semiotics as a theoretical framework for research in mathematics education norma presmeg illinois...

47
Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Upload: rashad-medley

Post on 29-Mar-2015

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Semiotics as a Theoretical Framework for Research in

Mathematics Education

Norma PresmegIllinois State

University

July, 2009

Page 2: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Semiotics, language, and mathematics

Both in the use of language, and in the doing of mathematics, and its teaching and learning, signs are taken to stand for mental concepts. Semiotic theories, including the dyadic models of Saussure and Lacan, and the triadic model of Charles Sanders Peirce, provide useful lenses for examining issues pertaining to mathematics and language.

Page 3: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Ferdinand de Saussure

Saussure’s ideas were worked out in the context of language.

His dyadic model consisted of “concept” and “acoustic image” (roughly called signified and signifier).

Page 4: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Charles Sanders Peirce

Peirce’s all-embracing triadic model takes the act of interpretation into account.

A Peircean nested model of signs, each involving object, representamen, and interpretant, casts light on issues of representation – including metaphors and metonymies – in mathematics education.

Page 5: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Terminology

Peirce: a sign entails an object, a representamen, and an interpretant.

In this presentation I shall take a sign to be the interpreted relationship between some representamen (signifier), called the sign vehicle, and an object (signified) that it represents or stands for in some way.

Page 6: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

A Peircean example of the three components of a sign

Object (signified): “It’s going to rain!”

Sign vehicle (representamen or signifier): “The barometric pressure is falling.”

Interpretant: “Take an umbrella!”

Page 7: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Peirce’s trichotomiesTrichotomic is the art of making three-fold divisions. Peirce showed a proclivity for the number three in his philosophical thinking. “But it will be asked, why stop at three?”

“[W]hile it is impossible to form a genuine three by any modification of the pair, without introducing something of a different nature from the unit and the pair, four, five, and every higher number can be formed by mere complications of threes” (Peirce, 1992, p. 251).

Page 8: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Types of signs: icon, index, and symbol

• Just one of Peirce’s ten trichotomies.• Not inherent in the signs themselves,

but depend on the interpretation of the relation between sign vehicle and

object.• Icon: physical resemblance, e.g., photo.• Index: physical connection, e.g., smoke

and fire.• Symbol: conventional, e.g., algebraic

symbolism.

Page 9: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

• The sign vehicle and its object partake of

different levels of generality.

“Seeing an A as a B” (Otte, 2006).

• More than one sign vehicle may refer to a mathematical object.

“Conversions amongst registers”

(Duval, 1999).

• Visual imagery and inscriptions refer to internal and external representations respectively.

Page 10: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Abstract notion: this particular

function - object

Algebraic notation: y=x2

Sign 1: interpreted sign vehicle 1 (parabola) and object

Sign 2: interpreted sign vehicle 2 (equation) and object

Two registers illustrated by two signs with the same object

Page 11: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

A significant issue is the investigation of ways that teaching may facilitate learners’ building of connections amongst mathematical signs.

By highlighting structures and patterns across domains, such connections may foster generalizations and help to combat the phenomenon of compartmentalization.

Page 12: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Some Early Research Results

• Mr Blue obtained a score of 3 out of a possible 36 on my test for preference for visuality (MV) in mathematical problem solving.

• Yet his teaching visuality (TV) score was 7 of a possible 12 classroom aspects.

• Mathematical visuality (MV) and teaching visuality (TV) were only weakly correlated in this sample of 13 teachers.

(Spearman’s rho = 0.404 n.s.)

Page 13: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Mr. Blue [with excitement]: You’ve got to be careful sometimes I think … bringing things from the abstract, to too concrete. Then it’s that way forever, then everything is like that. You’ve got to be careful with that because sometimes you must remember that our abstractness carries us to flights of imagination of where we can go with it. And that’s what I would like them as often to see here, when we do something, this is another possible way of doing this problem; more algebraically, what you can do with it.

For Mr. Blue, algebra was often the vehicle of abstraction.

Page 14: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Beauty is truth, truth beauty:That is all ye know on earth

- And all ye need to know (John Keats)

Page 15: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

In his teaching, Mr. Blue frequently expressed his own pleasure in the beauty of mathematics. In a trigonometry lesson he spoke with his students about errors that some of them were making.

