic  models,  can  play  together.  In  the  first  use  case  we  mentioned   that  ontologies  are   the  most   suitable   representation   to  be  used   to  ensure  the  semantic  consistency  of  the  models  created,  and  this  is  just  one  of  the  services  we  are  providing  with  the  semantic  layer.  The  other  service  would  be  the  detection  of  semantic  equivalent  expressions  among  heterogeneous  representations  of  clinical  data  (i.e  semantic  interoperability).          

Discussion  

The  approach  of  the  Clinical  Modelling  Initiative  (CIMI)48  is  to  define  a  set  of  patterns  for  the  creation  of  clinical  models;  and  their  binding  to  a  clinical  vocabulary  has  been  identified  as  one  of  the  biggest  sources   of   problems.   A   similar   situation   occurred   in   the   context   of   the   NHS   Logical   Record  Architecture   (LRA)49   project   and   also   current   DCM   practice   follows   similar   lines   and   every   data  element  is  bound  to  specific  SNOMED  CT  or  other  terminology  concepts,  or  to  a  specified  reference  set.  We  are  conscious  that  the  use  of  ontology-­‐based  vocabularies  such  as  SNOMED  CT  is  of  a  great  value   and   indispensable   for   achieving   SIOp,   but   one   consequence   of   its   use   is   that   it   makes   the  creation   of   clinical   models   harder.   The   main   problem   is   the   inclusion   of   information   aspects   in  

                                                                                                                         48  http://informatics.mayo.edu/CIMI/index.php/Main_Page    49  http://www.connectingforhealth.nhs.uk/systemsandservices/data/lra    

Page 37: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  37  of  64  

SNOMED  CT,  as  explained  in  previous  sections,  but  sometimes  also  the  selection  of  one  or  another  term  for  encoding  a  given  piece  of   information   is  not  trivial.  This  situation   led  the  LRA  approach  to  develop  a  way  of  excluding   some  SNOMED  CT   terms  when  defining   the  bindings.   In  a   similar  vein,  CIMI   proposes   to   constrain   the   scope   of   SNOMED   concepts   to   which   information   entities   can   be  bound  to.  In  our  opinion  this  can  be  a  provisional  solution  (a  first  step  to  SIOp),  which  may  work  in  some  bounded  environment,  but  given   the  huge   size  of   the  ontology,   to  exclude  all   the  undesired  terms   would   become   unmanageable   as   well   as   might   turn   out   into   breaking   SIOp.  SemanticHealthNet  also  acknowledges  that  those  problematic  terms  exist  because  they  are  used  to  represent   a   complex   clinical   statement   with   one   code.   They   should   therefore   motivate   us   to  represent  even  these  complicated  statements  in  a  principles  way.    

We  think  that  for  avoiding  ad-­‐hoc  and  not  scalable  solutions  solid  principles  have  to  be  followed  (as  the  ones  provided  by  formal  and  upper  level  ontologies),  which  will  make  also  sometimes  the  way  to  SIOp  more  painful.    As   in   the  case  of   the  above-­‐mentioned  clinical  modelling  approaches   (LRA  and  CIMI),  some  subsets  from  SNOMED  CT  will  have  to  be  selected  but  the  criteria  to  exclude  them  will  have   always   a   clear   foundation,   which   may   require   of   the   suggestion   of   new   semantic  representational  patterns  for  them.    

None   of   the   approaches,   CIMI,   LRA   and   nor   the   one   presented   here   in   the   SemanticHealthNet  context  is  so  different  from  each  other.      

We   think   that   the   combined   efforts   from   all   of   them   can  make   really   progress   towards   Semantic  Interoperability.   As   mentioned   earlier,   the   semantic   layer   provided   by   SemanticHealthNet   could  provide   a   semantic   consistency   checking   of   the  models   created   as  well   the   detection   of   semantic  equivalent   expressions   in   other   models   (e.g.   pre-­‐   vs.   post-­‐coordination).   On   the   other   hand,   the  patterns   provided   by   clinical   modelling   approaches   as   CIMI,   could   define   where   to   place   all   the  epistemic  and  contextual  aspects  of  information  and  assure  the  syntactic  consistency  of  the  models  created,  as  well  as  providing  other  tasks  related  with  the  creation  of  clinical  models  (e.g.  searching  &  management  of  clinical  models,  clinical  data  validation,  etc.).    

Page 38: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  38  of  64  

7 Models and Use Cases

In  this  section  two  different  SIOp  approaches  are  presented.  Use  case  1  determines  the  equivalence  between  the  information  models  used  by  different  EHR  systems  and  tries  to  classify  the  exchanged  clinical  data  into  the  receiver  system.    Use  case  2  determines  the  equivalence  between  clinical  data  gathered  in  heterogeneous  ways  so  that  systems  and  humans  can  make  successful  queries  in  order  to   retrieve   the   desired   information   form   heterogeneous   representations.   The   section   starts   from  simple   data   acquisition   forms   (see   Figure   7-­‐1),   describes   them  using   different   clinical  models,   and  demonstrates  semantic  annotations  in  OWL  DL,  the  semantic  equivalence  of  which  can  be  proven  by  a   DL   classifier.   In   both   use   cases   it   is   supposed   that   each   system   uses   a   different   EHR   standard.  However,  SIOp  is  not  only  an  issue  when  using  different  EHR  standards  but  also  when  using  the  same  one,  in  which  many  different  isosemantic  models  can  be  built.  In  practice  the  greater  heterogeneity  will   not   be   between   two   different   information  models   but   between   different   clinical  models   that  have  been  created  by  different  teams  with  overlapping  scope.  

The   examples   chosen   are   just   fictitious   and   deliberately   simple.   They   do   not   pretend   to   be   real  examples  but  just  a  way  of  clarifying  some  of  the  issues  presented  in  this  document.  We  hope  that  they  sufficiently  exemplify  how  important  aspects  of  the  heart  failure  use  case  can  be  addressed.  On  the  other  hand  they  are  generic  enough  so  that  solutions  for  other  use  cases  can  be  abstracted  away  from  them.  Currently,  the  SemanticHealthNet  Workstream  one  (WPs  1  -­‐3)   is  working  together  with  WP4  in  defining  a  Heart  Care  summary  report  that  we  will  later  use  as  input  to  create  more  real  and  complete  clinical  models.  

For   the   time  being   it   is  not   yet   clear,  which  of   these   two   (major)   types  of  use   cases  will   prevail   in  SemanticHealthNet,   and   which   variation   of   these   use   case   may   be   introduced.   For   instance,   one  variation  would  be  that  an  ontology-­‐based  semantic  annotation  (such  as  the  outcome  of  approaches  following  use  case  type  1)  is  imported  into  an  "empty"  information  model.    

 

Figure  7-­‐1  Heterogeneous  clinical  application  forms  for  recording  the  same  information  

 

Page 39: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  39  of  64  

The   figure   shows   three   screenshots   from   three   different   fictitious   and   simplified   user   forms,  supposed  to  record  some  clinical  information  obtained  in  a  clinical  encounter,  more  specifically,  the  clinical  history  of  a  patient  and  his  diagnosis.  Each  form  captures  the  same  clinical  information  but  in  a   different   way,   what   provides   us   with   a   semantic   interoperability   use   case.   We   can   imagine   a  scenario   in   which   the   three   EHR   systems   to   which   these   clinical   forms   belong   to,   would   like   to  exchange  this  kind  of  information.  In  the  following  subsections  the  two  different  interoperability  use  cases  proposed  are  explained  based  on  this  example.  

7.1 Use case 1 (Data transfer)

Data  elements   (d1,  d2,   ...   ,  dn)   recorded   in  System  X  using  clinical  model  C   following  standard  S  are  transferred  to  System  Y  using  clinical  model  D  and  following  standard  T.    

The  exchange  process  will  consist  in  the  following  phases:    

• Phase  1:  Semantic  clinical  information  extraction  • Phase  2:  Clinical  data  exchange  • Phase  3:  Syntactic  clinical  information  mapping  

7.1.1 Phase 1: Semantic clinical information extraction

This  phase  consists  of  identifying  the  same  clinical  information  in  each  of  the  systems  independently  of  how  it  has  been  recorded  or  captured.   In  order  to  do   it,  each  of  the   information  entities  will  be  annotated   with   Description   Logics   (OWL-­‐DL)   expressions   according   to   the   ontological   framework  proposed   in  Section  5.  These  DL  annotations  will  not  be  the  same  for  each   form  but  by  using  a  DL  reasoner  they  should  be  classified  according  to  their  definition.  

