seminar r u g march 31, 2008 marcel merk nikhef and vu

67
Flavour Physics with LHCb When Beauty Decays and Symmetries Break” Seminar RuG March 31, 2008 Marcel Merk Nikhef and VU 31-3-2008 1 ntents: CP violation with the CKM matrix Bs meson and “new physics” B-physics with the LHCb detector

Upload: wendi

Post on 16-Feb-2016

40 views

Category:

Documents


0 download

DESCRIPTION

Flavour Physics with LHCb “ When Beauty D ecays and Symmetries B reak ”. Seminar R u G March 31, 2008 Marcel Merk Nikhef and VU. Contents: CP violation with the CKM matrix Bs meson and “ new physics ” B-physics with the LHCb detector. CERN. LHCb. ATLAS. CMS. ALICE. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

1

Flavour Physics with LHCb“When Beauty Decays and Symmetries Break”

Seminar RuGMarch 31, 2008

Marcel MerkNikhef and VU

31-3-2008

Contents:• CP violation with the CKM matrix• Bs meson and “new physics”• B-physics with the LHCb detector

Page 2: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

LHCb

ATLAS

CMS ALICE

CERN

Page 3: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

3

LHC: Search for physics beyond Standard Model

31-3-2008

• Atlas/CMS: direct observation of new particles• LHCb: observation of new particles in quantum loops

LHCb is aiming at search for new physics

in CP violation and Rare Decays

Focus of this talk

Atlas CMS LHCb

Page 4: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

4

Flavour physics with 3 generations of fermions

31-3-2008

u

d

c

s

t

b

I II III

e tm

ne nm nt

quar

ksle

pton

s

~0

1777106

~0 ~0

0.511

120 4300

1763001200

~7

~3

LEP 1

2 neutrino’s3 neutrino’s4 neutrino’s

measurements

Beam energy (GeV)

Cros

s sec

tion

Note: In the Standard Model 3 generations of Dirac particles is the minimum requirement to create a matter - antimatter asymmetry.

Page 5: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

5

Quark flavour interactions

31-3-2008

• Charged current interaction with quarks:

5

2

, ,

1 1

;

I Iu d

k

Id

w

I

u

eaA J

J

du c

W

t s

g

b

m

m

m

m

• Quark mass eigenstates are not identical to interaction eigenstates:

†. . . . . .. . . .. . . . . .

;, ,M Mu u d du d

du c t s

bM M

• In terms of the mass eigenstates the weak interaction changes from:

51 12II

u dJ mm

u, c, t

d, s, b

Wgweak

J

Page 6: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

6

Quark flavour interactions

31-3-2008

• Charged current interaction with quarks:

5

2

, ,

1 1

;

I Iu d

k

Id

w

I

u

eaA J

J

du c

W

t s

g

b

m

m

m

m

• Quark mass eigenstates are not identical to interaction eigenstates:

†. . . . . .. . . .. . . . . .

;, ,M Mu u d du d

du c t s

bM M

• In terms of the mass eigenstates the weak interaction changes to:

51 12 CKM du VJ mm Cabibbo Kobayashi Maskawa quark mixing matrix

†CKM u dV M M

u, c, t

d, s, b

Wgweak

J

Page 7: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

7

The CKM Matrix VCKM

31-3-2008

ud us ub

cd cs cb

td ts tb

V V VV V VV V V

Page 8: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

8

The CKM Matrix VCKM

31-3-2008

ud us ub

cd cs cb

td ts tb

V V VV V VV V V

d

b

dc

Vcb

Typical B-meson decay diagram:

The B-meson has a relatively long lifetime of 1.5 ps

Related to mass hierarchy?

Page 9: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

9

The CKM Matrix VCKM

31-3-2008

ud us ub

cd cs cb

td ts tb

V V VV V VV V V

From unitarity (VCKM V†CKM=1) :

CKM has four free parameters: 3 real: l 0.22 , A ( 1), r 1 imaginary: ih

2 3

2 2

3 2

112

112

1 1

A

A

A A

i

i

l l l

l l l

l

h

h

r

r l

Particle → Antiparticle: Vij → Vij*

=> 1 CP Violating phase!

