seminar im thermal

Upload: justin-jennings

Post on 03-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Seminar im thermal

    1/33

    A NONINTRUSIVE THERMAL

    MONITORING METHOD FORINDUCTION MOTORS FED BY

    CLOSED - LOOP INVERTER

    DRIVES

  • 8/12/2019 Seminar im thermal

    2/33

    OVERVIEW

    Introduction

    Principle

    Terminal voltage estimation

    Real time signal processing techniques

    Experimental validation

    Conclusion

    References

  • 8/12/2019 Seminar im thermal

    3/33

    INTRODUCTION

    Closed loop induction motor drives are widely

    used in traction applications and industrial

    processes

    Accurate thermal monitoring not only protects

    the induction machines from overheating, but

    also boosts the usage and performance of the

    overall drive system

    1

  • 8/12/2019 Seminar im thermal

    4/33

    INTRODUCTION(Contd)

    Recently used thermal monitoring schemes forinduction motors are

    Embedded temperature sensors

    High-order thermal model-based methods Parameter-based methods

    Motor-model-based methods

    Signal-injection-based methods

    The relationship between the resistance and the

    temperature is

    ..(1)

    2

  • 8/12/2019 Seminar im thermal

    5/33

    PRINCIPLE

    Fig 1.Simplified diagram of dc current injection in a closed-loop induction

    motor drive

    3

  • 8/12/2019 Seminar im thermal

    6/33

    PRINCIPLE(Contd)

    Contains an outer low-bandwidth speed-regulating loop and inner high-bandwidth

    current-regulating loop.

    DC currents can be injected into the three-phasewinding of the induction machine by

    superimposing a sine-wave component onto the

    current command id*and iq*

    id*=Idc cos.....................................(2.a)

    iq*= Idc sin .................................(2.b)

    is the transformation angle of the dq

    reference frame.4

  • 8/12/2019 Seminar im thermal

    7/33

    PRINCIPLE(Contd)

    The dc currents injected into the motorswindings are

    ia = Idc................................................(3.a)

    ib = 0.5Idc.........................................(3.b)

    ic = 0.5Idc.........................................(3.c)

    Once currents in (2) have been injected into the motorsstator winding, the stator resistance can be calculated asfollows (Yconnection assumed) Rs

    Rs= ................................................(4)

    and are dc components of Vab and ia

    . 5

  • 8/12/2019 Seminar im thermal

    8/33

    PRINCIPLE(Contd)

    To track the stator temperature over time, thestator resistanceR0 is first estimated at room

    temperature t0

    The winding temperature ts,

    ts = (t0 + k1 )(Rs/Ro)-k1............................(5)

    6

  • 8/12/2019 Seminar im thermal

    9/33

    Fig 2.Estimated stator temperature using the dc injection method

    7

  • 8/12/2019 Seminar im thermal

    10/33

    TERMINAL VOLTAGE

    ESTIMATION An accurate extraction of the dc component in

    the line voltage vab is critical for calculating the

    stator resistance of the induction machine

    In typical closed-loop inverter drives,the

    terminal voltages are estimated from the

    commanded PWM duty cycle and the measured

    dc bus voltage asVaN = DaVdc

    8

  • 8/12/2019 Seminar im thermal

    11/33

    TERMINAL VOLTAGE

    ESTIMATION(Contd...)

    Where Da is the phase-A duty cycle

    generated by the current regulator

    Vdc is the measured dc bus voltage

    VaN is the average phase-A voltage over

    a period of the PWM carrier, with

    respect to the negative rail of the dc bus

    9

  • 8/12/2019 Seminar im thermal

    12/33

    A. EFFECT OF DEAD TIME ON

    DC VOLTAGE ESTIMATION

    Fig 3.a)Current flowing outward b)Current flowing inward c)Reducereffective voltage d)Increased effective voltage

    10

  • 8/12/2019 Seminar im thermal

    13/33

    A. EFFECT OF DEAD TIME ON DC

    VOLTAGE ESTIMATION (Contd...)

    Fig 4.Contribution of dead time on terminal voltage .No dc current offset

    Fig 5.Contribution of dead time on terminal voltage .Positive dc current offset11

  • 8/12/2019 Seminar im thermal

    14/33

    A. EFFECT OF DEAD TIME ON DC

    VOLTAGE ESTIMATION (Contd...)

    Fig 6.Contribution of dead time on terminal voltage. Positive dc

    current offset and smaller current amplitude

    Equation (6) is therefore modified to

    if ia> 0, VaN = (Da Ddt)Vdc

    if ia< 0, VaN= (Da+ Ddt )Vdc........................... (7)

    12

  • 8/12/2019 Seminar im thermal

    15/33

    B.EFFECT OF DEVICE VOLTAGE DROP

    ON DC VOLTAGE ESTIMATION

    Fig 7.a)Current flowing outwards b)Current flowing inwards13

  • 8/12/2019 Seminar im thermal

    16/33

    B.EFFECT OF DEVICE VOLTAGE DROP ON

    DC VOLTAGE ESTIMATION(Contd...)

    Fig 8.Contribution of device voltage drop on terminal voltage

    14

  • 8/12/2019 Seminar im thermal

    17/33

    B.EFFECT OF DEVICE VOLTAGE DROP

    ON DC VOLTAGE ESTIMATION(Contd...)