Figure  7-­‐2  depicts   the  excerpt   from  each  clinical   form  that   states   that   the  patient  does  not  have  a  history  of  diabetes  mellitus.  It  can  be  observed  how  this  information  has  been  captured  in  a  different  way   in  each  one.   In   form  one  there   is  a  text   field  with  the  text  "Diabetes"  and  three  radio  buttons  with  the  options  "Yes,  No,  Unknown"  respectively,  where  the  second  option  has  been  selected.     In  form  two  there   is  a  text  field  named  "Other  diseases"  and  the  SNOMED  CT  code  "no  diabetes"  has  been   selected   from  a   combo  box.   Finally   in   form   three,   this   information  has  been   recorded   in   the  part  of  the  form  named  "Others"  where  the  SNOMED  CT  code  has  been  also  selected  from  a  combo  box.  In  the  three  of  them  the  information  has  been  recorded  in  the  patient  history  section.  

Figure  7-­‐2  Heterogeneous  representations  for  No  History  of  diabetes  

Page 40: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  40  of  64  

In   Figure   7-­‐2,   we   have   added   free   text   annotations   for   each   information   entity   into   which   the  representation   of   the   statement   no   history   of   diabetes   can   be   dissected.     The   yellow   comments  describe   the  meaning  of   each  of   the   information  entities  used   to   represent   the   clinical   statement.  The  green  comments  describe  the  values  selected  for  the  patient.  We  can  imagine  that  each  of  these  forms   implement   a   different   EHR   standard.   Following,   an   excerpt   of   each   of   the   corresponding  clinical   models   for   the   forms   one   and   two   according   to   ISO   13606   and   OpenEHR   standards  respectively   are   provided.   Similarly,   the   same   information   can   be   represented   in   Detailed   Clinical  Model   format,   or   Health   Level   7   clinical   statements.   For   ease   of   reading,   only   two   examples   are  provided.    

 

Figure  7-­‐3  ISO  13606  clinical  model  used  for  representing  No  History  of  diabetes  (form  one)  

Figure  7-­‐4  OpenEHR  clinical  model  used  for  representing  No  History  of  diabetes  (Form  one)  

It  can  be  observed  how  the  stressed  comments  added  to  the  information  entities  correspond  to  the  yellow   text   annotations   of   Figure   7-­‐2.   In   the   ISO   13606   model,   the   information   entity  ELEMENT[at0002]  is  bound  to  the  SNOMED  CT  concept  Diabetes  mellitus.  However,  in  the  OpenEHR  model   the   information   entity   ELEMENT[at0003]   is   not   bound   to   a   specific   kind   of   disorder.   The  OpenEHR  model  in  this  case  allows  encoding  any  kind  of  disorder.  In  order  to  identify  the  semantic  equivalence  between  the  information  represented  by  the  different  clinical  forms  we  will  add  the  DL  annotations  shown  in  Table  7-­‐1  and  Table  7-­‐2  for  each  of  the  clinical  entities  of  the  ISO  13606  and  OpenEHR  representations.      

We  have  created  DL  annotations  only   for   the  clinical  models  without   including  the  concrete  values  (patient  data).  Later,  we  will  show  the  corresponding  data  instances  for  both  ISO  13606  and  openEHR  models   that   include   the   patient   data   and   we   will   try   to   classify   them   according   to   the   different  clinical  form  representations.  

SECTION[at0000] matches { -- History of problem / condition members cardinality matches {1..*; unordered} matches { ENTRY[at0001] matches { -- Problem / Condition items cardinality matches {1..*; unordered } matches { ELEMENT[at0002] matches { -- Diabetes Mellitus value matches { SIMPLE_TEXT[at0003] matches { -- SIMPLE_TEXT originalText matches {"Yes","No","Unknown"} } } } }…}}}  

SECTION[at0000] matches { -- History of condition items cardinality matches {0..*; unordered; unique} matches { EVALUATION[at0001] matches { -- Other disorders data matches { ITEM_TREE[at0002] matches { -- ITEM_TREE items cardinality matches {0..*; unordered} matches { ELEMENT[at0003] matches { -- Disorder value matches { DV_CODED_TEXT[at0004] matches {*} -- DV_CODED_TEXT } } }}…}}}}  

Page 41: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  41  of  64  

In   order   to   identify   the   information   entity   we   are   annotating   in   the   clinical   model,   each   one   is  identified   by   using   the   ADL   path50   shown   in   the   tables.   These   annotations   are   based   on   the  ontological  infrastructure  presented  in  Section  5.  If  we  have  a  look  at  the  DL  annotations  done  to  the  ISO   13606   clinical   model,   it   can   be   observed   how   they   do   not   include   the   clinical   data,   i.e.   "no  diabetes  mellitus"  but  only  the  information  entity  that  refers  to  the  clinical  entity  "diabetes  mellitus",  that  does  not  assert   the  existence  or  absence  of   the  disease  by  using   the  universal  quantifier  only  (i.e.  SHN_clinical_information_item  and  isAboutSituation      only  SHN_SituationOfPersonWithDiabetesMellitus).  

Table  7-­‐1  ISO  13606  representation  according  to  Fig.  7-­‐3  (Form  one)  

A   similar   situation  happens  with   the   annotations  done   to   the  openEHR   clinical  model.  However   in  this  case  we  know  that  the  patient  might  have  a  disorder  but  we  do  not  know  which  one  exactly  (i.e.  SHN_clinical_information_item  and  (isAboutSituation  only  SHN_SituationOfPersonWithDisorder).  

Table  7-­‐2  openEHR  representation  according  to  Fig.  7-­‐4  (Form  two)  

The   conjunction   of   all   the   DL   annotations   provided   in   each   table   conform   the   DL   expression   that  correspond   to   the   ISO   13606   and   openEHR   representation   for   the   clinical   models   for   History   of  diabetes  (see  Table  7-­‐3).    

 

 

 

 

                                                                                                                           50  http://www.openehr.org/svn/specification/TRUNK/publishing/architecture/overview.pdf  

ISO  13606  

ADL  path   Textual  description   DL  annotations  

content[at0000]/  History   of  problem   /  condition  

SHN_clinical_information_item  and            (outcomeOf  some  SCT_history_taking)  and            (isAboutSituation    only  SHN_Clinical_Situation)  

content[at0000]/members[at0001]/   Problem   /  Condition  

SHN_clinical_information_item  and            isAboutSituation  only  SHN_ClinicalSituation  

content[at0000]/members[at0001]/  items[at0002]/  

Diabetes  mellitus  

SHN_clinical_information_item  and    isAboutSituation                    only  SHN_SituationOfPersonWithDiabetesMellitus  

openEHR  

ADL  path  Textual  

description  DL  annotations  

content[at0000]/  History   of  condition  

SHN_clinical_information_item  and            (outcomeOf  some  SCT_history_taking)  and            (isAboutSituation    only  SHN_Clinical_Situation)  

content[at0000]/items[at0001]/  Other  disorders  

SHN_clinical_information_item  and  (isAboutSituation  only                SHN_SituationOfPersonWithDisorder)  

content[at0000]/items[at0001]/  data[at0002]/  

Disorder   SHN_clinical_information_item  and  (isAboutSituation  only            SHN_SituationOfPersonWithDisorder)  

Page 42: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  42  of  64  

openEHR    (Form  two)    DL  annotations  (History  of  disorder)    

History  of  condition  and    Other  disorders  and    

Disorder  

ISO  13606  (Form  one)  DL  annotations  (History  of  diabetes)    

History  of  condition  and    Problem  /  Condition  and    

Diabetes  mellitus  SHN_clinical_information_item  and                    (outcomeOf  some  SCT_history_taking)  and                      (isAboutSituation  only  SHN_Clinical_Situation)  and    SHN_clinical_information_item  and                          isAboutSituation  only                                                  SHN_SituationOfPersonWithDisorder  and  SHN_clinical_information_item  and                        isAboutSituation  only                                SHN_SituationOfPersonWithDisorder  

SHN_clinical_information_item  and                      (outcomeOf  some  SCT_history_taking)  and                      (isAboutSituation  only  SHN_Clinical_Situation)  and  SHN_clinical_information_item  and                      isAboutSituation  only  SHN_ClinicalSituation  and  SHN_clinical_information_item  and                      isAboutSituation  only                                                    SHN_SituationOfPersonWithDiabetes  

Table  7-­‐3  DL  expression  for  openEHR  and  ISO  13606  clinical  models  

If   we   now   launch   the   DL   reasoner   the   three   representations   for   No   history   of   diabetes   (i.e.  NoHistory_of_diabetes_record_X,    where  X  corresponds  to  the  form  number)  will  classified  as  shown  in   Figure   7-­‐5.   It   has   to   be   noted   how   the   representation   for   the   form   ❸   (NoHistory_of_  diabetes_record_3)   is   more   generic   than   the   other   two   representations.   In   form   three   the  information  has  been  recorded  in  the  part  of  the  form  named  "Others"  and  it  could  therefore  refer  to   any   condition   of   the   patient.   Directly   classified   under   the   representation   for   form   three   is   the  representation  for   form  two.   In  this   last  case  the   information  has  been  recorded   in  the  part  of   the  form  named  "Other  diseases"  and  therefore  we  know  that  the  clinical  data  recorded  should  be  a  kind  of  disease.  Finally,  the  representation  for  from  one  is  the  most  specific  one.  In  this  case  the  text  field  with   the   text   "Diabetes"   in   the   form   specify   the   disease   from   which   we   want   to   obtain   some  information.  