Mr. Blue: Don’t just square things, and suddenly they disappear into space. … And then of course I was really saddened by this: now let me say this to you. Don’t do this any more. Now you know better than that in this room. You cannot take the square root of individual what?

Boys: Terms.

Page 16: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Mr. Blue (continued):Terms. … Don’t force it! Maths just won’t be forced. That’s the beauty of it, that’s its beauty: where it stands strong against this forcing things into it that don’t have any place for it at all. It must go on the way it always has gone on.

The way that Mr. Blue encouraged metacognition was also apparent in an algebra lesson on change of base of logarithms. In a test, the boys had solved a quadratic equation in logarithms:

(log3x)2 – 10log3x + 9 = 0

Page 17: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Mr. Blue:So this would be the fastest way: factorise. You can do the change of base with tens, you can get it, it will be right, when you’ve finished [but it would be slow]. … We could put a y in for log to the base 3 of x, couldn’t we? Then factorise. … The whole thing in higher grade is to think in patterns, and relate to patterns of the former work received. And you get bigger and bigger problems.

Page 18: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Mr. Blue (continued):If you look at this one now, how many ideas were in this problem? This idea was a log idea, this turns into a quadratic idea, this turns into factorisation, this turns into exponentials to get the answer. All in one problem. That’s what you must start getting used to.

The connections between domains that Mr. Blue was helping his boys to identify are a central topic that I wish to highlight. The theoretical lens that I shall use is that of Peircean semiotics.

Page 19: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Thirteen significant questions

1. What aspects of pedagogy are significant in promoting the strengths and obviating the difficulties of use of visualization?

2. What aspects of classroom cultures promote the active use of effective visual thinking in mathematics?

3. What aspects of the use of different types of imagery and inscriptions are effective in mathematical problem solving?

4. What are the roles of gestures in mathematical visualization?

Page 20: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

5. What conversion processes are involved in

moving flexibly amongst various mathematical registers, thus combating compartmentalization?

6. What is the role of metaphors in connecting different registers?

7. How can teachers help learners to make connections between visual and symbolic inscriptions?

8. How can teachers facilitate connections between idiosyncratic and conventional inscriptions (and/or imagery)?

Page 21: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

12.How do visual aspects of computer technology, including dynamic geometry software, change the processes of learning mathematics?

13.What is the structure, and what are the components, of an overarching theory of visualization for mathematics education?

Page 22: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Recent research: Conversions Recent research: Conversions amongst trigonometric signsamongst trigonometric signs

Compartmentalization in interviews with Compartmentalization in interviews with preservice elementary teachers (with preservice elementary teachers (with

Jeff Barrett & Sharon McCrone).Jeff Barrett & Sharon McCrone).

Teaching that encouragesTeaching that encourages

conversions amongst signs in high conversions amongst signs in high

school trigonometry (with Susan Brown).school trigonometry (with Susan Brown).

Page 23: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Research question in both Research question in both studiesstudies

How may teaching How may teaching

facilitate students’ construction facilitate students’ construction

of connections amongst registers in of connections amongst registers in

learning the basic concepts of learning the basic concepts of trigonometry?trigonometry?

Page 24: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Sam’s case: Compartmentalization in trigonometry

• Sam was chosen as one of three students (from 27 in Jeff’s class) to be interviewed, because of his strong abductive thinking in class discourse.

• Sam was trying to recall trig. principles that he learned several years earlier.

• The facilitative teaching of my colleague Jeff Barrett had not yet taken place.

Page 25: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Third question in the preliminary interview

This graph shows an angle. Give the approximate value of the sine of the angle.

(Brown, 2005)

Page 26: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Right triangle, unit circle, and sinusoid curve

• Sam knew the right triangle definitions of the trig. ratios (using SOH CAH TOA).

• He called the rotation angle theta, and marked its supplement, the reference angle in the second quadrant.

• He dropped perpendiculars to the x and y axes, and joined P to the circle’s intersection with the y axis.

• He identified the sine of the reference angle as having a value of 0.8.

Page 27: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Sam’s inscriptions on the unit circle

The value of the sine of the reference angle is point eight.

Page 28: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Sam: That’s point 8, yeah. But over here, let’s see, […] the

sine of the whole angle is one.

Interviewer: The sine now of the obtuse angle?

Sam: So this would be point 2 [pointing to the arc between P and the y axis].

