semianr 2. (2)

38
AN APPLICATION OF INTERVAL- VALUED FUZZY SOFT SETS IN MEDICAL DIAGNOSIS Guide:Dr. Sunil Jacob John Jobish VD M090054MA

Upload: jobishvd

Post on 05-Jul-2015

204 views

Category:

Education


1 download

TRANSCRIPT

Page 1: Semianr 2. (2)

AN APPLICATION OF INTERVAL-

VALUED FUZZY SOFT SETS IN

MEDICAL DIAGNOSIS

Guide:Dr. Sunil Jacob John Jobish VD

M090054MA

Page 2: Semianr 2. (2)

Contents.

1. Preliminaries.

2. Application of interval valued fuzzy

soft set in medical diagnosis.

3. Algorithm.

4. Case Study.

Page 3: Semianr 2. (2)

1. Preliminaries.

Page 4: Semianr 2. (2)

Definition 1.1[3]:

Let U - initial universe set

E - set of parameters.

P (U) - power set of U. and,

A - non-empty subset of E.

A pair (F, A) is called a soft set over U,

where F is a mapping given by F: A P (U).

Page 5: Semianr 2. (2)

Example 1.1;

Let U={c1,c2,c3} - set of three cars.

E ={costly(e1), metallic color (e2), cheap (e3)}

- set of parameters. A={e1,e2} ⊂ E. Then;

(F,A)={F(e1)={c1,c2,c3},F(e2)={c1,c3}}

“ attractiveness of the cars” which Mr. X is going to buy .

Page 6: Semianr 2. (2)

Definition 1.2[3]:

Let U - universal set,

E - set of parameters and A ⊂ E.

Let F (U) - set of all fuzzy subsets of U.

Then a pair (F,A) is called fuzzy soft set over

U, where F :A F (U).

Page 7: Semianr 2. (2)

Example 1.2;

Let U = {c1,c2,c3} - set of three cars.

E ={costly(e1),metallic color(e2) , getup (e3)}

- set of parameters.

A={e1,e2 } ⊂ E.

Then;

(G,A) = { G(e1)={c1/.6, c2/.4, c3/.3},

G(e2)={c1/.5, c2/.7, c3/.8} }.

- fuzzy soft set over U.

Describes the “ attractiveness of the cars” which

Mr. S want.

Page 8: Semianr 2. (2)

.

Definition 1.3[3]: An interval-valued fuzzy

sets X on the universe U is a mapping

such that;

X : U → Int ([0,1]).

where; Int ([0,1]) - all closed sub-intervals

of [0,1].

The set of all interval-valued fuzzy sets on U is

denoted by F (U).

Page 9: Semianr 2. (2)

.1)()(0

X x tomembership of degreeupper )(

X x tomembership of degreelower )(

X toelement x an of

-membership of degree T he)](),([)(

),(~ˆ

ˆˆ

ˆ

ˆ

ˆˆˆ

xx

x

x

xxx

UxUFX

xU

xL

xU

xL

xU

xL

x

If,

Page 10: Semianr 2. (2)

-bygiven is ˆ ˆ

by, denoted ,ˆ and ˆ of Union

Then, .) ( ~

ˆ ,ˆ

YX

YX

UFYXLet

]. ) ) ( ˆ , ) ( ˆ

( sup

, ) ) ( ˆ

, ) ( ˆ

( sup [

)] ( ˆ

, )( ˆ

[ sup ) ( ˆ ˆ

xyU

xx

U

xy

Lx

x

L

xy

xx

xYX

Page 11: Semianr 2. (2)

-bygiven is ˆ ˆ

by, denoted ,ˆ and ˆ ofon Intersecti

Then, .) ( ~

ˆ ,ˆ

YX

YX

UFYXLet

]. ) ) ( ˆ

, ) ( ˆ

( inf

, ) ) ( ˆ

, ) ( ˆ

( inf [

)] ( ˆ

, )( ˆ

[ inf ) ( ˆ ˆ

xy

Uxx

U

xy

Lxx

L

xy

xx

xYX

Page 12: Semianr 2. (2)

-bygiven is nd

,cˆby denoted ˆ of comlement

Then, .) ( ~

ˆ ,ˆ

a

XX

UFYXLet

]. ) ) ( ˆ

L - 1 , ) ( ˆ

- 1 [

. )( ˆ

- 1 ) ( c ˆ

xy

xx

U

xx

xX

Page 13: Semianr 2. (2)

Definition 1.7 [4]:

Let U universal set.

E set of parameters.

and A ⊂E.

set of all interval-valued fuzzy sets on

U.