 

Figure  7-­‐5  Reasoning  with  the  DL  annotations  for  the  No  history  of  diabetes  use  case  

For  each  of  the  clinical  information  entities  that  compose  the  history  of  the  patient,  as  well  as  for  the  diagnosis  section,  the  same  annotation  process  has  to  be  performed.  Figure  7-­‐6  shows  the  final  DL  representation   for   the   form   one;   the   others   would   have   a   similar   representation.   Note   that  Diagnosis_1,   History_FH_of_heart_failure_record_1,   etc.   are   defined   OWL   classes   but   their   full  definition  has  been  omitted  here.    

Page 43: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  43  of  64  

 

Figure  7-­‐6  final  DL  representation  for  the  form  one  

7.1.2 Phase 2: Clinical data exchange

This   phase   consists   of   exchanging   clinical   data   between   a   system   X   and   a   system   Y   by   using   the  equivalences  between  the  DL  annotations  performed  in  phase  one  and  adding  the  DL  representation  for  the  clinical  data  to  be  exchanged.  These  last  ones  will  be  received  by  the  asking  system  if  they  are  correctly  classified  in  that  one.  

We  will  explain  it  by  using  the  same  example  of  phase  one.  Imagine  that  the  forms  one  and  two  from  Figure   7-­‐1   belongs   to   the   EHR   systems   X   and   Y,   based   on   ISO   13606   and   openEHR   standards  respectively.  The  system  Y  asks  for  the  history  of  disorders  of  some  patient  of  system  X  by  using  the  openEHR  archetype   shown   in   Figure  7-­‐4.  Assuming   that   the  equivalence  between   the  different  DL  annotations   for  each   information  entity  have  been   inferred   in  phase  one   (see  Figure  7-­‐5),   the  next  step   consists   of   exchanging   the   clinical   data.   Figure   7-­‐9   shows   an   excerpt   of   the   data   extract  generated  for  the  ISO  13606  clinical  model.  This  data  should  be  received  by  the  OpenEHR  system.  

 

Figure  7-­‐7  Excerpt  of  ISO  13606  EHR  data  extract  

Table  7-­‐4   shows  all   the  DL  annotations   for  both   ISO  13606  and  openEHR  systems   representations.  The  dark  grey  row  at  the  bottom  of  the  ISO  13606  OWL  DL  expressions  representation  corresponds  to  the  DL  expression  for  the  clinical  data  to  be  exchanged  (no  diabetes  mellitus)  from  the  ISO  13606  system  to  the  openEHR  one.  

 

 

Class:  EHR_record_one          EquivalentTo:                    shn_composition                    and  ('has  abstract  part'  some  Diagnosis_1)                    and  ('has  abstract  part'  some  History_FH_of_heart_failure_record_1)                    and  ('has  abstract  part'  some  History_of_chest_pain_record_1)                    and  ('has  abstract  part'  some  NoHistory_of_diabetes_record_1)          SubClassOf:                    shn_composition                        

ELEMENT[at0002] matches { -- Diabetes Mellitus value matches { SIMPLE_TEXT[at0003] matches { -- SIMPLE_TEXT originalText matches {"Yes","No","Unknown"} }} <items type="ELEMENT"> <archetype_id>at0002</archetype_id> <name type="SIMPLE_TEXT"> <originalText>Diabetes mellitus</originalText> </name> <value type="SIMPLE_TEXT"> <archetype_id>at0003</archetype_id> <originalText>No</originalText> </value> </items>  

 

Page 44: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  44  of  64  

OpenEHR    ⇐    ISO  13606  openEHR    (Form  two)    

DL  annotations  (History  of  disorder)    History  of  condition  and    Other  disorders  and    

Disorder  

ISO  13606  (Form  one)  DL  annotations  (History  of  diabetes)    

History  of  condition  and    Problem  /  Condition  and    

Diabetes  mellitus  SHN_clinical_information_item  and                      (outcomeOf  some  SCT_history_taking)  and                      (isAboutSituation  only  SHN_Clinical_Situation)  and  SHN_clinical_information_item  and                      isAboutSituation    only                                            SHN_SituationOfPersonWithDisorder  and  SHN_clinical_information_item  and                        isAboutSituation    only                                          SHN_SituationOfPersonWithDisorder  

SHN_clinical_information_item  and                      (outcomeOf  some  SCT_history_taking)  and                      (isAboutSituation  only  SHN_Clinical_Situation)  and  SHN_clinical_information_item  and                      isAboutSituation  only  SHN_ClinicalSituation  and  SHN_clinical_information_item  and                      isAboutSituation    only                                        SHN_SituationOfPersonWithDiabetes  and  

 SHN_clinical_information_item  and                      isAboutSituation    some                                        SHN_SituationOfPersonWithoutDiabetes  

Table  7-­‐4  DL  expressions  for  information  exchange  between  ISO  13606  and  OpenEHR  systems  

If  we  launch  the  DL  reasoner  again  (see  Figure  7-­‐8)  the  clinical  data  from  the  ISO  13606  system  will  be   properly   classified   in   the   openEHR   system.   It   can   be   observed   in   the   figure,   how  "NoHistory_of_diabetes_record_1_withData"   that   corresponds   to   the   ISO   13606   DL   annotations  shown   in  Table  7-­‐4,   is   classified  under   the  class  "NoHistory_of_diabetes_record_2"   that   represents  the  DL  annotations  shown  in  the  same  table  for  the  OpenEHR  representation.  

 

Figure  7-­‐8  Reasoning  with  the  DL  annotations  for  the  No  history  of  diabetes  use  case  

7.1.3 Phase 3: Syntactic clinical information mapping

This   phase   consists   of   transforming   the   clinical   information   extracted   from   a   system   X   into   a  representation   according   to   another   system   Y.   First,   in   phase   one,   the   equivalence   between   the  different  representations  of  clinical  information  has  been  inferred.  Second,  in  phase  two,  clinical  data  have  been  properly   classified   in   the   receiver   system.  Then,   in   this  phase,   in  order   to   integrate   the  received  data  into  the  receptor  system,  a  set  of  syntactic  mapping  rules  will  have  to  be  applied  to  the  clinical   information   from   system   X   in   order   to   transform   them   to   a   representation   according   to  system  Y.  We  will  explain  it  by  using  the  same  example  of  phases  one  and  two  in  which  the  diabetes  information  is  exchanged  from  system  X  (ISO  13606)  to  system  Y  (openEHR).  Therefore,  this  step  will  

Page 45: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  45  of  64  

consist   of   transforming   each   of   the   corresponding   ISO   13606   information   entities   to   openEHR   in  order  to  represent  the  clinical   information  from  system  X  in  system  Y,  as   if   it  had  been  recorded  in  the  last  one.    This  requires  of  applying  a  set  of  syntactic  mapping  rules  previously  defined,  in  this  case  established  to  transform  ISO  13606  information  entities  into  openEHR  ones..    

openEHR   ISO  13606  Textual  

description   ADL  path   Textual  description   ADL  path  

History   of  condition   content[at0000]/  

History   of  problem   /  condition  

content[at0000]/  

Other  disorders   content[at0000]/items[at0001]/   Problem   /  

Condition   content[at0000]/members[at0001]/  

Disorder  content[at0000]/items[at0001]/  

data[at0002]/items[at0003]/  

Diabetes  mellitus  

content[at0000]/members[at0001]/  

items[at0002]/  

No  Diabetes  mellitus  

content[at0000]/items[at0001]/  

data[at0002]/items[at0003]/  value[at0004]/value  

No  content[at0000]/members[at0001]/  

items[at0002]/value[at0003]/originalText/  

Table  7-­‐5  Correspondence  between  syntactic  paths  from  ISO  13606  and  openEHR  clinical  models  

In  Table  7-­‐5  (above),  each  row  shows  an  OpenEHR  to  ISO  13606  information  entity  mapping  and  its  corresponding  ADL  paths  in  both  standard  representations.  The  last  row  in  the  table  corresponds  to  the  value,   i.e.  the  clinical  data  recorded  by  the  clinician  about  the  patient.   In  order  to  interpret  the  value,   it   has   to   be   done   together   with   the   information   entity   that   contains   it.   For   instance,   the  information   entity   ELEMENT[at0002],   which     refers   to   Diabetes   mellitus,   has   to   be   interpreted  together   with   the   value   "No"   (i.e   No   diabetes   mellitus).   The   same   occurs   in   the   openEHR  representation   where   the   information   entity   ELEMENT[at0003],   which   refers   to   the   annotation  Disorder   has   to   be   interpreted   together   with   the   value   (i.e.   SNOMED   CT   expression   "No   diabetes  mellitus").  

