semiconductors a brief introduction · modern electronics: f1 semiconductors summary 28 - discrete...

53
Modern Electronics: F1 semiconductors 1 Semiconductors – a brief introduction Band structure – from atom to crystal Fermi level – carrier concentration Doping Transport (drift-diffusion) Hyperphysics (link on course homepage) basic introduction to semiconductors (almost no equations) Reading: (Sedra/Smith 7 th edition) 1.7-1.9

Upload: others

Post on 06-Jul-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors 1

Semiconductors – a brief introduction

• Band structure – from atom to crystal

• Fermi level – carrier concentration

• Doping

• Transport (drift-diffusion)

Hyperphysics (link on course homepage)basic introduction to semiconductors(almost no equations)

Reading: (Sedra/Smith 7th edition)

1.7-1.9

Page 2: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

Atomic energy levels

2

E

x

K

L

M

N

K

L

MN

0.1 nm

Quantum mechanics:

Wavefunction gives describes

probablility to find electron

0.1 nm

Page 3: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

2-atomic molecule – Pauli principle

3

E

x

E E

x x

0.1 nm 0.2 nm 0.1 nm

Overlapping

Valence electrons

Atoms share

valence electrons

0.2

nm

Page 4: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

16-atomic molecule

4

E

x

E

x

0.1 nm

E

0.4 nm

0.4

nm

x,y,z

0.4 nm

Page 5: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

1023-atomic molecule – energy bands

5

x

0.1 nm

x,y,z

1 cm

……

1 c

m

E

~ 1023

levels

Page 6: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

Valence and conduction bands

6

x,y,z

……

E

Conduction band

Valence band

Metal: The valence band is partially filled with electrons

Semiconductor / Insulator: The valence band is filled

Valence Band: The highest band that has electrons

Conduction Band: The next band with higher energy

Page 7: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

metals – semiconductors - insulators

7

Valence band

Conduction band

Energ

y (

eV

)

Valence band

Conduction band

Metal

Valence band

Conduction band

Valence band

Conduction band

semiconductors0 < Eg < 4 eV

Si: Eg=1.12 eVGe: Eg=0.67 eV

GaN: Eg=3.42 eVinsulatorsEg > 4eV

SiO2: Eg=9 eVDiamond (C): Eg=5.5 eV

x

EgEg

Page 8: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

What materials are semiconductors?

8

C

Si

Ge

N

P

As

B

Al

Ga

In SbSn

IV VIIITwo atom basis (4 neighbours)

4 own valence electrons

total 8 shared electrons in valence shell -> filled!

4+14=83+5=8

C GaP Si Ge InAs Sn

Eg 5.5 eV 2.24 eV 1.12 eV 0.67 eV 0.34 eV 0

Type insulator Semi cond uc tors metal

Page 9: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

Thermal excitation

9

Ener

gy (

eV)

Eg

• Each electrons gets (average) kinetic energy Ekin=3/2∙kT

• An electron can be excited to the conduction band

• Higher T or smaller Eg -> more electrons

• electron density in conduction band = n (cm-3)

• electron density in valence band = 1024 - n (cm-3)

• p (cm-3): hole density in valence band

• n=p without doping

Page 10: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

Thermal excitation – Fermi level

10

Energ

y (

eV

)

Eg

Fermi-Dirac distribution:The probability of an electron at an energy level E.

Higher T – higher probability that a level in the conduction band has an electron.

Symmetrical about EF (Fermi energy).

50% chance to have electron at EF

Excited electron leave a positive hole in valence band

EF

probability0 1

EC

EV

1)/)exp((

1)(

kTEEEf

F

Page 11: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

Holes vs electrons

11

electron (negative)hole (positive)

T > 0 K

Instead of describing all electrons remaining in valence band, positive holes (missing electrons) are introduced and treated as particles.

e

EC

EV

Page 12: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

Electron transport

12

T ≈ 0 K

- Apply voltage -> electric field moves charged electrons- Filled band: ½ of electrons move in one direction, ½ of electrons in the other. - Need to change velocity of some electrons to get current but all states are filled i.e. need

electrons in conduction band.