Sam appears to have an image something like this:

0.8

0.2

1.0

Page 29: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Sam: So I’d say negative one point two … I dunno.

Interviewer: How did you get one point two?

Sam: So, the sine of this angle is one.

Interviewer: The ninety degree angle?

Sam: Yes, so this is one. And then this is … let’s see, this point is … negative point six, point eight.

Interviewer: Oh, I see. You’re figuring out the coordinates?

Sam: I was just thinking of a unit circle. And with coordinates …’cause now like, the sine of this angle here [indicating point of intersection of circle and y axis] is, the cosine zero, the sine one. […] And then it goes, that’s 90, which, it still stays positive though, so … one point two, because this is point two.

Page 30: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Sam then explained negative and positive values in the quadrants using coordinates of points. After the interviewer told him that the correct answer for the value of the sine of theta is point eight, he persisted:

Sam: But if this … if the sine of this angle here is one, how can a bigger angle be less?

Interviewer (I): Ah, that’s a good question. Do you know what a sine graph looks like?

Sam: Yeah.I: Can you draw me one? Can you put values in there?

Sam drew the sine graph for one revolution and inserted appropriate radian measures on the θ axis, and one and negative one on the y axis.

Page 31: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

I: There you go! Now you just said, how can it be less, if it’s [the angle is] bigger that 90?

Sam: Yeah, it, it’s not … [following the curve with his finger].

I: So it goes down again.

Sam: So that spot is the same here. Yeah! [He marks symmetrical points on the sine curve on either side of π/2.]

Sam seemed elated to make this connection between sine in the unit circle and the sinusoid.

Page 32: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Teaching that encourages conversions amongst signs

• Laura and Jim were two of the four students (from 30 in Sue’s class) who were interviewed six times each.

• In the second interview of the series, all four students completed without difficulty the task given to Sam.

• Laura’s solution is typical (although two of the four students felt no need to invoke the Pythagorean triples, as Laura did).

Page 33: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

I: So first of all, where’s the angle that you’re looking at?

Laura: It’s the … It goes through the first into the second quadrant. […] The y value over the radius. And I’d say the y value is approximately point eight.

I: Point eight. Where are you looking? On the y axis?

Laura: Yes. Hm … I’m not quite sure but I assume it [the radius] would be … about one. It has to be greater than … [5 seconds]

I: Is there a way that you can see what the radius is? … Have a look at other points on the circle.

Laura: Oh! Yeah … So that would be point six, minus point six. … Draw a triangle.

Page 34: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

[Laura draws on

Her paper.]

I: So you’re thinking of a right triangle? Is that … how did you know that? The 6, 8, 10?

Laura: It’s just a, one of the triples that we learned.

I: The Pythagorean triples? Okay. So if that was 6, 8, that would be 10, and now you’ve got …

Laura: Point 6, point 8, and one. So the, it was one. Point 8 over one … point 8.

8

6

10

Page 35: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

• Both Laura and Jim were also asked to describe how

they would work with angles in the third quadrant.• They both drew right triangles by dropping a

perpendicular to the y axis rather than the x axis.• Jim in the discussion that ensued expressed

resistance to working from the x axis.

Page 36: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Jim: Well I’d subtract the rotation angle from 270, to get the

angle, and then I’d use, um, this up here. […] And you can do the same thing: multiply it by the radius. [In working with the second quadrant he had written “sinθ.r =opposite, and cosθ.r =adjacent” indicating multiplication by the length of the radius.]

I: Just be careful. Because if you now say the sine of that angle … which one is it going to give you? […] Your cosine gave you the x here [in the second quadrant], and the opposite gave you the y. Now is it going to be that the cosine gives you the x again?

Jim: No. It will still be the opposite and the adjacent legs, but it will switch from x to y.

Jim explained later that he did not like drawing the triangle “backwards on itself”, because then it would block the rotation angle.

Page 37: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Some of Sue’s facilitative principles for converting among registers

• Connect old knowledge with new, starting with the “big ideas” of trigonometry.

• Connect visual and nonvisual registers.• Supplementing problems with templates

for students to draw and use sketches.• Providing memorable summaries in

diagram form.• Providing contextual or “real world”

metaphors, e.g., boom crane; bow tie.