Then,   in   the   openEHR   representation   the   value   consists   of   the   SNOMED   CT   code   for  No   diabetes  mellitus   while   in   ISO   13606   consists   of   the   string   "No"   that   refers   to   the   information   entity  ELEMENT[at0002]  and  which  refers  to  Diabetes  Mellitus.  In  order  to  represent  this  data  according  to  OpenEHR  both   the   information  entity  and   its  value  will  have   to  be   interpreted   together  and   it  will  require   additional   transformation   rules.   In   this   case   a   rule  would   transform   the   information  entity  ELEMENT[at0002],  which   refers   to  Diabetes  mellitus   and  with   value   "No"   represented   as   a   simple  text  datatype  to  the  SNOMED  CT  code  that  represents  the  No  diabetes  information  in  OpenEHR  as  a  coded   text  datatype.   Figure  7-­‐9  depicts   an  excerpt  of   the   clinical  data  exchanged  and   represented  according  to  OpenEHR.  

Page 46: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  46  of  64  

 

Figure  7-­‐9  Excerpt  of  openEHR  EHR  data  extract  

7.1.4 Comments on Use case 1

The  above  use  case  has  shown  an  example  of  an  interoperability  scenario  in  which  it  is  possible  first  to  compute  the  equivalence  between  the  isosemantic  models  without  taking  into  account  the  values  (data  instances)  and  then  later  classify  the  clinical  data  from  one  system  into  another  one.  We  have  also  considered  that  it  was  possible  to  define  the  syntactic  mappings  between  both  openEHR  and  ISO  13606  clinical  models  without  information  loss.  

However,   the  above  use  case  corresponds   to  an   ideal   situation   in  which   the  clinical  model  entities  that  represent  the  history  of  diabetes  clinical  information  are  correctly  classified.  However,  in  other  cases  such  as   for   instance  the  case  of   the   family  history  of  heart   failure.  The  result  of  applying  the  reasoner  to  the  OWL  DL  annotations  added  to  the  information  entities  shows  a  different  situation:  

 

Since   the   information   entity   used   in   form   three   to   encode   the   family   history   of   heart   failure   is  represented   as   "History   /   Others"   and   this   only   states   that   it   is   referring   to   the   history   of   some  condition   it   is   not   classified   under   any   of   the   representations   of   form   1   and   two   where   the  information  entities  refer  to  the  family  history  of  heart  failure  and  family  history  of  disease  explicitly.  This  means  that  for  instance  the  clinical  data  from  the  system  that  uses  form  one  will  not  be  received  by  the  system  that  uses  the  form  three.  

In  phase   three,  when  syntactic  mappings  are  applied   in  order   to   represent   the  clinical  data   from  a  system  B  into  the  corresponding  representation  in  a  system  A,  not  always  will  be  possible  to  do  the  mapping  without   information   loss   and   the   rules  needed   to   implement   the  mapping  of   the   specific  clinical  data  when  they  are  represented  at  different  granularity   levels   in  the  corresponding  systems  are  not  obvious.    

ELEMENT[at0003] matches { -- Disorder value matches { DV_CODED_TEXT[at0004] matches {*} -- DV_CODED_TEXT } } <items type="ELEMENT"> <archetype_node_id>at0003</archetype_node_id> <name type="DV_TEXT"> <value>Disorder</value> </name> <value type="DV_CODED_TEXT"> <archetype_node_id>at0004</archetype_node_id> <defining_code type="CODE_PHRASE"> <terminology_id>SNOMED CT</terminology_id> <code_string> 373572006 |clinical finding absent|: {246090004|associated finding|=73211009|diabetes mellitus|} </code_string> </defining_code> <value>no diabetes</value> </value> </items>  

 

Page 47: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  47  of  64  

7.2 Use case 2 (Data abstraction for querying)

This   use   case   refrains   from   converting   the   data   from   one   clinical   model   into   another.   Here,   the  syntactical   interoperability   is  out  of  reach,  even   in  the  case  that  both  models  represent  exactly  the  same  information.  Interoperability  is  therefore  limited  to  an  exchange  of  the  semantic  annotations  in  description  logics.    

Let  us  assume  that  two  systems  X  and  Y  follow  information  model  standards  S  and  T  respectively.  For  the   same   kind   of   clinical   content   System   X   uses  model   C;   whereas   System   Y   uses  model   D.   Each  system  has  the  clinical  data  stored  according  to  these  models.  These  clinical  data  are  annotated  with  DL  expressions  (clinical  model  +  values).  Additional  metadata  (authors,  time,  location,  etc.)  are  stored  separately.  

Each   system   will   export   its   clinical   data   to   an   RDF   repository,   thus   making   them   available   for  querying.  The  inferred  model  resulting  of  the  OWL  DL  annotations  made  to  each  model  C  and  D  will  also   be   exported   to   RDF.   It   will   be   possible   to   make   SPARQL   queries   to   retrieve   data   from   both  system  X  and  Y  RDF  repositories  in  a  homogeneous  way  by  using  the  inferred  annotations.    

Clinical   Information   is   queried   and   shown   to   the   receiver   system   but   cannot   be   straightforwardly  integrated  in  it  (from  abstract  representation  to  more  concrete  one).  

The  following  example  focuses  on  showing  how  the  semantic  annotations  added  to  clinical  data  from  isosemantic  models  can  detect  that  they  are  semantically  equivalents.  

Figure   7-­‐10   shows   three   user   interfaces   (with   appropriate   value   sets)   from   three   fictitious   EHR  systems.    

 

Figure  7-­‐10  Heterogeneous  clinical  application  forms  for  recording  the  same  information  

Each  user   interface  allows  acquiring  some  kind  of   information  about  a  clinical   case   (demographics,  time,  and  other  metadata  are   left  out  for  the  sake  of  simplicity).  What  the  three   interfaces  have   in  common  is  that  they  refer  to  some  piece  of  diagnostic  information,  shortly  diagnosis.  Diagnosis  here  should  be  understood  as  the  statement  of  what  is  known  about  the  disease/disorder  of  a  patient.  A  diagnosis  DiagD  does  not  necessarily  have  a   referent  D   in   the   real  world:   if   a  diagnosis  DiagD  has  a  status  suspected,   then  we  cannot   infer   that   there   is   really  any   instance  of  D   in   the  patient,  as   it   is  typical  for  admission  diagnoses.    

Page 48: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  48  of  64  

In   the   following   figure,   each   form   consists   of   fixed   and   variable   elements   (values).   Each   of   these  elements  contributes  some  part  of  the  overall  meaning  the  whole   information  is  about.  The  yellow  comments  shown  in  Figure  7-­‐11  describe  in  text  what  the  information  represented  is  about.  