No available energy states to move to leads to zero current

e

metal semiconductor

T >> 0 K

EC

EV

semiconductor

e

Partially filled band

EC

EV

Page 13: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

Carrier concentration

13

Fermi-Dirac distribution x density of states = carrier concentration

probability of occupying a state

number of available states

population of conduction band

Ec

x =

energ

y

Page 14: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

Carrier concentration - simplified

14

Energ

y (

eV

)

Eg EF

kT

EENp

kT

EENn

Fvv

cFc

exp

exp

• Ignore real density of states, introduceNC, NV – effective density of states at band edges (describes how dense levels are)

(Si: Nc=3.2*1019 cm-3 / Nv=1.8*1019 cm-3)

EC

EV

Page 15: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

Intrinsic carrier concentration

15

kT

ENNpnn

g

vci2

exp

T=300K

SiEg=1.11eVni=11010 cm-3

GeEg=0.67 eVni= 21013 cm-3

Each electron excited from the valence band to the conduction band become a free carrier available for conduction

Intrinsic semiconductor:- n=p=ni (intrinsic carrier concentration)- EF is in the middle of the band gap

Page 16: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

Doping with donor atoms: n-type

16

x

Ec

Ev

E

+1

P – atom

5 valence electrons

C

Si

Ge

N

P

As

B

Al

Ga

In SbSn

IV VIII

Donates electron to the conduction band (mobile)Ionized atom – positive (immobile)

Page 17: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

Doping with acceptor atoms: p-type

17

x

Ec

Ev

E

-1

Al – atom

3 valence electrons

C

Si

Ge

N

P

As

B

Al

Ga

In SbSn

IV VIII

Captures electron -> extra hole to the valence band (mobile)Ionized atom – negative (immobile)

Page 18: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

Doping – extrinsic semiconductor

18

- ND: donor atom density (cm-3) / NA: acceptor atom density (cm-3)

- For ND >> ni (NA=0) the doping dominates majority carrier concentration

n=ND and p=ni2/ND

)exp(

)exp(

kT

EENp

kT

EENn

Fvv

cFc

2exp i

g

vc nkT

ENNnp

2

inpn Mass action law Independent of doping

Page 19: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors 19

doping – carrier density

Fermi-Dirac Carrier conc.

Intrinsic

n-type

(donors)

p-type

(acceptors)

Ec

Ev

electrons

holes

Eg

0 1

n

p

i

AFiVFp

i

DFiVFn

n

NkTEEE

n

NkTEEE

ln

ln

FiE

Page 20: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors 20

doping – carrier density

Fermi-Dirac Carrier conc.

Intrinsic

n-type

(donors)

p-type

(acceptors)

Ec

Ev

electrons

holes

Eg

0 1

n

p

i

AFiFp

i

DFiFn

n

NkTEE

n

NkTEE

ln

lnFnE

FiE

Page 21: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors 21

doping – carrier density

Fermi-Dirac Carrier conc.

Intrinsic

n-type

(donors)

p-type

(acceptors)

Ec

Ev

electrons

holes

Eg

0 1

n

p

i

AFiFp

i

DFiFn

n

NkTEE

n

NkTEE

ln

lnFnE

FiE

Page 22: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

Transport - drift

22

pn

nn

pp

JJJ

εqnJ

εqpJ

Hole current density (A/cm2)

Electron current density (A/cm2)

e

+V

pnq

pnq

pn

pn

1

EC

EV

J

µn / µp– electron / hole mobility (cm2/Vs)

n / p – electron / hole concentration (cm-3)

=1/=conductivity (S/m)

= resistivity (Ωm)

vd

Page 23: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors 23

Transport – effect of doping

endn qnµqnvJ

n: controlled by doping µn: determined by intrinsic semiconductor properties + scattering

Ionized impurity scattering

phonon scattering

p-typen-type

Page 24: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

Velocity saturation

24

- At high electric fields (εc ≈ 1.5x106 V/m) electrons can emit optical phonons (lattice vibrations) -> velocity saturates

satcndc

ndc

c

nd

nd

vµv

µvµv

qnµqnvJ

eee

eee

ee

e

ee

/1

)(

Page 25: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors 25

Transport - diffusion

- Random thermal motion gives movement of particles from high to low concentration

- No external forces - No particle interaction- Rate depends on concentration gradient

Page 26: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors 26

Transport - diffusion

dx

xdnµqV

dx

xdnµ

q

kTq

dx

xdnqDJ nTnnn

)()()(

x

n (

m-3

)

n(x)

n(0)=n0

n(L)=nL

Diffusion current given by gradient of electron (or hole) concentration

No addition/removal of carriers between 0 < x < L -> constant current -> linear concentration decrease

Jn

Page 27: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

2 min exercise – drift/diffusion

27

n

position

n

position

Later....