Wolfenstein parametrization: VCKM

Page 10: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

10

The CKM Matrix VCKM

31-3-2008

ud us ub

cd cs cb

td ts tb

V V VV V VV V V

From unitarity (VCKM V†CKM=1) :

CKM has four free parameters: 3 real: l 0.22 , A ( 1), r 1 imaginary: ih

2 3

2 2

3 2

112

112

1 1

A

A

A A

i

i

l l l

l l l

l

h

h

r

r l

Particle → Antiparticle: Vij → Vij*

=> 1 CP Violating phase!

Wolfenstein parametrization: VCKM

ie

ie

Page 11: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

11

Unitarity Triangle: VCKM V†CKM = 1

31-3-2008

ud us ub

cd cs cb

td ts tb

V V VV V VV V V

0*** tbtdcbcdubud VVVVVV

0*** tbubtsustdud VVVVVV

Page 12: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

12

Unitarity Triangle: VCKM V†CKM = 1

31-3-2008

ud us ub

cd cs cb

td ts tb

V V VV V VV V V

0*** tbtdcbcdubud VVVVVV

0*** tbubtsustdud VVVVVV

hrlhr ,21, 2

*

*

cbcd

ubud

VVVV

*

*

cbcd

tbtd

VVVVh

r01

Im

Re

Unitarity triangle:Individual CP violating phases in CKM are not observableThe combinations ,, are

Amount of CP violation is proportional to surface of the triangle

Page 13: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

*

*

cbcd

tbub

VVVV

*

*

cbcd

tdud

VVVV

h

r0

+

Re** / cbcdtsus VVVV

: Bd mixing phase: Bs mixing phase: weak decay phase

2

2 ,

*

*

DB

KDBDKDKB

d

ss

d

..... ,/0 JBs

hrlhr ,21, 2

*

*

cbcd

ubud

VVVV

*

*

cbcd

tbtd

VVVVh

r01

Im

ReIm

..... ,/ 00SKJB

,.....,,0 rrrB

Precise determinationof parameters throughstudy of B-decays.

Unitarity Triangle and B-physics

Page 14: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

14

Benchmark Example: Bs→Ds K

31-3-2008

iud us ub

cd cs cbi

td ts tb

V V V eV V V

V e V V

Page 15: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

15

Benchmark Example: Bs→Ds K

31-3-2008

iud us ub

cd cs cbi

td ts tb

V V V eV V V

V e V V

• But how can we observe a CP asymmetry?

s s

s s

i

i

B D K Ae

B D K Ae

• Decay probabilities are equal? No CP asymmetry??

Make use of the fact that B mesons “mix”…..

• Decay amplitudes: particles:

2 2Prob Probi i

ss s sB D K Ae B D K Ae

antiparticles:

Page 16: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

16Sept 28-29, 2005

B meson Mixing Diagrams

22 *

22 *

* *

:

:

, :

t tb td

c cb cd

c t tb td cb cd

t t m V V

c c m V V

c t c t m mV V V V

2 6

2 6

6

t

c

c t

m

m

m m

l

l

l

Dominated by top quark mass:

21

20.00002 psGeV

tB

mm

c

22 2 2 2 2

02 ( / ) | |6 d d d

Fd w B t W B td B B

Gm m S m m m V B fh

d b

b d

W

u,c,t

u,c,tWBd Bd

A neutral B-meson can oscillate into an anti B-meson before decaying:

Page 17: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

17Sept 28-29, 2005

B0B0 Mixing: ARGUS, 1987

0 * * 01 1 1 1 1 1

01 1

0 * * 02 2 2 2 2

02 2 2 ,

B D D D

D K

B D D D

D K

m n

m n

,

,

First sign of a really large mtop!

Produce a bb bound state, (4S),in e+e- collisions:

e+e- (4S) B0B0

and then observe:

~17% of B0 and B0 mesons oscillate before they decay m ~ 0.5/ps, tB ~ 1.5 ps

Integrated luminosity 1983-87: 103 pb-1

Page 18: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

18

Bd vs Bs mixing

31-3-2008

d b

b d

W

t

t

WBd Bd

The top quark and its interactions can be studied without producing it directly!

s s

b d

W

t

t

WBs Bs

Bd → Bd

Bd → Bd

Bd mixingBs mixing

Bs → Bs

Bs → Bs

Bs mixing

Page 19: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

19

The CP violating decay: Bs→Ds K

31-3-2008

Due to mixing possibility the decay Bs→Ds K can occur in two quantum amplitudes:

a1. Directly:

a2. Via mixing:

Coupling constant with CP odd phase

How do the phase differences between the amplitudes lead to an observable CP violation effect…?