 

Figure  7-­‐11  Three  different  forms  representing  the  same  kind  of  information,  with  text  annotations  of  all  of  its  fixed  and  variable  elements  

The  whole  picture  is  only  given  by  a  combination  of  these  annotations.  If  we  now  translate  the  free  text  annotation  into  OWL-­‐DL  axioms,  one  by  one  (see  Figure  7-­‐12,  Figure  7-­‐13  and  Figure  7-­‐14):  

 

Figure  7-­‐12:  Example  of  "filled"  form  with  DL  annotations.  Note  the  different  UI  paradigms,  here  drop-­‐down  menu  vs.  check  boxes  

Page 49: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  49  of  64  

 

 

 

 

 

 

 

 

 

 

 

In   this   example,   on   purpose,   the   filled   forms   are   semantically   equivalent,  which   can   be   shown   by  automated  reasoning  (see  Figure  7-­‐18).  If  we  consider  the  models  without  values,  we  clearly  see  the  semantic  differences:  

 

Figure  7-­‐13  Example  of  a  filled  information  template  in  which  the  whole  information  is  included  in  one  term  

from  a  clinical  terminology.  The  DL  annotation  anticipates  the  supposedly  "correct"  SNOMED  CT  

representation  of  the  concept  "Suspected  heart  failure  caused  by  physical  exercise"  

 

Figure  7-­‐14:  Example  of  a  filled  information  template  with  DL  annotations.  In  contrast  to  Fig.  7-­‐12,  the  

element  "physical  exercise"  is  here  part  of  a  value  set  and  not  a  fixed  element  of  the  information  model  

 

Page 50: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  50  of  64  

 

Figure  7-­‐15:  Example  of  "empty"  information  templates.  

The   first   one   reduces   the   scope   to  organ   failure  diagnoses,   the   second  one   allows   for  whatsoever  diagnoses.  Different  degrees  of  freedom  apply  regarding  status  and  cause  between  the  models.    

The  OWL  DL  annotation  pattern  for  an  empty  clinical  information  model  requires  placeholders.  It  can  only  be  used  for  reasoning  if  all  placeholders  are  filled  by  values.  During  the  creation  of  the  clinical  models   some  OWL  DL   expressions   could   be   specified  by   leaving  open   the   specific   values   and  only  specifying  the  value  sets:.    

 

 

Figure  7-­‐16:  Example  of  a  empty  information  template  with  corresponding  DL  expressions  in  which  the  variable  elements  are  referred  to  as  ?x,  ?y,  ?z  

?x  

Page 51: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  51  of  64  

Figure   7-­‐16   depicts   how   diagnosis   instances,   e.g.   the   real   clinical   data   as   embedded   into   an  information  model  are  annotated  by  OWL-­‐DL  (T-­‐Box)  expressions.  These  annotations  have  the  form:    

Diagnosis_y#123  Type  Diagnosis  and  (isAboutSituation  only  Situation_Y)  and….  

Later,  in  order  to  add  the  clinical  data  instances,  the  'isAboutSituation  only'  is  filled  by  an  atomic  or  composed   SNOMED   CT   concept   using   OWL-­‐EL   language.   Special   patterns   apply   to   negated  statements.   The   additional   conjoints   further   specify   the   diagnosis   (e.g.   whether   confirmed   or  suspected).   It  will   have   to  be   seen   in   the   future  which  additional   information   (time,  place,  author,  patient,  etc.)  will  have  to  be  managed  outside  this  framework.  

The   following   figure   shows   three   instances,   one   for   each   form,   defined   according   to   the   OWL   DL  axioms  shown  in  the  previous  figures  (Figure  7-­‐12,  Figure  7-­‐13  and  Figure  7-­‐14).  

 

Figure  7-­‐17:  Diagnosis  instances  

The   check   for   the   semantic  equivalence  of   the   information   represented  by  each   form  can   then  be  performed  by  a  DL  reasoner  completely  at  the  T-­‐Box  level.  Queries  could  then  be  formulated  as  DL  queries  as  follows:  

Page 52: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  52  of  64  

All  three  information  instances  found

 

Figure  7-­‐18:  DL  classification  (1)  

Figure  7-­‐18  and  Figure  7-­‐19  show  how  the  three  instances  of  diagnosis  are  retrieved  independently  of  the  granularity  in  which  the  query  is  performed.  

 

 

 

 

 

 

 

 

 

Figure  7-­‐19  DL  classification  (2)  

 

 

 

 

Page 53: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  53  of  64  

7.2.1 Comments on Use case 2

The   above   use   case   has   shown   an   example   of   an   interoperability   scenario   in   which   the   clinical  information   captured   by   three   isosemantic  models   is   computed   as   semantically   equivalent   if   both  the  "empty  forms"  and  the  values  are  used  together  for  reasoning.      

It  could  be  summarized  as  consisting  of  the  following  steps:  

• Manual   semantic   annotation   of   (empty)   information   model   and   value   sets   using   the  proposed  ontology  and  SNOMED  CT  

• Filling  of  the  information  model  with  data  • Automated  semantic  annotation  of  the  model  and  the  clinical  data  

A   translation   problem   might   occur   in   step   1,   which   means   to   correctly   adding   semantics   to   the  information   model.   Ideally,   it   would   make   explicit   all   implicit   assumptions   contained   in   the  information  model.  As  humans  are   in   the   loop  who  have  to  be  trained  and  need  to  provide  a  high  quality  work  this  might  be  error  prone.  It  is  a  process  that  needs  to  be  quality  assured  as  it  will  have  a  major  impact  on  the  workflows  and  tooling.  

This   use   case   could   be   interpreted   as   a   variant   of   use   case   one,   but   it   does   not   pursue   also   the  syntactic   interoperability,  which   is   the   integration  of   the  clinical  data   in   the   receiver  system  but   to  provide   a   semantic   layer   to   current   information   systems   that   will   sit   in   between   them   and   a  sophisticated   query   system.   The  main   roles   of   this   layer   will   be   to   provide   a   consistent   semantic  representation   of   clinical   data   and   to   allow   detecting   equivalent   semantics   among   them.   Thus,   a  sophisticated  query  system  will  use  the  results  from  the  semantic  layer  in  order  to  build  queries  for  retrieving   data   from   heterogeneous   medical   repositories.   This   use   case   does   not   aim   to   provide  reverse   translation   from  the  ontological   representation   in  OWL  back   to   the  original   representation  according  to  a  specific  EHR  standard  and  ontology.  

At   this  moment  we  consider   this   the  most   realistic   scenario   for  providing  SIOp.  WP4   is  working  on  looking   for   more   practical   evidences   of   this.   However,   other   alternatives   or   combinations   of   the  already  presented  might  be   further   aim  of   study.  More  discussion  about   this   can  be  also   found   in  Section  6.  

 

 

 

 

Page 54: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  54  of  64  

8 Notes about the deliverable

At   the   time   of   writing   there   is   not   a   complete   consensus   about   all   the   aspects   discussed   in   this  deliverable.  Open  issues  have  been  highlighted  in  the  text.  The  deliverable  documents  the  work  and  the  discussions  during  the  first  ten  months  of  SemanticHealthNet  WP4.  It  constitutes  a  snapshot  of  lively  discussions   at   the  end  of  November  2012.   It   successfully  documents   the  problems   that   exist  when   trying   to   formalize   SIOp   using   a   deep   ontological   analysis   and   principled   representation  languages   and  upper  models.   Preliminary   results   show   the  need   for   compromises   due   to   practical  implementation   issues.   It   also   anticipates   the   challenges   of   tooling   and   training  when   it   comes   to  practical  realizations.  

The   examples   provided   are   deliberately   simple   and   fictitious.   They   should   not   be   too   seriously  analysed   from   a   clinical   point   of   view,   but   seen   as   exemplars   that   are   understandable   both   for  medical   experts   and  medical   informaticians.   They   are  meant   to   highlight   several   facets   of   clinical  documentation   and   as   blueprints,   which   can   support   real   clinical   applications.   Currently,   WP4  together  with  WS1  are  working   in  developing  a  heart  care  summary  that  will  be   later  used  as  SIOp  use   case  and   thus  used   to   test   the   framework  presented  here.  Whereas   the   current  examples  are  very   diagnosis-­‐driven,   the   heart   care   summary   will   shift   the   focus   also   to   other   aspects   of  documentation.  

Further  discussions  will  be  followed  in  the  consortium  taking  this  deliverable  as  source  in  which  most  of  the  challenges  to  get  SIOp  are  presented.  On  a  longer  term,  the  practicality  and  tractability  of  the  suggested   approaches   have   to   been   studied   in   tested   in   real   world   settings   in   the   framework   of  SemanticHealthNet  Workstream  2  and   translated   into  a  more  accessible   form   to  enable  a  broader  group  of  implementers  to  appreciate  and  learn  from  the  experience.  

 

 

Page 55: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  55  of  64  

9 Annex I Heart care summary use case

The  SemanticHealthNet  Network  of  Excellence  project  held  a  two  days  technical  meeting  on  26th  and  27th  April  in  Copenhagen,  in  which  participated  partners  of  WP4  (see  participants  list).  Three  external  experts  were  also  invited  to  the  meeting.  