Sketch carrier distribution later with

1. No electric field

2. E-field in pos. direction (->)

Page 28: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

Summary

28

- Discrete atomic energy levels become bands when atoms are joined in a crystal.

- Semiconductors = filled valence band, no electrons in conduction band (at T=0). Band gap with no allowed states.

- Carrier concentration (n) = Fermi-dirac distribution * density of states

- Doping: • Donors (group V): adds mobile negative electrons and positive static ions.

Moves Fermi level towards conduction band.• Acceptors (group III): adds mobile positive holes and negative static ions.

Moves Fermi level towards valence band.

- Carrier transport:• Drift: electric field moves charged particles. Depends on field strength.• Diffusion: random motion moves particles from high to low concentration.

Depends on concentration gradient.

dx

dnqDqnJJJ nndiffndriftnn ε,,

2

inpn n=ND and p=ni2/ND for ND>>ni

)exp(kT

EENn cFc

Page 29: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

pn- junctions

29

Charge distribution -> electric field -> potential

Current transport

Breakdown mechanisms

Small-signal model

Depletion / diffusion capacitances

Reading: (Sedra/Smith 7th edition)

1.10-1.12, 3.1 - 3.3

Page 30: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

Why pn-junctions?

30

diode

LED

Solar cell

N-type P-typeN-type P N-type

Base

CollectorEmitter

P-typeN-type N-type

Gate

Source Drain

Substrate

BJT

MOSFET

Page 31: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

N - type P - type

31

Ec

Ev

electrons

holes

E

Eg

ND – donor concentration

nn0 – electron (majority) concentration

pn0 – hole (minority) concentration

Electrons: mobile, negative

Ionized donors: not mobile, positive

Ec

Ev

electrons

holes

E

Eg

NA – acceptor concentration

pp0 – hole (majority) concentration

np0 – electron (minority) concentration

holes: mobile, positive

Ionized acceptors: not mobile,

negative

Page 32: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

Recombination

32

EC

Ev

N

2

00 inpn

If there is an excess number free carrriers np

> ni2 electrons can recombine with holes to

reach equilibrium

p > p0

Three electrons recombine

leaving three positive ionized

donor atoms

nn0=ND+

nn0 <

ND+

In equilibrium Important for base current in BJTs

Page 33: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

PN-junction – band structure

33

E

Ec

Ev

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

- - - - - - - - - - - - -

- - - - - - - - - - - - -

- - - - - - - - - - - - -

+ Positive donor

- Negative Acceptor

Free electrons

Free holes

Ec

Ev

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

- - - - - - - - - - - - -

- - - - - - - - - - - - -

- - - - - - - - - - - - -

N-type P-type dx

dnJn

Large conc. difference -> large

diffusion current

No e-field – no drift current

dx

xdnVnqAI Tnn

)(ε

Page 34: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

PN-junction – band structure

34

E

Ec

Ev

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

- - - - - - - - - - - - -

- - - - - - - - - - - - -

- - - - - - - - - - - - -

+ Positive donor

- Negative Acceptor

Free electrons

Free holes

Ec

Ev

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

- - - - - - - - - - - - -

- - - - - - - - - - - - -

- - - - - - - - - - - - -

e

N-type P-type

dx

xdnVnqAI Tnn

)(ε

Page 35: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

PN-junction – band structure

35

E

Ec

Ev

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

- - - - - - - - - - - - -

- - - - - - - - - - - - -

- - - - - - - - - - - - -

+ Positive donor

- Negative Acceptor

Free electrons

Free holes

Ec

Ev

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

- - - - - - - - - - - - -

- - - - - - - - - - - - -

- - - - - - - - - - - - -

e

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

- - - - - - - - - - - - -

- - - - - - - - - - - - -

- - - - - - - - - - - - -

e

W

N-type P-type

No free carriers in depletion region,

charge neutral outside

Page 36: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

charge density -> electric field -> potential

36

x=0

x=-W1

X=W2

𝜌 [C/m-3]

V0+ + + +

+ + + +

- - - -

- - - -

Poisson equation

Depletion width

𝜌(𝑥)

𝜖𝑠=𝑑𝜀(𝑥)