In addition, mixing and gluon interactions add a non-CP violating phase “d” between a1 and a2

Page 20: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

20Sept 28-29, 2005

Observing CP violation

|A||A| Only if both and d are not 0

BDs+ K−BDs

− K+

A=a1+a2 A=a1+a2

d d+-

a1 a1

a2

a2

AA

Compare the |amplitude| of the B decay versus that of anti-B decay; is the CP odd phase , d is a CP even phase

Note for completeness: since the CP even phase depends on the mixingthe CP violation effect becomes decay time dependent

Page 21: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

21

Double slit experiment with quantum waves

31-3-2008

Bs

Ds-

K

LHCb is a completely analogous interference experiment using B-mesons…

Page 22: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

Nikhef-evaluation 226-sept-2007

sB D K “slit A”:

A Quantum Interference B-experiment

pp at LHCb:100 kHz bb

Decay timeBs

Ds-

K

“slit B”: sB B D K

Measure decay time

Page 23: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

Nikhef-evaluation 236-sept-2007

CP Violation: matter – antimatter asymmetry

s s sB B D K

s sB D K

Bs

Ds

K

s sB D K

An interference pattern:

Decay time

Decay time

s sB D K

Page 24: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

Nikhef-evaluation 246-sept-2007

s s sB B D K

s sB D K

Bs

Ds+

K

s s sB B D K

s sB D K

Bs

Ds

K

Matter

Antimatter

CP-mirror:

Difference between curves is proportional to the phase

Decay time

Decay time

s s

s sB

B D

D

K

K

Decay time

An interference pattern:

CP Violation: matter – antimatter asymmetryCP Violation: matter – antimatter asymmetrys sB D K

Observation of CP Violation is a consequence of quantum interference!!

Page 25: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

Nikhef-evaluation 256-sept-2007

Searching for new virtual particles

Standard Model

Bs

J/

Standard Model

Decay time

/sB J

Page 26: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

Nikhef-evaluation 266-sept-2007

Bs

b

b

s

s t

t

Bs

W W

Bs

Bs

b

s

s

b

x

x

s̃g̃

Bs→ Bs→ DsπBs→ Bs→ J/ψφ

b W s

t

K*

K*

b s

μ

μ

μ

μ

xs̃b̃

B0→K*μ μ

d

dB0

B0 tW

Bs

Bsb

b

s

s

μ

μμ

μ

x

Bs→μ μ

SM:

NewPhysics:

ΔB=2 ΔB=1 ΔB=1

Bs

b

b

s

s t

t

Bs

W W

Bs

Bs

b

s

s

b

x

x

s̃g̃

Bs→ Bs→ DsπBs→ Bs→ J/ψφ

Bs

b

b

s

s t

t

Bs

W W

Bs

Bs

b

s

s

b

x

x

s̃g̃

Bs→ Bs→ DsπBs→ Bs→ J/ψφ

b W s

t

K*

K*

b s

μ

μ

μ

μ

xs̃b̃

B0→K*μ μ

d

dB0

B0b W s

t

K*

K*

b s

μ

μ

μ

μ

xs̃b̃

B0→K*μ μ

d

dB0

B0 tW

Bs

Bsb

b

s

s

μ

μμ

μ

x

Bs→μ μ

tW

Bs

Bsb

b

s

s

μ

μμ

μ

x

Bs→μ μ

SM:

NewPhysics:

ΔB=2 ΔB=1 ΔB=1

Bs

b

b

s

s t

t

Bs

W W

Bs

Bs

b

s

s

b

x

x

s̃g̃

Bs→ Bs→ DsπBs→ Bs→ J/ψφ

b W s

t

K*

K*

b s

μ

μ

μ

μ

xs̃b̃

B0→K*μ μ

d

dB0

B0 tW

Bs

Bsb

b

s

s

μ

μμ

μ

x

Bs→μ μ

SM:

NewPhysics:

ΔB=2 ΔB=1 ΔB=1

Bs

b

b

s

s t

t

Bs

W W

Bs

Bs

b

s

s

b

x

x

s̃g̃

Bs→ Bs→ DsπBs→ Bs→ J/ψφ

Bs

b

b

s

s t

t

Bs

W W

Bs

Bs

b

s

s

b

x

x

s̃g̃

Bs→ Bs→ DsπBs→ Bs→ J/ψφ

b W s

t

K*

K*

b s

μ

μ

μ

μ

xs̃b̃

B0→K*μ μ

d

dB0

B0b W s

t

K*

K*

b s

μ

μ

μ

μ

xs̃b̃

B0→K*μ μ

d

dB0

B0 tW

Bs

Bsb

b

s

s

μ

μμ

μ

x

Bs→μ μ

tW

Bs

Bsb

b

s

s

μ

μμ

μ

x

Bs→μ μ

SM:

NewPhysics:

ΔB=2 ΔB=1 ΔB=1

Searching for new virtual particles

Standard Model

New Physics

Bs

J/

Decay time

/sB J Tiny weak phase in couplings!

Possible weak phase in couplings!?

Page 27: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

Nikhef-evaluation 276-sept-2007

Bs

b

b

s

s t

t

Bs

W W

Bs

Bs

b

s

s

b

x

x

s̃g̃

Bs→ Bs→ DsπBs→ Bs→ J/ψφ

b W s

t

K*

K*

b s

μ

μ

μ

μ

xs̃b̃

B0→K*μ μ

d

dB0

B0 tW

Bs

Bsb

b

s

s

μ

μμ

μ

x

Bs→μ μ

SM:

NewPhysics:

ΔB=2 ΔB=1 ΔB=1

Bs

b

b

s

s t

t

Bs

W W

Bs

Bs

b

s

s

b

x

x

s̃g̃

Bs→ Bs→ DsπBs→ Bs→ J/ψφ

Bs

b

b

s

s t

t

Bs

W W

Bs

Bs

b

s

s

b

x

x

s̃g̃

Bs→ Bs→ DsπBs→ Bs→ J/ψφ

b W s

t

K*

K*

b s

μ

μ

μ

μ

xs̃b̃

B0→K*μ μ

d

dB0

B0b W s

t

K*

K*

b s

μ

μ

μ

μ

xs̃b̃

B0→K*μ μ

d

dB0

B0 tW

Bs

Bsb

b

s

s

μ

μμ

μ

x

Bs→μ μ

tW

Bs

Bsb

b

s

s

μ

μμ

μ

x

Bs→μ μ

SM:

NewPhysics:

ΔB=2 ΔB=1 ΔB=1

Bs

b

b

s

s t

t

Bs

W W

Bs

Bs

b

s

s

b

x

x

s̃g̃

Bs→ Bs→ DsπBs→ Bs→ J/ψφ

b W s

t

K*

K*

b s

μ

μ

μ

μ

xs̃b̃

B0→K*μ μ

d

dB0

B0 tW

Bs

Bsb

b

s

s

μ

μμ

μ

x

Bs→μ μ

SM:

NewPhysics:

ΔB=2 ΔB=1 ΔB=1

Bs

b

b

s

s t

t

Bs

W W

Bs

Bs

b

s

s

b

x

x

s̃g̃

Bs→ Bs→ DsπBs→ Bs→ J/ψφ

Bs

b

b

s

s t

t

Bs

W W

Bs

Bs

b

s

s

b

x

x

s̃g̃

Bs→ Bs→ DsπBs→ Bs→ J/ψφ

b W s

t

K*

K*

b s

μ

μ

μ

μ

xs̃b̃

B0→K*μ μ

d

dB0

B0b W s

t

K*

K*

b s

μ

μ

μ

μ

xs̃b̃

B0→K*μ μ

d

dB0

B0 tW

Bs

Bsb

b

s

s

μ

μμ

μ

x

Bs→μ μ

tW

Bs

Bsb

b

s

s

μ

μμ

μ

x

Bs→μ μ

SM:

NewPhysics:

ΔB=2 ΔB=1 ΔB=1

Searching for new virtual particles

Standard Model

New Physics

Mission:To search for new particles and interactions that affect theobserved matter-antimatter asymmetry in Nature, by makingprecision measurements of B-meson decays.