One  of  the  main  objectives  of  this  first  technical  meeting  was  to  represent  an  example  use  case  by  using   different   EHR   standards   together   with   SNOMED   CT.     To   this   end,   one   month   before   the  meeting,  the  partners  from  the  OpenEHR,  HL7,  EN  13606  and  IHTSDO  organizations,  had  received  the  following  use  case:  

USE  CASE  #1:  HEART  CARE  SUMMARY    VISIT  DATE:                                21/07/2004  PATIENT:                                    Minnie  Mouse  HOSPITAL:                                  Hospital  no  1    HISTORY:  An  80-­‐year-­‐old  patient  presents  herself  in  an  outpatient  clinic  due  to  breathlessness  and  a  lot  of  fatigue.  The  primary  diagnosis  is  heart  failure.  Allergies  are  unknown.  The  patient  is  not  diabetic  and  there  is  no  answer  to  the  question  whether  the  patient  had  pain.    HEART  FAILURE  EVALUATION:  BP  is  104/58.  Current  status  of  heart  failure  is  moderate  to  severe,  and  the  disease  is  stable.    ON  EXAMINATION  (21/07/2004):  Oedema  around  knees.  JVP  at  ear  lobes  level.  Tachycardia.    Most  recent  ECG  (17/07/2004)  shows  a  heart  rate  of  73,  atrial  fibrillation  and  previous  anterior  infarct.    REQUESTED  TESTS:  glucose  tolerance  test    Patient  was  recommended  to  start  spironolactone  25mg/d.  Check  potassium  in  two  weeks.  

During  the  first  meeting  day,  the  workpackage  leaders  exposed  some  basic  ideas  of  their  suggested  methodology  to  harmonize  heterogeneous  documentation  artefacts.    

The  partners'  resulting  models  were,  one  by  one,  presented  and  discussed.  Another  objective  of  this  meeting   was   to   present   a   possible   solution   that   could   serve   as   bridge   between   the   different  representations  provided.    The  second  day,  the  WP  leaders  presented  their  ontological  framework  as  a   possible   solution   and   presented   an   overview   of   some   general   aspects   of   it.   Afterwards,   some  fragments   of   the   use   case   were   firstly   compared   in   terms   of   the   different   information   model  specifications  and  later  represented  according  to  the  ontology  proposed.  Finally,  an  overview  of  how  the   transformation   of   each   particular   representation   to   the   ontological   formalism   could   be  performed  was  given.  There  was  no  fundamental  criticism  of  the  ontology-­‐based  method  proposed.  However,   there   was   not   time   enough   to   discuss   many   controversial   aspects.   This   happed   in  subsequent  e-­‐mail  discussions,  which  are  also  in  the  scope  of  this  report.  

Page 56: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  56  of  64  

The  next  subsections  intend  to  provide  a  brief  summary  of  the  presentations  given  by  the  different  partners.  A  more  extended  explanation  of  each  one  can  be  seen  in  the  Annex  section.  

Following  we  will  show  how  the  same  clinical  information  is  represented  heterogeneously  depending  on   the   EHR   standards   and   clinical   vocabularies   used.   More   specifically   we   will   show   its  representation   according   to   openEHR,   HL7   CDA   and   SNOMED   CT.   Attention   will   be   paid   to   the  SNOMED  CT  bindings  provided  and  the  information  embedded  in  the  information  model  structures.  We  will  compare  these  representations  and  then  we  will  provide  their  definition  in  OWL  by  using  the  ontological  framework  above.  Finally  we  will  discuss  some  of  the  problems  we  found.  

The  example  chosen   is   the   following  clinical   information  statement,    "The  patient   is  not  diabetic",  extracted   from   the   history   section   of   the   heart   care   summary   report.   According   to   openEHR,   this  statement   could   be   represented   by   using   the   archetype   openEHR-­‐EHR-­‐EVALUATION.exclusion-­‐problem_diagnosis.v1.  Following,  in  Figure  9-­‐1,  an  extract  of  its  encoding  is  shown.  

Figure  9-­‐1:  OpenEHR:  "The  patient  is  not  diabetic"  

By  means  of   a   template   the   value  of   the   "ELEMENT[at.09]"   can  be   fixed   to   the  default   coded   text  value  73211009  |Diabetes  mellitus|,  being  a  reference  to  the  SNOMED  CT  code  73211009  with  the  preferred   term   "Diabetes   mellitus"   for   the   sake   of   human   readability.   Here   we   can   observe   how  information   entities  may   include   some   semantic   as   it   happens  with   the   openEHR  ELEMENT   entity  that   has   the  meaning   no   previous   history   of   embedded.   If   the   same   statement   is   represented   by  using  the  HL7  CDA  standard,  the  encoding  depicted  in  Figure  9-­‐2  will  be  obtained.  

 

 

EVALUATION[at0000.1]  matches  {  -­‐-­‐  Exclusion  statement  -­‐  Problems  and  Diagnoses      data  matches  {            ITEM_TREE[at0001]  matches  {  -­‐-­‐  Tree              items  cardinality  matches  {0..*;  unordered}  matches  {                  ELEMENT[at0.9]  occurrences  matches  {0..1}  matches  {                      -­‐-­‐  No  previous  history  of                      value  matches  {  -­‐-­‐  73211009  |  diabetes  mellitus  |                          DV_TEXT  matches  {*}                      }  }  ...  }}}}    

Page 57: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  57  of  64  

 

Figure  9-­‐2:  HL7  CDA:  "The  patient  is  not  diabetic"  

It  can  be  observed  how  the  fact  that  the  patient  does  not  have  diabetes  mellitus  is  defined  inside  a  problem  section  template,  as  an  observation,  a  kind  of  HL7  ACT  entity,  whose  value  is  the  following  SNOMED  CT  post-­‐coordinated  expression:  

             373572006  |clinical  finding  absent|  :  {                     246090004  |associated  finding|  =                       73211009  |diabetes  mellitus|}  

It  is  noteworthy  that  the  treatment  of  negation  is  fundamentally  different  from  openEHR.  Whereas  in  openEHR   the  whole   archetype   embodies   the   negative  meaning,   HL7   Terminfo   project   in   this   case  recommends,   to  avoid  confusion,  not   to  use  any  negation  semantics  within   the   information  model  (although   it   is   not   forbidden).   This   requires   that   the   target   ontology   caters   for   negation,   which  explains  the  need  of  a  post-­‐coordinated  SNOMED  CT  expression  as  demonstrated.  

SNOMED  CT,  due  to  its  hierarchy  of  "context-­‐dependent  categories"  provides  concepts  for  expressing  information   entities   such   as   document   sections,   thus   blending   information   entities   and   domain-­‐ontology  aspects  (see  Figure  9-­‐3):  

     422625006  |history  of  present  illness  section|             373572006  |clinical  finding  absent|  :  {                                     246090004  |associated  finding|  =                                                             73211009  |diabetes  mellitus|}    

Figure  9-­‐3:  SNOMED  CT:  "The  patient  is  not  diabetic"  

<component> <section> <templateId root='2.16.840...'/><!--Problem section template--> <title>Problems</title> ... <entry typeCode="DRIV"> <act classCode="ACT" moodCode="EVN"> <templateId root='2.16.840...'/><!--Problem act template--> ... <entryRelationship typeCode="SUBJ"> <observation classCode="OBS" moodCode="EVN"> <!-- Problem observation template --> <templateId root='2.16.840.1...'/> <code code="ASSERTION" codeSystem="2.16.840..."/> <value xsi:type="CD" ... displayName=not diabetic/> <entryRelationship typeCode="REFR"> <observation classCode="OBS" moodCode="EVN"> <!--Problem status observation template--> <templateId root='2.16.840...'/> <code code="33999-4" ... displayName="Status"/> <statusCode code="completed"/> <value xsi:type="CE" ... displayName="Active"/> </observation> </entryRelationship> </observation> </entryRelationship> </act> </entry> ...  

Page 58: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  58  of  64  

Our   examples   demonstrate   that   for   the   same   piece   of   information   there   are   different   possible  representations:   in   openEHR   the   negation   is   expressed   by   the   archetype   proper   and   the   clinical  meaning  is  provided  by  the  binding  to  one  simple  SNOMED  CT  code;  in  HL7  CDA  it  is  achieved  via  the  binding  to  a  complex  SNOMED  CT  expression  that  embodies  the  negative  meaning.  The  latter  is  also  the   case   with   the   SNOMED   only   encoding,   where   the   SNOMED   CT   expression   from   the   second  example   is  wrapped   into  a  contextual   information  entity,  using   the  concept  422625006  |history  of  present  illness  section|  from  SNOMED  CT.  