Then a pair (F, A) is called interval-valued fuzzy

soft set over U.

where F : A

)(~

UF

).(~

UF

Page 14: Semianr 2. (2)

Definition 1.8[5]: The complement of a

interval valued fuzzy soft set (F,A) is,

(F,A)C = (FC,¬A),

where ∀α ∈ A ,¬α = not α .

FC: ¬A F ( U ).

FC(β ) = (F ( ¬β ))C , ∀β ∈ ¬A

Page 15: Semianr 2. (2)

Example2.3:

Let U={c1,c2,c3} set of three cars.

E ={costly(e1), grey color(e2),mileage (e3)},

set of parameters.

A={e1,e2} ⊂ E. Then,

(G,A) = {

G(e1)=⟨c1,[.6,.9]⟩,⟨c2,[.4,.6]⟩,⟨c3,[.3,.5]⟩,

G(e2)= ⟨c1,[.5,.7]⟩, ⟨c2,[.7,.9]⟩ ⟨c3,[.6,.9]⟩

}

“ attractiveness of the cars” which Mr. X want.

Page 16: Semianr 2. (2)

Example 2.4:

In example 2.3,

(G,A)C = {

G(¬e1)=⟨c1,[0.1,0.4]⟩, ⟨c2,[0.4,0.6]⟩,⟨c3,[0.5,0.7]⟩,

G(¬e2)=⟨c1,[0.3,0.5]⟩, ⟨c2,[0.1,0.3]⟩⟨c3,[0.1,0.4]⟩

}.

Page 17: Semianr 2. (2)

2. Application –

in

medical diagnosis.

Page 18: Semianr 2. (2)

S - Symptoms, D – Diseases, and P - Patients.

Construct an I-V fuzzy soft set (F,D) over S

F:D→

A relation matrix say, R1 - symptom-disease

matrix- constructed from (F,D).

Its complement (F,D)c gives R2 - non

symptom-disease matrix.

We construct another I-V fuzzy soft set (F1,S)

over P, F1:S→

).(~

SF

).(~

PF

Page 19: Semianr 2. (2)

We construct another I-V fuzzy soft set (F1,S)

over P, F1:S→

Relation matrix Q - patient-symptom matrix-

from (F1,S).

Then matrices,

T1=Q R1 - symptom-patient matrix, and

T2= Q R2 - non symptom-patient matrix.

).(~

PF

Page 20: Semianr 2. (2)

The membership values are calculated by,

)},,(),({ b

)},,,(),({

],[),(

1

1

1

sup

inf

kjR

U

jiQ

j

kjR

L

jiQ

L

j

kiT

deep

deepa

badp

U

)},,(),({ y

)},,,(),({

],[),(

2

2

2

sup

inf

kjR

U

jiQ

j

kjR

L

jiQ

L

j

kiT

deep

deepx

yxdp

U

Page 21: Semianr 2. (2)

The membership values are calculated by,

)},(),({ q

)},(),({

),(

11

11

1

j

j

ijTU

jiTU

ijTL

jiTL

jiT

dpdp

dpdpp

qpdpS

)},(),({ t

)},(),({

),(

22

22

2

j

j

ijTU

jiTU

ijTL

jiTL

jiT

dpdp

dpdps

tsdpS

Page 22: Semianr 2. (2)

3. Algorithm.

Page 23: Semianr 2. (2)

1. Input the interval valued fuzzy soft sets (F,D)

and (F,D)c over the sets S of symptoms, where

D -set of diseases.

2. Write the soft medical knowledge R1 and R2

representing the relation matrices of the

IVFSS (F,D) and (F,D)c respectively.

Page 24: Semianr 2. (2)

3. Input the IVFSS (F1,S) over the set P of

patients and write its relation matrix Q.

4. Compute the relation matrices T1=Q R1 and

T2=Q R2.

5. Compute the diagnosis scores ST1 and ST2

Page 25: Semianr 2. (2)

6. Find Sk= maxj { ST1 (pi , dj) ─ ST2 (pi,┐dj)}.

Then we conclude that the patient pi is

suffering from the disease dk.

Page 26: Semianr 2. (2)

4. Case Study.

Page 27: Semianr 2. (2)

Patients - p1, p2 and p3.

Symptoms (S) - Temperature, Headache, Cough

and Stomach problem

S={ e1,e2,e3,e4} as universal set.

D ={d1,d2}.

d1 - viral fever, and

d2 - malaria.

Page 28: Semianr 2. (2)

Suppose that,

F(d1) ={ ⟨e1, [0.7,1]⟩, ⟨e2, [0.1,0.4]⟩,

⟨e3, [0.5,0.6]⟩, ⟨e4,[0.2,0.4]⟩) }.