Page 38: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Laura’s computer inscription of the bow tie

Page 39: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Analysis of the episodes: Analysis of the episodes: The power of semioticsThe power of semiotics

* All the mathematical thinking portrayed in * All the mathematical thinking portrayed in

these episodes involves these episodes involves activity activity

with signswith signs, i.e., semiosis., i.e., semiosis.

* There is an internal logic in the students’ * There is an internal logic in the students’

interpretations (correct or not).interpretations (correct or not).

* This logic is revealed in the imagery* This logic is revealed in the imagery

imputed to the students as they imputed to the students as they

interpret the relationships.interpret the relationships.

Page 40: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Icon, index, or symbol?

• Sam’s image that results in his claim that the sine of the rotation angle is 1.2 is a sign vehicle that is connected iconically with the way he is seeing the relationships in the mathematical object (the sine ratio defined in the unit circle).

• When he constructs a different sign, based on his inscription of the sinusoid graph, then his previous icon is no longer viable: the value of the sine of an angle cannot exceed 1.

Page 41: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

• There is also a sense in which the signs are

indexical, because they point to what Sam sees as the structure of the relationships involved (as smoke points to fire).

• In standard mathematics there is an element of convention associated with the principles governing the trigonometric ratios defined in the coordinate plane (e.g., that the radius vector rotates counter clockwise from the positive x-axis), and with the way the sinusoid is organized.

• Thus the correct interpretation of the relations between sign vehicles and mathematical objects is also symbolic.

Page 42: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

• When Laura and Jim want to subtract the

rotation angle from 270o to find the reference angle in the third quadrant, the iconic sign they have constructed gives way to a conventional symbolic sign under the influence of the bow tie metaphor.

• Metaphors are particularly memorable if they are iconic, even if the result is a symbolic sign.

• The change in the form of signs is not arbitrary; it partakes of necessity according to the consistency of mathematical principles. As Mr. Blue claimed in the opening vignette, that is the beauty of mathematics—that it “just won’t be forced.”

Page 43: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Objectification, compression, and prototypes

• When Laura constructed a right triangle in the second quadrant, with lengths of legs that reminded her of values she had encountered previously (6, 8, and hence 10), a Pythagorean prototype appeared to be invoked.

• This prototype prevented her from seeing that she could have read off the value of the radius as one directly from the points of intersection of the circle with the x axis.

• Objectification as a semiosic process is powerful in the learning and doing of mathematics.

• However, the flexibility of having the ability to convert freely back and forth amongst different signs for the same mathematical objects is paramount.

Page 44: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Coming home to the beauty of Coming home to the beauty of mathematics as it connects.mathematics as it connects.

““Only by the form, Only by the form, the pattern, can the pattern, can words or music words or music reach the stillness, reach the stillness, as a Chinese jar still as a Chinese jar still moves perpetually moves perpetually in its stillness.”in its stillness.”

T.S. Eliot: Burnt NortonT.S. Eliot: Burnt Norton

Page 45: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Thirty years of PME research on Thirty years of PME research on visualizationvisualization

Affordances and constraints of using Affordances and constraints of using imagery and inscriptions as sign imagery and inscriptions as sign vehicles.vehicles.

Students’ seeming reluctance to Students’ seeming reluctance to visualize.visualize.

Objectification, compression, Objectification, compression, encapsulation, and reification.encapsulation, and reification.

Gesture and embodiment.Gesture and embodiment.

Page 46: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

Kosslyn and Bruner: the Kosslyn and Bruner: the representational development representational development

hypothesishypothesis

““[I]ndividual differences in types of [I]ndividual differences in types of imagery, quality and quantity, imagery, quality and quantity, preference for and skill in using, preference for and skill in using, persist through the school years and persist through the school years and possibly through lifetimes, without possibly through lifetimes, without evidence of general developmental evidence of general developmental trends in forms of imagery or in their trends in forms of imagery or in their personal use. …personal use. …

Page 47: Semiotics as a Theoretical Framework for Research in Mathematics Education Norma Presmeg Illinois State University July, 2009

The representational development The representational development hypothesishypothesis

... Bruner’s (1964) well known ... Bruner’s (1964) well known enactive, iconic, enactive, iconic, and and symbolicsymbolic modes modes of cognition should therefore be of cognition should therefore be taken as metaphors for types of taken as metaphors for types of thinking rather than as a thinking rather than as a developmental hierarchy.” (Presmeg, developmental hierarchy.” (Presmeg, 2006, p. 223)2006, p. 223)