How  can  we  make  sure  that  the  three  encodings  have  equivalent  meanings?  SemanticHealthNet  will  examine  the  role  of  an  ontological  framework  for  semantic  annotations  that  can  be  generated  out  of  the   diverse   information   model   /   ontology   combinations,   and   from   which   semantic   equivalence  should  be  computed  automatically,  using  OWL-­‐DL  as  a  language  that  allows  a  logic-­‐based  rendering  of  the  information,  which  then  can  be  submitted  to  description  logics  classifiers  for  testing  semantic  equivalence.  In  this  framework  the  fact  that  a  person  does  not  have  diabetes  mellitus  in  their  clinical  history  will  be  expressed  by  means  of  a  complex  semantic  annotation  of  the  information.  This  piece  of   information   that   states   the   absence   of   diabetes   in   the   history   is   identified   as   the   instance   (or  annotation)  of  an  OWL  class,  here  called   (DocumentItemAboutSituationWithoutDiabetes),  which   is,  ontologically,   a   specialization   of   the   class   InformationEntity.   By   means   of   the   isAboutSituation  relation   it   is   related   to   a   logical   expression   that   defines   the   clinical   situation   under   scrutiny  (ClinicalSituationOfPersonWithoutDiabetes):  

         ClinicalSituationOfPersonWithoutDiabetes  equivalentTo                   processualPartOf  some  (BiologicalLife  and                                           (hasParticipant  some  (HumanOrganism  and                                                                   (not  (locusOf  some  SCT_Diabetes)))))    

         DocumentItemAboutSituationWithoutDiabetes  equivalentTo                 (abstractPartOf  some  Document)  and                                                (isAboutSituation  some  ClinicalSituationOfPersonWithoutDiabetes)    

 In  order  to  obtain  this  ontological  representation,  some  patterns  and  mapping  rules  have  previously  to   be   defined   at   the   level   of   the   archetype   or   clinical   models.   For   instance   that   the   SNOMED   CT  concepts  finding  with  explicit  context  instead  of  findings  must  be  used  when  binding  HL7  documents  and   archetypes   to   SNOMED   CT.   Clinical   finding   present,   clinical   finding   absent,   clinical   finding  suspected  or  clinical   finding  unknown  are  subtypes  of   the  concept   finding  with  explicit   context  and  they  could  be  easily  transformed  to  our  ontological  representation.  For   instance,  this  would  be  the  representation  for  the  case  clinical  finding  absent:  

           DocumentItem  and  isAboutSituation  some  (Situation                   and  not  associatedFinding  some  ClinicalCondition)  

In  the  above  representation  the  relation  associatedFinding  has  been  used  for  simplification  reasons  but  it  is  defined  as:  

           associatedFinding  =  processualPartOf  o  hasParticipant  o  locusOf  

Page 59: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  59  of  64  

As  a  result,  all  meaning-­‐bearing  elements   in  clinical  documents  would  then  be  annotated  by   logical  expressions  in  OWL-­‐DL,  which  refer  to  one  or  more  SNOMED  CT  concepts.  The  equivalence  of  such  expressions  could  then  be  verified  by  DL  reasoners.  However,  there  are  some  issues  that  have  to  be  better  studied  as  the  representation  of  the  context.  The   statement   that   the   patient   has   no   diabetes   mellitus   does   not   say   anything   about   its   precise  context.  Questions  such  as  "does  it  refer  to  the  result  of  some  examination  that  has  just  been  done?"  or  "is  it  part  of  his/her  past  history?",  have  to  be  answered.  In  the  representations  above  provided,  the  context  has  been  expressed  also  in  different  ways.  In  openEHR  the  context  was  embedded  in  the  information   entities   (No   previous   history   of)   as   well   as   in   HL7   CDA   where   it   was   included   in   the  problems  section.  In  SNOMED  CT  a  concept  from  the  hierarchy  record  artefact  was  used  (history  of  present  illness  section).  Therefore,  the  context  of  the  finding  has  to  be  clearly  identified  and  in  order  to  do  it  is  necessary  to  establish  some  patterns  that  will  depend  on  the  EHR  standard  used.  

 

Page 60: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  60  of  64  

10 Annex II: Clinical Situation

(from  Manuscript  "The  Ontology  of  Clinical  Situations"    by  A.  Andrade  et  al.,  submitted  to  JAMIA)    

Discourse  about  clinical  situations  requires  first  explicitly  capturing  the  meaning  of  medical  terms  or  codes  as  used   in  the  electronic  health  record  and  secondly   identifying  the  ontological  categories  of  the   clinical   entities   denoted   by   these   terms.   This   demands   clear   definitions   of   what   clinical  conditions,   or  more   specifically,  what  diseases   and  disorders   are.   In  OGMS   it   is   proposed   that   the  term   "disease"   denotes   a   subclass   of   disposition,   which   members,   if   realized,   are   realized   in  pathological  processes  due  to  one  or  more  "disorders"  in  the  organism  bearing  the  disease  instance.  The  term  "disorder"  denotes  combinations  of  physical  components  that  are  clinically  abnormal  and  not  part  of  any   larger  such  combination.  For  example,   the  disease  Heart  Failure   is  a  disposition   to  undergo   tachycardia   and   pulmonary   congestion   (pathological   processes),   caused   by   a   physical  disorder  of  the  heart,  such  as  myocardial  cell  death  after  a  heart  infarction.    

However,   medical   language   (and   therefore   terminology)   tends   to   disregard   such   systematic  distinctions   between   disorder,   disease   and   pathological   process.     Instead,   it   uses   "disease"   and  "disorder"  in  sometimes  idiosyncratic  ways.  It  is  therefore  not  surprising  that,  in  SNOMED  CT,  entities  named  "disease"  and  "disorder",  as  well  as  signs  and  symptoms,  regardless  of  whether  they  denote  processes,  abnormal  body  parts,  or  dispositions,  appear  intermixed  under  a  single  category,  such  as  Clinical   Finding.   Moreover,   clinical   findings   are   not   necessarily   pathologic,   such   as  309534003|Normal   height|.   This   can   be   observed   in   ICD,   too,   e.g.   Z55.0   Illiteracy.   The   inclusion  criterion   for   a   term   is   not   primarily   whether   it   denotes   a   pathological   entity   but   whether   it   is   of  clinical   interest.51   We   therefore   ignore   the   distinction   between   "abnormal"   or   "pathological"   and  introduce   Clinical   condition   as   a   common   category   containing   all   entities   that   are   referred   to   by  medical  documentation  and  science:  

ClinicalCondition  equivalentTo     ClinicalMaterialEntity  or  ClinicalDisposition  or  ClinicalProcess  

This  disjunctive  class  is  not  meant  to  blur  the  boundaries  between  material  entities,  dispositions  and  processes.  That  "cancer"  denotes  malignant  tissue   in  one  context  and  malignant  growth   in  another  one  does  not  mean  at  all  that  instances  of  cancer  are  both  occurrents  and  continuants.  Which  type  it  instantiates   is   deliberately   left   open,   so   that   in   the   moment   a   term   or   a   code   is   used,   a  disambiguation   may   possibly   occur   according   to   the   context   of   use.   All   competing   definitions   of  Clinical  Situation  we  will  introduce  in  the  following  will  refer  to  this  disjunctive  class  ClinicalCondition.    

The  problem  now  is  to  find  an  easy  and  ontologically  consistent  way  to  relate  Clinical  situations  with  Clinical  Conditions.  For  this  purpose  we   introduce  the  relation   includes,  which  can  be  distinguished  into  the  following  cases:  

1. A  process  x  coexists  with  a  process  y.  y  is  a  part  of  x  which  temporally  coincides.      

2.    A  process  x  coexists  with  a  material  entity  y.    

                                                                                                                         51  We  do  not   find   it   important   at   this   point   to   deliberate   any   further   about   the   boundary   between   the   normal   and   the  abnormal,  which  we  regard  as  fuzzy  and  of  debatable  ontological  relevance.  