    To account for the effect of device voltage drop,(7) is further improved to

    if ia> 0, VaN= (Da Ddt)Vdc (Da Ddt)VIGBT(ia) (1 Da+ Ddt)Vdiode(ia)

    if ia< 0, VaN= (Da+ Ddt )Vdc+(Da + Ddt)

    Vdiode(ia)+ (1 Da Ddt )VIGBT(ia)............ (8)

    15

  • 8/12/2019 Seminar im thermal

    18/33

    C. EFFECT OF DIFFERENT

    DEVICE TURN-ON/TURN-OFF

    TIME DELAY

    Fig 9. Contribution of different turn-ON/turn-OFF delay on terminal

    voltage.

    16

  • 8/12/2019 Seminar im thermal

    19/33

    C. EFFECT OF DIFFERENT

    DEVICE TURN-ON/TURN-OFF

    TIME DELAY(Contd...) To account for the effect of device turn-

    ON/turn-OFF time difference, (8) is furtherimproved to

    if ia > 0, VaN = (Da Ddt+ Ddly)Vdc

    (Da Ddt+ Ddly)VIGBT(ia)

    (1 Da+ Ddt Ddly)Vdiode(ia)

    if ia< 0, VaN = (Da+ Ddt Ddly)Vdc+ (Da+ Ddt Ddly)Vdiode(ia)

    + (1 Da Ddt+ Ddly)VIGBT(ia)...(9)

    17

  • 8/12/2019 Seminar im thermal

    20/33

    REAL-TIME SIGNAL

    PROCESSING TECHNIQUES

    Fig. 10. Signal process techniques for extracting dc current and voltage. (a) DC

    current extraction. (b) DC voltage extraction.

    18

  • 8/12/2019 Seminar im thermal

    21/33

    EXPERIMENTAL VALIDATIONA.EXPERIMENTAL SETUP

    Fig. 11. Experimental setup for the proposed thermal monitoring method.

    19

  • 8/12/2019 Seminar im thermal

    22/33

    B. MEASURED MOTOR WAVEFORMS

    Fig. 12. d- and q-axis current before and during dc current injection. (a) id

    reference and measurement. (b) iq reference and measurement.

    20

  • 8/12/2019 Seminar im thermal

    23/33

    MEASURED MOTOR WAVEFORMS(Contd...)

    Fig. 13. Stator voltage and current before and during dc current injection.

    (a) Waveform of vab . (b) Waveform of ia

    21

  • 8/12/2019 Seminar im thermal

    24/33

    MEASURED MOTOR WAVEFORMS(Contd...)

    Fig. 14. DC components of stator voltage and current. (a) DC component

    of vab . (b) DC component of ia .

    22

  • 8/12/2019 Seminar im thermal

    25/33

    MEASURED MOTOR WAVEFORMS(Contd...)

    Fig. 15. Motor torque and speed before and during dc current injection. (a)

    Electromagnetic torque. (b) Measured motor speed.

    23

    C TEMPERATURE ESTIMATION AT

  • 8/12/2019 Seminar im thermal

    26/33

    C. TEMPERATURE ESTIMATION AT

    A SINGLE OPERATING

    CONDITION

    Fig. 16. Stator winding temperature estimation at constant operating

    condition.

    24

    D TEMPERATURE ESTIMATION

  • 8/12/2019 Seminar im thermal

    27/33

    D. TEMPERATURE ESTIMATION

    WITH VARIABLE OPERATING

    CONDITIONS

    Fig. 17. Stator winding temperature estimation with variable load level.

    25

  • 8/12/2019 Seminar im thermal

    28/33

    TEMPERATURE ESTIMATION

    WITH VARIABLE OPERATING

    CONDITIONS(CONTD.....)

    Fig. 18. Stator winding temperature estimation with variable motor speed.

    26

    TEMPERATURE ESTIMATION

  • 8/12/2019 Seminar im thermal

    29/33

    TEMPERATURE ESTIMATION

    WITH VARIABLE OPERATING

    CONDITIONS(CONTD...)

    Fig. 19. Stator winding temperature estimation with variable dc bus

    voltage.27

  • 8/12/2019 Seminar im thermal

    30/33

    CONCLUSION

    A simple method is proposed for injecting dccurrent into closed-loop drive-fed induction

    machines without interrupting normal operation.

    The major technical difficulty of dc-injection-based thermal monitoring, which is

    inconsistency in resistance estimation, has been

    overcome by carefully analyzing and

    compensating for the effects of inverternonidealities.

    28

  • 8/12/2019 Seminar im thermal

    31/33

    ADVANTAGES

    Nonintrusive

    Easy to use

    Accurate

    29

  • 8/12/2019 Seminar im thermal

    32/33

    REFERANCES

    [1] Siwei Cheng, Yi Du, Jose A. Restrepo,Pinjia Zhang, andThomas G. Habetler, ANonintrusive Thermal Monitoring Method

    for InductionMotors Fed by Closed-Loop Inverter Drives,IEEE

    Trans. Power Electron.,vol. 27, no. 9, Sept. 2012.

    [2] A. Boglietti, A. Cavagnino, M. Lazzari, and M. Pastorelli, A

    simplified thermal model for variable-speed self-cooled industrialinduction motor,IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 945

    952, Jul./Aug. 2003.

    [9] IEEE Standard Test Procedure for Polyphase Induction Motors

    and Generators, IEEE Standard 112-2004 (Revision of IEEE

    Standard 112-1996),pp. 179.

    30

  • 8/12/2019 Seminar im thermal

    33/33