B->J/B->J/

Bs

J/

/

/s

sB

J

J

B

Search for a CP asymmetry:

Decay time

/sB J

?

Page 28: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

2831-3-2008

Bs

b

b

s

s t

t

Bs

W W

Bs

Bs

b

s

s

b

x

x

s̃g̃

Bs→ Bs→ DsπBs→ Bs→ J/ψφ

b W s

t

K*

K*

b s

μ

μ

μ

μ

xs̃b̃

B0→K*μ μ

d

dB0

B0 tW

Bs

Bsb

b

s

s

μ

μμ

μ

x

Bs→μ μ

SM:

NewPhysics:

ΔB=2 ΔB=1 ΔB=1

Bs

b

b

s

s t

t

Bs

W W

Bs

Bs

b

s

s

b

x

x

s̃g̃

Bs→ Bs→ DsπBs→ Bs→ J/ψφ

Bs

b

b

s

s t

t

Bs

W W

Bs

Bs

b

s

s

b

x

x

s̃g̃

Bs→ Bs→ DsπBs→ Bs→ J/ψφ

b W s

t

K*

K*

b s

μ

μ

μ

μ

xs̃b̃

B0→K*μ μ

d

dB0

B0b W s

t

K*

K*

b s

μ

μ

μ

μ

xs̃b̃

B0→K*μ μ

d

dB0

B0 tW

Bs

Bsb

b

s

s

μ

μμ

μ

x

Bs→μ μ

tW

Bs

Bsb

b

s

s

μ

μμ

μ

x

Bs→μ μ

SM:

NewPhysics:

ΔB=2 ΔB=1 ΔB=1Bs

b

b

s

s t

t

Bs

W W

Bs

Bs

b

s

s

b

x

x

s̃g̃

Bs→ Bs→ DsπBs→ Bs→ J/ψφ

b W s

t

K*

K*

b s

μ

μ

μ

μ

xs̃b̃

B0→K*μ μ

d

dB0

B0 tW

Bs

Bsb

b

s

s

μ

μμ

μ

x

Bs→μ μ

SM:

NewPhysics:

ΔB=2 ΔB=1 ΔB=1

Bs

b

b

s

s t

t

Bs

W W

Bs

Bs

b

s

s

b

x

x

s̃g̃

Bs→ Bs→ DsπBs→ Bs→ J/ψφ

Bs

b

b

s

s t

t

Bs

W W

Bs

Bs

b

s

s

b

x

x

s̃g̃

Bs→ Bs→ DsπBs→ Bs→ J/ψφ

b W s

t

K*

K*

b s

μ

μ

μ

μ

xs̃b̃

B0→K*μ μ

d

dB0

B0b W s

t

K*

K*

b s

μ

μ

μ

μ

xs̃b̃

B0→K*μ μ

d

dB0

B0 tW

Bs

Bsb

b

s

s

μ

μμ

μ

x

Bs→μ μ

tW

Bs

Bsb

b

s

s

μ

μμ

μ

x

Bs→μ μ

SM:

NewPhysics:

ΔB=2 ΔB=1 ΔB=1

+

First sign of New Physics in Bs mixing?N sSM Pi i iAe Be Ce

SM box has (to a good approx.) no weak phase: SM = 0

S.M. N.P. ?