Page 61: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  61  of  64  

3. A  process  coexists  with  a  disposition.  This  means  that  this  process  includes  a  material  entity  while  it  bears  a  disposition  

includes  (x,  y)  :=  ∀x  ∀y  Process(x)  ∧    

                     (Process(y)    ∧  ∃r  ∃s  (SpatiotemporalRegion(r)  ∧  SpatiotemporalRegion(s)  ∧    

                       'occupies  spatiotemporal  region'(x,  r)  ∧  'occupies  spatiotemporal  region'(y,  r)  ∧    

                       'occurrent  part  of'(r,  s)))  

                     ∨  

                     (MaterialEntity(y)  ∧  ∀t  ('exists  at'(x,  t)  →    'exists  at'(y,  t)  ∧  

                           ∃s  ∃r  (SpatiotemporalRegion(s)  ∧  SpatialRegion(r)  ∧    

                           'occupies  spatiotemporal  region'(x,  s)  ∧  'projects  onto'(s,  r,  t)  ∧  'located  at'(y,  r,  t))))              

                       ∨  

                       (Disposition(y)  ∧  ∀t  ('exists  at'  (x,  t)  →    'exists  at'  (y,  t)  ∧  

                             ∃s  ∃r  ∃m  (SpatiotemporalRegion(s)  ∧  SpatialRegion(r)  ∧  MaterialEntity(m)  ∧    

                             'occupies  spatiotemporal  region'(x,  s)  ∧  'projects  onto'(s,  r,  t)  ∧    

                             'located  at'(m,  r,  t)  ∧  'bearer  of'(m,  y,  t))))  

 

A   ClinicalSituation_X   is   a   temporal   part   (phase)   of   a   person's   life   during   which   some  ClinicalCondition_X  is  present    

This  definition  restricts  clinical  situation  to  phases  of  a  person's  life  and  follows  closely  the  meaning  embedded  into  the  above  relation  includes:      

ClinicalSituation_X  equivalentTo  

  Process  and  ('temporal  part  of'  some  Life)  and    (includes  some    ClinicalCondition_X)      

With  ClinicalSituation  being  a  Process  that  is  'temporal  part  of'  some  Life,  CancerSituation  would  be  represented  as:  

CancerSituation  equivalentTo  ClinicalSituation  and  includes  some  Cancer  

It  is  here  of  no  consequence  whether  the  cancer  is  seen  as  a  material  entity  or  a  process.  A  situation  without  cancer  is  also  a  situation:  

SituationWithoutCancer  equivalentTo  ClinicalSituation  and  not  (includes  some  Cancer)  

Accordingly,  a  ClinicalSituation_X_Y  is  a  phase  of  a  patient's  life  for  which  some  ClinicalCondition_X  and  some  ClinicalCondition_Y  is  wholly  present:    

Page 62: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  62  of  64  

ClinicalSituation_X_Y  equivalentTo  ClinicalSituation  and  

  includes  some  ClinicalCondition_X  and  

             includes  some  ClinicalCondition_Y  

This  is  consistent  with  numerous  SNOMED  CT  concepts  where  C  with  D  is  a  subclass  of  both  C  and  D:  A   clinical   situation   with   cancer   and   dyspnea   would   be   both   subsumed   by   CancerSituation   and   by  DyspneaSituation.   Similarly,   KidneyHematomaSituation   would   be   a   common   child   of   both  HemorrhageSituation   and   RenalMassSituation,   just   as   a   TetralogyOfFallotSituation   would   be   a  common   child   of   PulmonicValveStenosisSituation   and   VentricularSeptumDefectSituation   (among  others).  However,  a  RenalMassSituation  would  only  be  a  KidneyHematomaSituation  as  long  as  both  conditions  are  equally  present.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 63: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  63  of  64  

11 Annex III: Notes about ContSys

The   ContSys   standard   introduces   concepts   with   direct   traceability   to   an   explicit   model   of   clinical  processes,  with  a  special  focus  on  the  health  state  of  an  individual.  Aspects  that  compose  the  health  state   are   defined   in   ContSys   as   health   conditions.   Different   types   of   health   conditions  (observed/perceived,  assessed,  considered,  target,  prognostic  and  risk  conditions)  can  be  linked  to  a  clinical   situations   and/or   to   steps   in   the   clinical   process   through   the   reference   clinical   models  representing   the   clinical   context.   Links   are   needed   for   both   clinical   content   and   clinical   process  context.  Which   characteristics   each   clinical   reference  model   should   include   can   be   identified   from  current   information   models   and   vocabularies.   Based   on   reference   clinical   models   with   their  exhaustive  gross  list  of  characteristics/attributes  from  different  sources  more  specific  clinical  models  for  different  types  of  clinical  processes  (e.g.  the  clinical  process  for  heart  failure)  can  be  derived.  This  would  mean  that  a  symptom  of  e.g.  fatigue  in  chronic  heart  failure  could  be  represented  by  such  a  specialisation  of  the  reference  clinical  model  for  body  function.  According  to  the  use  case,  only  those  attributes  in  the  reference  model  found  relevant  will  be  populated  by  values.      

Clinical  processes  modify  clinical  conditions.  For  instance,  an  observation  value  is  assessed  with  some  uncertainty   and   later   identified   as   a   considered   condition.   After   further   process   steps   with  investigation  activities  more  observations  are  added  as  separate  perceived  conditions  that  later  can  be  used  as  criteria  for  a  more  holistic  description  of  the  health  state.  Successively  criteria  are  added  and  commonly  the  considered  condition  is  transformed  (and  relabelled)  as  a  perceived  condition.  If  the  genesis  of  the  perceived  condition   is  assessed  as  reasonable  sure,  the  condition   is  transformed  into   an   assessed   condition.   The   life   cycle   of   a   clinical   process   contain   such   refinements   of   the  perceptions   of   the   health   state.   The   effect   of   treatments,   influencing   the   health   state,   are  correspondingly  observed  and  registered  as  new  health  conditions.    

In   SemanticHealthNet   clinical   conditions   are   indirectly   represented   through   clinical   situations.   To  what   extent   the   ContSys   notions   of   condition   and   situation   come   close   to   the   ones   introduced   in  SemanticHealthNet.  

The  process  model  in  ContSys  is  based  on  the  definition  of  process  in  ISO  9000:2005  “set  of  interrelated  or  interacting   activities   which   transform   inputs   into   outputs”.   Processes   are   categorised   by   their   customer,  input,   refinement   object   and   output   respectively.   The   customer   of   the   process   is   the   individual   or   the  patient.  The  input  is  an  individual’s  health  status  and  the  process  consists  of  activities  aiming  to  indirectly  or  directly  add  value  to  the  individual’s  health  status.  There  is  a  core  process  and  to  support  this  core  process  there  are  almost  always  several  supportive  processes  which  influence  and  interact  with  the  core  process.  

Examples   are  Health   overview  –   past   and   present   health   conditions   and   health   care   activities,   Diagnosis:  perceived   condition   as   criteria   –   assessed   condition,   Motivating   condition   -­‐   considered   condition   -­‐  investigating   activity-­‐   resulting   perceived   condition,   Motivating   condition   -­‐   target   condition   –   treatment  activity   –   resulting  perceived   condition,  Health  problem:  health   conditions   as   criteria   for   health   problem,  Health   related   risk:   underlying   condition/activity   –   triggering   event   –   risk   condition/activity   –   resulting  condtion/activity.      

In  SemanticHealthNet  the  closest  to  the  idea  of  “reference  clinical  models  for  clinical  situations”  correspond  possibly   to   the   idea   of   Healthcare   situation,   which   is   distinct   from   Clinical   Situation,   and   which   at   the  moment  has  not  been  studied  in  depth.  Healthcare  situations  will  comprise  a  set  of  related  clinical  situation  of  the  patient  system  plus  surrounding  situations  (which  do  not  comprise  the  patient  system)  with  regards  to  some  healthcare  delivery.  

Page 64: SemanticInteroperabilityforHealthNetwork) Deliverable4.1 ... 288408 D4_1 Initial m… · Introduction and objectives 1.1 The SemanticHealthNet Project Semantic!interoperability!(SIOp)!of!clinical!datais!avital!prerequisitefor!enablingpatient9centred!

SemanticHealthNet      

D4.1  Initial  models  covering  the  heart  failure  use  case     Page  64  of  64  

In   ContSys,   the   reference   clinical  models   for   steps   in   the   clinical   process   are   combinations   of   situational  models  and  sometimes  models   for  single  concepts.  The  combinations  also  here  are  based  on  experiences  from  analyses  of  a  great  number  of   clinical  processes.  There  are   three  basic   types:  health   request,  needs  assessment  and  activity  plan.  

In   SemanticHealthNet   the   links   between   the   clinical   processes   involved   in   the   clinical   information  generation  are  not   represented  at   this  moment.  This  would  correspond   to   the   relations  defined  between  the  clinical  actions  that  have  as  a  result  some  information  referring  to  some  clinical  situation  of  the  patient.