semiconducttor memories(97 2003)

Upload: sambit-shreeman

Post on 02-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 Semiconducttor Memories(97 2003)

    1/25

    A Seminar on

    Semiconductor

    memories

  • 7/27/2019 Semiconducttor Memories(97 2003)

    2/25

    OVERVIEW

    1) Introduction2) Requirements3) Configuration of Memory Chip

    4) Semiconductor memory classification5) Periphery

    DecodersSense Amplifiers

    Input/output BuffersControl Timing Circuitry

    6) Reliability & Yield7) Conclusion

  • 7/27/2019 Semiconducttor Memories(97 2003)

    3/25

    introduction 1. Data storage essential for processing.2. Binary storage.3. Switches.

    4. Random & Efficient access to all memory location.5. Data access is fast so less data access time.6. Data accessed by means of binary memory address

    applied to chips address pins.

    '0'

    '1'Read

    Write

  • 7/27/2019 Semiconducttor Memories(97 2003)

    4/25

    Requirements

    1. Easy reading.2. Easy Writing.

    3. High density.4. Speed, more speed and still more speed.5. Bulkier data processing.

    6. Minimizing the amount of error.

  • 7/27/2019 Semiconducttor Memories(97 2003)

    5/25

    Memory Chip Configuration

    R o w

    D e c

    Memory Cell Array

    Row AddressN bits

    Complete Address

    N+M Bits

    2M

    Cells

    Din

    DoutI/O Controld

    in

    dout

    Column Dec.

    2N

    CellsWL

    DL

    Cell

    ControlSignals

    I / O

    I n

    t e r f a c e

    Column AddressM Bits

  • 7/27/2019 Semiconducttor Memories(97 2003)

    6/25

    Semiconductor Memory Classification

    Read-Write Memory Non-VolatileRead-Write

    Memory Read-Only Memory

    EPROM E

    2 PROM

    FLASH

    Random Access

    Non-Random Access

    SRAM

    DRAM

    Mask-Programmed Programmable (PROM)

    FIFO

    Shift Register CAM

    LIFO

  • 7/27/2019 Semiconducttor Memories(97 2003)

    7/25

    RAM 1. Random write and read operation for any cell2. Volatile data3. Most of computer memory4. DRAM

    Low Cost High DensityMedium Speed

    5. SRAMHigh SpeedEase of useMedium Cost

  • 7/27/2019 Semiconducttor Memories(97 2003)

    8/25

    1-Transistor DRAM Cell

    C S M 1

    BL

    WL

    C BL

    WL

    X

    BL

    V DD V T

    V DD /2

    V DD

    GND

    Write "1" Read "1"

    sensing V DD /2

    V V BL V PR E V BI T V PR E C S

    C S C BL+------------------------= =

    Write: C S is charged or discharged by asserting WL and BL.Read: Charge redistribution takes places between bit line and storage capacitance

    Voltage swing is small; typically around 250 mV.

  • 7/27/2019 Semiconducttor Memories(97 2003)

    9/25

    6-transistor CMOS SRAM Cell

    V DD

    QQ

    M 1 M 3

    M 4 M 2

    M 5

    BL

    WL

    BL

    M 6

  • 7/27/2019 Semiconducttor Memories(97 2003)

    10/25

    ROM 1. Non-volatile Data2. Method of Data Writing3. Mask ROM

    Data written during chip fabrication4. PROM

    Fuse ROM: Non-rewritableEPROM: Erase data by UV rays

    EEPROM: Erase and write through electrical meanso Speed 2-3 times slower than RAMo Upper limit on write operationso Flash Memory High density, Low Cost

  • 7/27/2019 Semiconducttor Memories(97 2003)

    11/25

    Examples of ROM

    Fuse ROM EEPROM

    WL

    DL

    WL

    DL

    Floating Gate

  • 7/27/2019 Semiconducttor Memories(97 2003)

    12/25

    Characteristics of Different NVM

  • 7/27/2019 Semiconducttor Memories(97 2003)

    13/25

    Non-Volatile Memories The Floating-gate transistor

    (FAMOS)

    Floating gate

    Source

    Substrate

    Gate

    Drain

    n + n +_ p

    t ox

    t ox

    Device cross-section Schematic symbol

    G

    S

    D

  • 7/27/2019 Semiconducttor Memories(97 2003)

    14/25

    Floating-Gate Transistor Programming

    0 V

    - 5 V 0 V

    D S

    Removing programmingvoltage leaves charge trapped

    5 V

    - 2.5 V 5 V

    D S

    Programming results in higher V T .

    20 V

    10 V 5 V 20 V

    D S

    Avalanche injection

  • 7/27/2019 Semiconducttor Memories(97 2003)

    15/25

    Periphery

    DecodersSense AmplifiersInput/output BuffersControl / Timing Circuitry

  • 7/27/2019 Semiconducttor Memories(97 2003)

    16/25

    Row Decoders

    Collection of 2M

    complex logic gatesOrganized in regular and dense fashion

    (N)AND Decoder

    NOR Decoder

  • 7/27/2019 Semiconducttor Memories(97 2003)

    17/25

    Hierarchical Decoders

    A 2 A 2

    A 2 A 3

    WL 0

    A 2 A 3 A 2 A 3 A 2 A 3

    A 3 A 3 A 0 A 0

    A 0 A 1 A 0 A 1 A 0 A 1 A 0 A 1

    A 1 A 1

    WL 1

    Multi-stage implementation improves performance

    NAND decoder using2-input pre-decoders

  • 7/27/2019 Semiconducttor Memories(97 2003)

    18/25

    Sense Amplifiers

    t p C V

    I av ---------------- =

    make V as small as possible

    small large

    Idea: Use Sense Amplifer

    output input

    s.a. small transition

  • 7/27/2019 Semiconducttor Memories(97 2003)

    19/25

    Sense Amplifiers Operation

    D V (1)

    V (1)

    V (0)

    t

    V PRE

    V BL

    Sense amp activated Word line activated

  • 7/27/2019 Semiconducttor Memories(97 2003)

    20/25

    Differential Sense Amplifier

    Directly applicable toSRAMs

    M 4

    M 1

    M 5

    M 3

    M 2

    V DD

    bit bit

    SE

    Out y

  • 7/27/2019 Semiconducttor Memories(97 2003)

    21/25

    Latch-Based Sense Amplifier

    VDD

    BL

    SE

    SE

    BLEQ

    Initialized in its meta-stable point with EQOnce adequate voltage gap created, sense amp enabled with SEPositive feedback quickly forces output to a stable operating point.

  • 7/27/2019 Semiconducttor Memories(97 2003)

    22/25

    Reliability and Yield

  • 7/27/2019 Semiconducttor Memories(97 2003)

    23/25

    CONCLUSION Use of microprocessor controlled items hasincreased with time, so the requirement of semi conductor memory has increased.It is the additional driver, that has made thesoftware associated with computers moresophisticated .

  • 7/27/2019 Semiconducttor Memories(97 2003)

    24/25

    REFERENCES 1) Sedra & Smith, Microelectronic Circuits, 4 th

    Edition, Chapter 13 Section 13.9, 13.10, 13.11, 13.12

    2) VLSI Memory Chip Design, Kiyoo Itoh

  • 7/27/2019 Semiconducttor Memories(97 2003)

    25/25

    THANKS

    FOR

    PATIENCE HEARING

    ANY QUERY??