Page 29: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

2931-3-2008

Bs

b

b

s

s t

t

Bs

W W

Bs

Bs

b

s

s

b

x

x

s̃g̃

Bs→ Bs→ DsπBs→ Bs→ J/ψφ

b W s

t

K*

K*

b s

μ

μ

μ

μ

xs̃b̃

B0→K*μ μ

d

dB0

B0 tW

Bs

Bsb

b

s

s

μ

μμ

μ

x

Bs→μ μ

SM:

NewPhysics:

ΔB=2 ΔB=1 ΔB=1

Bs

b

b

s

s t

t

Bs

W W

Bs

Bs

b

s

s

b

x

x

s̃g̃

Bs→ Bs→ DsπBs→ Bs→ J/ψφ

Bs

b

b

s

s t

t

Bs

W W

Bs

Bs

b

s

s

b

x

x

s̃g̃

Bs→ Bs→ DsπBs→ Bs→ J/ψφ

b W s

t

K*

K*

b s

μ

μ

μ

μ

xs̃b̃

B0→K*μ μ

d

dB0

B0b W s

t

K*

K*

b s

μ

μ

μ

μ

xs̃b̃

B0→K*μ μ

d

dB0

B0 tW

Bs

Bsb

b

s

s

μ

μμ

μ

x

Bs→μ μ

tW

Bs

Bsb

b

s

s

μ

μμ

μ

x

Bs→μ μ

SM:

NewPhysics:

ΔB=2 ΔB=1 ΔB=1Bs

b

b

s

s t

t

Bs

W W

Bs

Bs

b

s

s

b

x

x

s̃g̃

Bs→ Bs→ DsπBs→ Bs→ J/ψφ

b W s

t

K*

K*

b s

μ

μ

μ

μ

xs̃b̃

B0→K*μ μ

d

dB0

B0 tW

Bs

Bsb

b

s

s

μ

μμ

μ

x

Bs→μ μ

SM:

NewPhysics:

ΔB=2 ΔB=1 ΔB=1

Bs

b

b

s

s t

t

Bs

W W

Bs

Bs

b

s

s

b

x

x

s̃g̃

Bs→ Bs→ DsπBs→ Bs→ J/ψφ

Bs

b

b

s

s t

t

Bs

W W

Bs

Bs

b

s

s

b

x

x

s̃g̃

Bs→ Bs→ DsπBs→ Bs→ J/ψφ

b W s

t

K*

K*

b s

μ

μ

μ

μ

xs̃b̃

B0→K*μ μ

d

dB0

B0b W s

t

K*

K*

b s

μ

μ

μ

μ

xs̃b̃

B0→K*μ μ

d

dB0

B0 tW

Bs

Bsb

b

s

s

μ

μμ

μ

x

Bs→μ μ

tW

Bs

Bsb

b

s

s

μ

μμ

μ

x

Bs→μ μ

SM:

NewPhysics:

ΔB=2 ΔB=1 ΔB=1

+

First sign of New Physics in Bs mixing?N sSM Pi i iAe Be Ce

SM box has (to a good approx.) no weak phase: SM = 0

If S ≠ 0 then new physics outside the CKM is present…

S.M. N.P.

UTfit collab.; March 5, 2008Combining recent results of

CDF, D0 on

with Babar, Belle results:

March 5,2008

/sB J

?

3.7 s deviationFrom 0

Page 30: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

The LHCb experiment

LHCb

ATLAS

CMS ALICE

qb

qb

LHCb experiment:700 physicists50 institutes 15 countries

Page 31: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

31

LHCb experiment in the cavern

31-3-2008

Shielding wall(against radiation)

Electronics + CPU farm

Offset interaction point (to make best use of existing cavern)

Detectors can be moved away from beam-line for access

Page 32: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

32

b-b detection in LHCb

31-3-2008

LHCb event rate: 40 MHz1 in 160 is a b-bbar event 1012 b-bbar events per year

Background SupressionFlavour taggingDecay time measurement

• vertices and momenta reconstruction • effective particle identification (π, К, μ, е, γ)• triggers

Page 33: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

33

GEANT MC simulation

Used to optimise the experiment and to test measurement sensitivities

Page 34: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

34

A walk through the LHCb detector

p p

~ 200 mrad~ 300 mrad (horizontal)

10 mrad

Inner acceptance ~15 mrad (10 mrad conical beryllium beampipe)

Page 35: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

35

LHCb Tracking: vertex region

31-3-2008

Vertex locator around the interaction regionSilicon strip detector with ~ 30 mm impact-parameter resolution

Page 36: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

36

Pile-Up Stations Interaction

Regions=5.3 cm

LHCb tracking: vertex region

y

x

y

x

Page 37: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

37

LHCb tracking: momentum measurement

0.15 Tm

By[T]Bfield: B dl = 4 Tm

Tracking: Mass resolution for background suppression in eg. DsK

Page 38: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

38

LHCb tracking: momentum measurement

All tracking stations have four layers:0,-5,+5,0 degree stereo angles.

