semiconductor laser laboratory

35
Semiconductor Laser Laboratory ILLINOIS Novel Integrable Semiconductor Laser Diodes J.J. Coleman University of Illinois Urbana 1997-1998 Distinguished Lecturer Series IEEE Lasers and Electro-Optics Society

Upload: whilemina-dejesus

Post on 31-Dec-2015

37 views

Category:

Documents


2 download

DESCRIPTION

Single Stripe Pattern. Semiconductor Laser Laboratory. •. SiO. SiO 2 field. •. single open stripe. •. stripe width 25-150 µm. ILLINOIS. Dual Stripe Pattern. Semiconductor Laser Laboratory. •. open field. •. dual stripe. •. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

Novel Integrable Semiconductor Laser Diodes

J.J. Coleman

University of Illinois

Urbana

1997-1998 Distinguished Lecturer Series IEEE Lasers and Electro-Optics Society

Page 2: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

Definition of the Problem

1. Epitaxial structure optimization Lasers and other optical devices generally have very

different optimum layer structures

2. Cleaved facet resonators Difficult (impossible) processing Poor optical coupling to other elements

Why aren’t conventional semiconductor diode lasers particularly suitable for integration?

Page 3: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

Outline

• Engineering in the optical path - selective area epitaxy

• Integrable laser resonators

• Examples of lasers integrated with other optical devices

• Summary

Page 4: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

Approaches to Wafer Engineering

• Universal substrate

Compromise epitaxial layer design

• Regrowth/overgrowth/multiple growth

Coupling and plane-of-propagation issues

• Selective area epitaxy

Multiple regrowths

T.L. Koch and U. Koren, OFC’92 Tutorial

Page 5: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

Single Stripe Pattern

• SiO SiO2 field • single open stripe • stripe width 25-150 µm

Page 6: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

Selective Epitaxy Boundary Conditions

ŽNŽx

= 0

Žy= 0ŽN = g(x)

ŽyŽN

ŽNŽx

= 0

Žy= 0ŽN

Page 7: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

Simulation Mesh

Page 8: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

Simulation Results

a) concentration profiles b) thickness profile

Page 9: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

Modeled and Experimental Data

• two stripe widths 50 and 125 µm

• modeled (dashed) • experiment (solid)

0

500

1000

1500

2000

2500

3000

-20 0 20 40 60 80 100 120 140Distance (µm)

Page 10: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

Wide Stripe Impracticalities

1. Growth rate enhancement is too large Poorer quality materials

Less control over thickness, especially for thin layers

2. Deep bowing Makes subsequent processing difficult Yields non-uniform quantumwell thicknesses

But, the basic parameters determined from these structures can be used to model more complex structures

Page 11: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

Dual Stripe Pattern

• open field • dual stripe • stripe separation 2-5 µm • stripe width 2-25 µm • dimensions small with

respect to a dif fusion length

Page 12: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

0

1

2

3

-60 -40 -20 0 20 40 60

Re

lativ

e T

hic

kne

ss

Distance (µm)

25 µm6 µm

E

E

EE

EEE

E

0

1

2

3

0 5 10 15 20 25

En

ha

nce

me

nt F

act

or

Oxide Stripe Width (µm)

w w

Dual Stripe Growth Enhancement

Page 13: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

Buried Heterostructure Growth Process

a) buffer layer and lower confining layer

b) selectively grown active layer

c) upper confining layer and cap layer

Page 14: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

Buried Heterostructure SEM Cross Section

Page 15: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

0

20

40

60

80

100

120

140

160

180

0 200 400 600 800 1000

Opt

ical

Pow

er (

mW

)

Current (mA)

0

1

2

3

0 5 10 15

P (

mW

)

I (mA)

Ith = 2.65 mA

Buried Heterostructure L-I Curves

Page 16: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

980 nm Wavelength Control

Ñ

Ñ

ÑÑ

ÑÑ

9600

9800

10000

10200

10400

10600

10800

0 5 10 15 20 25

Wav

elen

gth

(Å)

Oxide Stripe Width (µm)

E

EE

EE

EE

EE

EE E

9400

9500

9600

9700

9800

0 2 4 6 8 10 12Element Number

S = 5.5-10.5 µm

Page 17: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

1.55 µm Wavelength Control

• 110 nm wavelength range • uniform PL intensity • uniform PL halfwidth

Masahiro Aoki et al. IEEE J. Quantum Electron. 29, 2088 (1993)