F(d2) ={ ⟨e1,[0.6,0.9] ⟩, ⟨e2,[0.4,0.6] ⟩,

⟨e3,[0.3,0.6] ⟩, ⟨e4,[0.8, 1] ⟩ }.

IVFSS - (F,D) is a parameterized family

={ F(d1), F(d2) }.

Page 29: Semianr 2. (2)

IVFSS - (F,D) can be represented by a relation

matrix R1 - symptom-disease matrix- given by,

R1 d1 d2

e1 [0.7, 1.0 ] [ 0.6, 0.9 ]

e2 [0.1, 0.4 ] [0.4, 0.6 ]

e3 [0.5, 0.6 ] [0.3, 0.6 ]

e4 [0.2, 0.4 ] [0.8, 1.0 ]

Page 30: Semianr 2. (2)

The IVFSS - (F, D)c also can be represented by

a relation matrix R2, - non symptom-disease

matrix, given by-

R2 d1 d2

e1 [0 , 0.3 ] [ 0.1, 0.4 ]

e2 [0.6, 0.9 ] [0.4, 0.6 ]

e3 [0.4, 0.5 ] [0.4, 0.7 ]

e4 [0.6, 0.8 ] [0 , 0.2 ]

Page 31: Semianr 2. (2)

We take P = { p1, p2, p3} - universal set .

S = { e1, e2, e3, e4} - parameters.

Suppose that,

F1(e1)={⟨p1, [.6, .9]⟩, ⟨p2, [.3,.5]⟩,⟨p3, [.6,.8]⟩},

F1(e2)={ ⟨p1, [.3,.5] ⟩, ⟨p2, [.3,.7] ⟩, ⟨p3, [.2,.6] ⟩},

F1(e3)={⟨p1, [.8, 1]⟩, ⟨p2, [.2,.4]⟩,⟨p3, [.5,.7]⟩} and

F1(e4)={⟨p1, [.6,.9] ⟩,⟨p2, [.3,.5] ⟩, ⟨p3, [.2,.5] ⟩},

Page 32: Semianr 2. (2)

IVFSS - (F1,S) is a parameterized family

={ F1(e1), F1(e2), F1(e3), F1(e4) }.

gives a collection of approximate

description of the patient-symptoms in the

hospital.

Page 33: Semianr 2. (2)

Q e1 e2 e3 e4

p1 [0.6, 0.9] [0.3, 0.5] [0.8, 1] [0.6, 0.9]

p2 [0.3, 0.5] [0.3, 0.7] [0.2, 0.4] [0.3, 0.5]

p3 [0.6, 0.8] [0.2, 0.6] [0.5, 0.7] [0.2, 0.5]

(F1,S) - represents a relation a relation matrix

Q - patient-symptom matrix - given by;

Page 34: Semianr 2. (2)

Combining the relation matrices R1 and R2

separately with Q. we get,

T1=Q o R1 - patient-disease matrix.

T2=Q o R2 - patient-non disease -

matrix.

Page 35: Semianr 2. (2)

T1 d1 d2

p1 [0.1 ,0.9] [0.3 ,0.9]

p2 [0.1 ,0.5] [0.2 ,0.6]

p3 [0.1 ,0.8] [0.2 ,0.8]

T2 d1 d2

p1 [0 , 0.8] [0 , 0.7]

p2 [0 , 0.7] [0 , 0.6]

p3 [0 , 0.6] [0 , 0.7]

Page 36: Semianr 2. (2)

ST1-ST2 d1 d2

p1 0.2 0.6

p2 -0.7 -0.4

p3 0.5 -0.1

Now we calculate,

The patient p3 is suffering from the disease d1.

Patients p1 and p2 are both suffering from

disease d2.

Page 37: Semianr 2. (2)

References1. Chetia.B, Das.P.K, An Application of Interval-

Valued Fuzzy Soft Sets in Medical

Diagnosis, Int. J. Contemp. Math. Sciences, Vol.

5, 2010, no. 38, 1887 - 1894

2. De S.K, Biswas R, and Roy A.R, An application

of intuitionistic fuzzy sets in medical

diagnosis, Fuzzy Sets and

Systems,117(2001), 209-213.

3. Maji PK, Biswas R and Roy A.R, Fuzzy Soft

Sets, The Journal of Fuzzy Mathematics

9(3)(2001), 677-692.

Page 38: Semianr 2. (2)

4. Molodtsov D, Soft Set Theory-First

Results, Computers and Mathematics with

Application, 37(1999), 19-31.

5. Roy MK, Biswas R, I-V fuzzy relations and

Sanchez’s approach for medical

diagnosis, Fuzzy Sets and

Systems,47(1992),35-38.