𝑑𝑥= −

𝑑2𝑉(𝑥)

𝑑𝑥2 - 𝜌 charge density [C/m-3]

- 𝜖𝑠 permitivity [F/m]

- e electric field [V/m]

- V potential [V]

- V0 built-in potential [V]

x=0

V(x) [V]

x=W2

x=-W1

− න𝑑𝑥

e [V/m]

න𝑑𝑥

W=W1+W2

𝑊 =2𝜖𝑠𝑞

1

𝑁𝐴+

1

𝑁𝐷𝑉0

Q+=AqNDW1

Page 37: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

Built-in potential

37

E

Ec

Ev

qV0

EFn

EFp

20 lnlnln

in

NNkT

n

N

n

NkT AD

i

A

i

D

Ec

Ev

W=W1+W2

depletion region

(built-in) Potential barrier for electrons and holes!

N P

qV0

homework: calculate depletion width for Si pn-junction with ND=NA=1017 cm-3

at bias voltages V=0 V and V= -1 V.

i

AFiFp

i

DFiFn

n

NkTEE

n

NkTEE

ln

ln

𝑞𝑉0 = 𝐸𝐹𝑛 − 𝐸𝐹𝑝

𝑞𝑉0

Page 38: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

2 min exercise – assymetric pn-junction

• Consider a pn-junction with ND =5*NA (donors > acceptors)

• Sketch the

1) charge distribution

2) electric field

3) potential

38

N-type P-type

ND NA

ερ V

Page 39: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

Diode – forward bias

39

N Pe

- VD +DEpot=-qVD

eVD

N Pe

- VD +

eVD

- Only top of the electron distribution can pass over the barrier

- Increase bias -> exponentially increasing amount of electrons can pass

- Reduce electric field but counteracting built-in potential

- Depletion width is reduced

Page 40: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

Minority carrier density at depletion edges at forward bias

40

electron concentration

in p-side

hole concentration

in n-side

pn(x)

np(x)

forward bias

At equilibrium:

np0=ni2/NA

pn0=ni2/ND

-W1 W2

np(x)

0

deple

tion

regio

n

pn(x)

np / pn

np0pn0

conta

ct

conta

ct

kT

qVpWp Dnn exp)( 01

kT

qVnWn Dpp exp)( 02

Page 41: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

Diode – forward bias

41

N P

e

- VD +

DEpot=-eVD

eVD VD

I

J = JS(exp(V/VT)-1)

VD

dx

dnVnqJ Tnn ε

𝐽𝑠 = 𝑞𝐷𝑝𝐿𝑝

𝑝𝑛0 +𝐷𝑛𝐿𝑛

𝑛𝑝0

= 𝑞1

𝐿𝑝

𝑘𝑇

𝑞𝜇𝑝

𝑛𝑖2

𝑁𝐷+

1

𝐿𝑛

𝑘𝑇

𝑞𝜇𝑛

𝑛𝑖2

𝑁𝐴

Page 42: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

Diode – reverse bias

42

N Pe

VD

I

+ VD -

eVD

J ≈ 0

-VD

DEpot=-eVD

dx

dnVnqJ Tnn ε

Page 43: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

Diode – total current

𝐽 = 𝐽𝑠 𝑒 Τ𝑞𝑉 𝑛𝑘𝑇 − 1

Js = saturation current density

n = ideality factor (1-2)

diffusion current

drift current

diffusion current diffusion current

drift current drift current

N Pe

zero bias forward biasreverse bias

43

𝐽𝑠 = 𝑞𝐷𝑝𝐿𝑝

𝑝𝑛0 +𝐷𝑛𝐿𝑛

𝑛𝑝0

= 𝑞1

𝐿𝑝

𝑘𝑇

𝑞𝜇𝑝

𝑛𝑖2

𝑁𝐷+

1

𝐿𝑛

𝑘𝑇

𝑞𝜇𝑛

𝑛𝑖2

𝑁𝐴

Page 44: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

1 min excercise – Si vs Ge diode

44

I

VD

Si (Eg=1.11 eV) pn-junction

I

VD

Ge (Eg=0.67 eV) pn-junction

???