Silicon: ~1.41.2 m2

Straw tubes~65 m2

Page 39: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

39

~1.41.2 m2

Red = Measurements (hits)Blue = Reconstructed tracks

Eff = 94% (p > 10 GeV)

• Typical Momentum resolution dp/p ~ 0.4%• Typical Impact Parameter resolution sIP ~ 40 mm

LHCb tracking: momentum measurement

Page 40: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

40

LHCb Hadron Identification: RICH

3 radiators to coverfull momentum range: Aerogel C4F10

CF4

RICH2: 100 m3 CF4 n=1.0005

RICH: K/ separation e.g. to distinguish Ds and DsK events.

RICH1: 5 cm aerogel n=1.03 4 m3 C4F10 n=1.0014

Cerenkov light emission angle

Page 41: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

41

LHCb calorimeters

e

h

Calorimeter system : • Identify electrons, hadrons, neutrals• Level 0 trigger: high electron and hadron Et (e.g. Ds K events)

Page 42: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

42

LHCb muon detection

m

Muon system:• Identify muons • Level0 trigger: High Pt muons

Page 43: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

43

View of LHCb in Cavern

31-3-2008

VELO

Muon det Calo’s RICH-2 MagnetOT RICH-1

VELO

Muon det Calo’s RICH-2 MagnetOT RICH-1

It’s full!Installation of major structures is essentially complete

Page 44: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

44

Hope to soon see the first events from…

31-3-2008

Page 45: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

4531-3-2008

Display of LHCb simulated event

Page 46: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

46

Prepare Bs→DsK Reconstruction…

• Trigger : – ET Calorimeters, Vertex topology

• Flavour Tag: – Lepton-ID, Kaon-ID

• Background suppression: – Mass resolution, K/ ID

• Decay time: – Decay distance measurement– Momentum measurement

Ds

BsK

K

,K

d

p47 mm 144 mm

440 mmInvariant Mass

Page 47: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

47

… to see time dependent CP violation signal!

31-3-2008

5 years data:Bs→ Ds

-

Bs→ Ds-K+

The amplitude of these “wiggles“ are proportional to the imaginary part of the CKM phase gamma!

iud us ub

cd cs cbi

td ts tb

V V V eV V V

V e V V

Decay time (ps) →

Page 48: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

48

Conclusion: after 5 years of LHCb…

31-3-2008

To make this plot only Standard Model physics is assumed.

CKM Unitarity Triangle in 2007:Expected errors after 5 years (10 fb-1) of LHCb:

Page 49: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

49

Conclusion and Outlook LHCb

31-3-2008

• CP Violation• Measure the Bs mixing phase (Bs→J/ )• Measure the CKM angle gamma via tree method (Bs → DsK)• Measure the CKM angle gamma via penguin loops (B(s) → hh )

• Rare Decays• Measure Branching Ratio Bs → m+ m -

• Measure angular distribution B0 → K* m+ m - • Measure radiative penguins decays: b → s B → Xs

• Other Flavour Physics• Angle beta, B-oscillations, lifetimes, D-physics, Higgs,…?

The collaboration has organised analysis groups and identified “hot topics”:

• Atlas and CMS look for new physics via direct production of particles• LHCb tries to study it via the (possibly complex) couplings in B decay loop diagrams

Page 50: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

50

Summary of Signal Efficiencies

31-3-2008

Page 51: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

51

Thank you for the attention.