Page 18: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

Basic Buried Heterostructure Building Block

• Engineered transition energy

• Automatic lateral optical waveguide

• Many relatively lossless coupling schemes are possible

abrupt, simple taper, more complex designs

Page 19: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

Integrable Resonator Geometries

• Etched Fabry-Perot facets

Scattering losses, verticality, flatness, coupling

• Corner reflectors/ring geometries

Mode selection

• Distributed feedback (DFB) resonators

Processing, sensitivity to reflections

• Distributed Bragg reflectors (DBR)

Processing, coupling

Page 20: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

Tunable DBR Reflectors

• Thin p-cladding structure • Single step post-growth

processing • Separate gain and tuning

electrodes

Page 21: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

Tunable DBR Reflectors

J

0

5

10

15

20

25

30

35

40

0 25 50 75 100 125 150 175 200

-60

-40

-20

0

1000 1010 1020Wavelength (nm)

Current (mA)

20° C

Page 22: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

Tunable DBR Reflectors

J

JJJJJ

J

J

0

20

40

60

80

100

120

140

160

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

20° C

Inverse Power (mW-1)

J J J JJ J J J J

J JJ J

J JJJ

J

J

1006

1008

1010

1012

1014

1016

0 20 40 60 80 100DBR Current (mA)

Page 23: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

First-order Gratings

0

2

4

6

8

10

Current (mA)0 10 0 10 0 10 0 10 0 10 0 10 20

a b c d e f

0.460.430.410.470.42

a b c d e f

68.5779

Device

Ith (mA)

(W/A) 0.43

8

Period (nm)

Peak (µm)

155.5 157.5 159.5 161 163 165

1.004 1.016 1.027 1.036 1.047 1.058

-70

-60

-50

-40

-30

-20

-10

0

0.99 1 1.01 1.02 1.03 1.04 1.05 1.06 1.07Wavelength (µm)

b c d e fa

Page 24: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

Selection of Integrated Photonic Devices

• Several laser-modulator structures

• A four-terminal flip chip laser-photodiode

• A dual (or redundant) source with a fiber coupler

• An 8-channel transmitter

Page 25: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

Example: Integrated Laser-Modulator

M. Aoki et al. IEEE J. Quantum Electron. 29, 2088 (1993)

Page 26: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

Integrated Laser/Modulator

• Laser with tunable DBR reflector and EA modulator

• Blue-shifted modulator and reflector sections

Page 27: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

Integrated Laser/Modulator

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70Current (mA)

-60

-40

-20

0

1.015 1.025 1.035Wavelength (µm)

-18

-15

-12

-9

-6

-3

0

3

6

0 0.2 0.4 0.6 0.8 1 1.2 1.4Modulator Bias (V)

AR/HR CoatedUncoated

Page 28: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

Example: Integrated Laser-Modulator

• fixed lateral waveguide width • separately optimized transition energies

T. Kato et al. Electron. Lett. 28, 154 (1992)

Page 29: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

Example: Integrated Laser-Modulator

T. Tanbun-Ek et al. J. Crystal Growth 145, 902 (1994)

Page 30: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

Integrated Laser - Photodiode

• RIE etched laser facet • PD redshifted by 150Å • PD input facet angled

by • four-up contacts for

flip chip bonding

Page 31: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12LD Output Power (mW)

q = 3Þ

14Þ

45Þ

0

2

4

6

8

10

12

14

16

18

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100LD Current (mA)

0.219 mW/mA

8.9 µA/mA

L-I and Photodiode Response

Page 32: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

Dual (Redundant) Source

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90Current (mA)

0.99 1.01 1.03 1.05 1.07Wavelength (µm)

Channel 2Channel 1

V2=-2

V1=0V2=0

V1=-2V2=0

V1=0

Page 33: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

Example: 8-Channel Transmitter

C.H. Joyner et al. IEEE Photonics Technol. Lett. 7, 1013 (1995)

Page 34: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

Summary

• Precise control of emission wavelengths can be obtained by selective area epitaxy

• The DBR reflector is a good candidate for an integrable resonator

• High performance novel integrated photonic devices are possible

Page 35: Semiconductor Laser Laboratory

Semiconductor Laser Laboratory

ILLINOIS

I would like to thank

M. Aoki (Hitachi)

J.A. Dantzig (Illinois)

P.D. Dapkus (USC)

J.G. Eden (Illinois)

C. Jagadish (ANU)

A.M. Jones (Illinois)

C.H. Joyner (Lucent)

S.M. Kang (Illinois)

R.M. Lammert (Ortel)

P.V. Mena (Illinois)

M.L. Osowski (Illinois)

S.D. Roh (Illinois)

G.M. Smith (ATMI)

T. Tanbun-Ek (Lucent)

W.T. Tsang (Lucent)

G.S. Walters (LEOS)