NP

N P

Page 45: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

Zener tunneling / Avalanche Breakdown

45

e

- High reverse bias gives enough e-field to enable tunneling

- High energy of electron/hole can be lost by creating new e-h pairs

through impact ionization

tunneling

e

avalanche multiplication

V

IBV

Page 46: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

small-signal model

46

- Want to replace non-linear components with linear ones to simplify circuit

calculations

- Constant VD + small varying vd(t) = total voltage vD (t).

t

= +

vD (t) VD

vd (t)

Linearize by

Taylor expansion

Page 47: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

Small-signal model of diode (3.3.7)

47

- Diode IV is non-linear so difficult to do

calculations

- Apply constant VD and small varying vd(t)

- Diode IV almost linear in a small region

𝐽 = 𝐽𝑠 𝑒 Τ𝑞𝑉𝐷𝑘𝑇 − 1 ≈ 𝐽𝑠𝑒

Τ𝑞𝑉𝐷𝑘𝑇

Small signal resistance

rd=VT/ID (VT=kT/q)

Page 48: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

depletion-region / junction capacitance

48

V

QC Definition: A

WWC r

21

0

eeer

W1+W2

+Q-Q

Example: paralell plate capacitor

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

- - - - - - - - - - - - -

- - - - - - - - - - - - -

- - - - - - - - - - - - -

W1 W2

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

- - - - - - - - - - - - -

- - - - - - - - - - - - -

- - - - - - - - - - - - -

W1 W2

Non-linear relationship between

VR and Q -> C(VR)𝑊 ∝ 𝑉0 + 𝑉𝑅QJ = 𝐴 ∙ 𝑞 ∙ 𝑁𝐷 (𝑊1 +𝑊2)

Page 49: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

depletion region / junction capacitance

49

Definition Applied bias (VR) changes depletion width

Depletion width

Charge on

either side

Cj

V

Increasing VR

𝑊 =2𝜖𝑠𝑞

1

𝑁𝐴+

1

𝑁𝐷(𝑉0+ 𝑉𝑅)

𝐶𝑗 =𝑑𝑄𝐽𝑑𝑉𝑅

𝑄𝐽 = 𝐴𝑞𝑁𝐷𝑊1 = 𝐴𝑞𝑁𝐷𝑁𝐴

𝑁𝐴+𝑁𝐷W

𝐶𝐽 = 𝐴 2𝜖𝑠𝑞𝑁𝐷𝑁𝐴𝑁𝐴 +𝑁𝐷

1

𝑉0 +𝑉𝑅

Page 50: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

1 min exercise – pn-junction with forward bias

50

V

C

V

C

V

C

A B C

In forward bias there is a diffusion current flowing through the junction. How

does the CV curve behave?

Only Cj

No change in

capacitance

Larger capacitance

for forward bias

Lower capacitance

for forward bias

dV

dQC

Page 51: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

diffusion capacitance

51

W2-W1

Forward bias -> inject minority carriers in

neutral regions (electrons in p-region and

holes in n-region)-> extra charge dQ.

x

n

Wp

(length of p-region)

W2 (=0)

V

DQ

V+Dv

np0

dV

dQC

0

02

)(

exp)(

ppp

Dpp

nWn

kT

qVnWn

Page 52: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

Total capacitance

52

-5 -4 -3 -2 -1 0 10

10

20

30

40

50

60

70

80

Voltage (V)

Capacitance (

pF

)

Ctot

Cj

Cd

rd (VD)Cj (V) Cd (V)

Add capacitances in parallel

Cj: dominates for reverse bias

Cdiff: dominates for forward bias.

Cdiff ≈ 0 for reverse bias.

Ctot=Cj+Cd

Page 53: Semiconductors a brief introduction · Modern Electronics: F1 semiconductors Summary 28 - Discrete atomic energy levels become bands when atoms are joined in a crystal. - Semiconductors

Modern Electronics: F1 semiconductors

Summary – pn-junctions

• pn-junctions used in LEDs, solar cells, BJT, MOSFETs

• Poissons equations: charge distribution -> electric field -> potential

• Drift is balanced by diffusion in unbiased pn-junction

• Current given by ideal diode equation:

– Forward bias: current (diffusion) increases exponentially

– Reverse bias: current saturates

• Capacitances:

– Junction capacitance due to change in depletion width (dominates reverse bias)

– Diffusion capacitance due to change in charge in p/n region (dominates forward bias)

• Small-signal model (ok for V << VT): replace diode with resistor + capacitances

53

𝐽 = 𝐽𝑠 𝑒 Τ𝑞𝑉 𝑛𝑘𝑇 − 1