31-3-2008

Page 52: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

5231-3-2008

Page 53: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

5331-3-2008

Page 54: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

5431-3-2008

Page 55: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

55

Research Questions

• Is flavour physics fully described by the CKM mechanism• Is CP violation in CKM sufficient to describe baryogenesis • Many models beyond the SM include a rich flavour physics

structure• Are the penguin, box and tree diagrams governed by the same

physics?• Search for CP violation where SM predicts none• Measure Branching Ratio for processes which are forbidden in SM

• For the hypothesis that neutrinos are not massless the lepton system has a similar flavour strcture VCKM → VPMNS

31-3-2008

Page 56: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

56

Bd meson vs Bs meson

31-3-2008

1mx

1mx

These B bbar oscillations allow for a beautiful CP experiment

Page 57: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

57

Result of track findingTypical event display:

Red = measurements (hits)Blue = all reconstructed tracks

Efficiency vs p : Ghost rate vs pT :

Eff = 94% (p > 10 GeV)

Ghost rate = 3%(for pT > 0.5 GeV)

VELO

TT

T1 T2T3On average:

26 long tracks11 upstream tracks4 downstream tracks5 T tracks26 VELO tracks

2050 hits assigned to a long track: 98.7% correctly assigned

Ghosts:Negligible effect onb decay reconstruction

Page 58: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

58

Experimental Resolution

dp/p = 0.35% – 0.55%

p spectrum B tracks

sIP= 14m + 35 m/pT

1/pT spectrum B tracks

Momentum resolution Impact parameter resolution

Page 59: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

59

Particle IDRICH 1 RICH 2

e (K->K) = 88%

e (p->K) = 3%

Example:Bs->Dsh

K

Bs K

,K

DsPrim vtx

Page 60: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

60

Event in the Simulation

31-3-2008

Page 61: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

61

Zoom in on the Velo detector

31-3-2008

Page 62: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

Physics challenges of the LHC (III) 62Roger Forty

4. Expected results

• Example of an early physics measurement that is expected from LHCb:Measurement of Bs–Bs oscillationsUse channel Bs Ds

+

• Plot made for one year of data 80,000 selected eventsfor ms = 20 ps-1 (SM preferred)Proper time distribution for eventsproduced as Bs (rather than Bs)

• Need to take care of flavourtagging, proper-time resolution,background rejection andacceptance correction

• Can measure frequency accurately cf recent result ms = 17.8 ± 0.1 ps-1 [CDF] Next step: measure the phase of the oscillation, using Bs J/ decays (Bs counterpart of B0 J/ KS), cleanly predicted in the SM: s = 0.04

Page 63: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

Physics challenges of the LHC (III) 63Roger Forty

Penguin decays

• These are another category of decays involving loop diagramsNew particles might appear in those loops

• Some indication from the B factory experiments that their results for penguindecays do not agree with expectations might be a hint of new physics?

• LHCb should reach a precision of ± 0.04on the asymmetry of Bs

ExperimentTheory

Page 64: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

Physics challenges of the LHC (III) 64Roger Forty

Rare decays• Profit from the enormous statistics

to search for very rare decays such as Bs mm

Branching ratio ~ 3 10-9 in the Standard Model• BR can be strongly enhanced in SUSY

[G. Kane et al, hep-ph/0310042]• LHCb can reach the SM prediction

in a few years

Integrated Luminosity (fb-1)

BR

(x10

-9) 5s

3s

SM prediction

SUSY models LHCb

Page 65: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

b q1

d, s

q2W−

qB

Topologies in B decays

g

d (s)

q

q

W −

b u,c,t

b

q

u,c,t

u, c, t

q

bqBqB W+ W−

V*ib Viq

Viq V*ib

Trees

Penguins

Boxes

mbγ

L+mq γ

R

b q

W–

u, c, t

Z, γ

d (s)

l+

l−

W −

b u, c, t

Page 66: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

Search for NP comparing observables measured in tree and loop topologies

(tree+box) in B J/ Ks

(tree) in many channels(tree+box) in Bs J/

(peng+tree) in Brr,r, (peng+box) in B Ks

(peng+box) in Bs

New heavy particles, which may contribute to d- and s- penguins,could lead to some phase shifts in all three angles:

d(NP) = (peng+tree) - (tree) d(NP) = (BKs) - (BJ/Ks) ≠ 0 d(NP) = (Bs) - (BsJ/)

Page 67: Seminar  R u G March  31, 2008 Marcel Merk Nikhef and VU

B → K* μμ

?A very important property isforward-backward asymmetry..

..and position of its zero, which is robust in SM:

)(2

09

70 sC

Cs eff

eff

AFB(s), fast MC, 2 fb–1

s = (mmm)2 [GeV2]