senseable city lab :.:: massachusetts institute of...

17
Senseable City Lab :.:: Massachusetts Institute of Technology This paper might be a pre-copy-editing or a post-print author-produced .pdf of an article accepted for publication. For the definitive publisher-authenticated version, please refer directly to publishing house’s archive system SENSEABLE CITY LAB

Upload: others

Post on 13-Feb-2020

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Senseable City Lab :.:: Massachusetts Institute of Technologysenseable.mit.edu/papers/pdf/20140225_Nabian_etal_BordersSelectively_BridgesBorders .pdfSenseable City Lab :.:: Massachusetts

Senseable City Lab :.:: Massachusetts Institute of Technology

This paper might be a pre-copy-editing or a post-print author-produced .pdf of an article accepted for publication. For

the definitive publisher-authenticated version, please refer directly to publishing house’s archive system

SENSEABLE CITY LAB

Page 2: Senseable City Lab :.:: Massachusetts Institute of Technologysenseable.mit.edu/papers/pdf/20140225_Nabian_etal_BordersSelectively_BridgesBorders .pdfSenseable City Lab :.:: Massachusetts

Of  Borders  Selectively  Crossed  and  Domains  Carefully  Bridged:    Interdisciplinarity  and  Research-­‐driven  Design  by  Nashid  Nabian,  Luca  Simeone,    and  Carlo  Ratti    

  In   recent   scientific   writings   disciplinary   boundaries   are   often   seen   as   lines   that   can   be   selectively  crossed   in   order   to   reach   the   multivocality   and   critical   thinking   needed   to   deal   with   the   ambiguity   and  unpredictability  of  real-­‐life  problems,  offering  a  wider  spectrum  of  interpretive  perspectives  and  better  tools  to  operate   within   the   complexity   of   the   real   world.1     Bridging   differing   knowledge   domains   and   crossing   the  disciplinary  boundaries    are  also  among  the  main  components  of  what  has  been  defined  as  'Mode-­‐2'  scientific  production.  Mode-­‐2  has  been  proposed  as  a  new  form  of  knowledge  production  that  emerged  in  the  late  20th  century   in  which  the   `context  of  application'   is  a  crucial  component  of  knowledge  production  processes  and  practices.   Traditional   research   (defined   as  mode-­‐1   knowledge   production)   is   internally   initiated   in   academic  contexts   by   researchers   and   is   carried   out   within   disciplinary   borders.   On   the   contrary,   mode-­‐2   knowledge  production   is  context  driven,  and   involves   interdisciplinary   teams  brought   together   to   respond  to   real-­‐world  problems  and  challenges.   2   In   this   entry  we  would   like   to  explore   the   impact  of   interdisciplinarity  on  design  using   MIT   SENSEable   City   Lab's   design   experiments   and   its   organizational   culture   as   a   case   study   of    interdisciplinary  research-­‐driven  design  and  design-­‐driven  research  group.  3  

  Perhaps  one  way  of  exploring  this  shift  from  mode-­‐1  knowledge  production  to  that  of  mode-­‐2's  logic  of  operation   is   to  study  different  maps    and     illustrations  that   try   to     represent  different  world  views  on  the  relation  of   various  human  knowledge  domains:  Circles  of  Knowledge   or  Maps  of   Science   have  always   tried   to  illustrate   how   human   knowledge   is   integrated   through   the   arts   and   sciences   with   the   use   of   relevant  technologies.  They  provide  interesting  information  on  how  in  each  historical  period  boundaries  are  drawn  and  different  disciplines  are  delineated  in  relation  to  each  other,  the  domains  that  they  cover,  and  their  application  to  finding  solutions  for  real-­‐life  problems.  

  For  example,  In  17th  century,    William  Ames's  Philosophical  treatise,  Technometry  ,  provided  a  synoptic  correlation   of   the   disciplines   of   the   arts   and   sciences.   With   its   configuration   built   on   to   the   metaphor   of  encyclopedia,  Ames'  circle  of  knowledge  systematically  delineated  the  uses  of  each  of  the  individual  disciplines,  adequately  circumscribing  their  boundaries  and  their  ends.   It     lays  out  a  system  of   the  disciplines   (Theology,  Logic,   Grammar,   Rhetoric,   Math,   Physics,   and   Theology),     then,   goes   about   illustrating   their   application   to  finding  solutions  for  real-­‐life  problems  (how  to  discourse  well,  how  to  speak  and  write  well,  how  to  speak  and  write   ornately,   how   to   quantify   well,   how   to   analyze   nature   well,   and   how   to   live   well).   Each   and   every  

                                                                                                                         1 (Galison & Stump 1996; Nowotny et al. 2001; Nowotny 2003; Barry et al. 2008). 2 (Gibbons et al. 1994; Nowotny et al. 2001; ). 3 Notes (1) Extract from the description on Wikipedia (http://en.wikipedia.org/wiki/MIT_Senseable_City_Lab), accessed March 15, 2011. References Barry, A., Born, G. & Weszkalnys, G., 2008. Logics of interdisciplinarity. Economy and Society, 37(1), pp.20–49. Clifford, J., 2003. On the edges of anthropology, Chicago: Prickly Paradigm Press. Donaldson, A., Ward, N. & Bradley, S., 2010. Mess among disciplines: interdisciplinarity in environmental research. Environment and Planning A, 42, pp.1521–1536. Galison, P. & Stump, D.J. eds., 1996. The Disunity of science: boundaries, contexts, and power, Stanford, Ca.: Stanford University Press. Gibbons, M. et al., 1994. The New Production of Knowledge: The Dynamics of Science and Research in Contemporary Societies, London: Sage Publications Ltd. Hirsch Hadorn, G. et al. eds., 2008. Handbook of Transdisciplinary Research 1st ed., New York, USA: Springer. Nowotny, H., 2003. The potential of transdisciplinarity. Rethinking Interdisciplinarity, 1. Nowotny, H., Scott, P. & Gibbons, M., 2001. Re-thinking science: knowledge and the public in an age of uncertainty, Oxford-Malden: Wiley-Blackwell. Papert, S., 1994. The Children’s Machine, New York: Basic Books. Pratt, M.L., 1991. Arts of the Contact Zone. Profession, 91, pp.33–40.

Page 3: Senseable City Lab :.:: Massachusetts Institute of Technologysenseable.mit.edu/papers/pdf/20140225_Nabian_etal_BordersSelectively_BridgesBorders .pdfSenseable City Lab :.:: Massachusetts

discipline  is  a  discrete  domain  with  little  to  share  in  terms  of  its  tools,  its  methodologies  and  the  problem  sets  that  it  deals  with,  with  other  disciplines  separated  from  it  with  clear  boundaries.4  

 

 

  Later   on   this   seperationist   understanding  of   natural   sciences   and   technologies   and   their   relation   to  human   knowledgebase   changed   drastically.   In   1948,   Harold   Johann   Thomas   Ellingham,   a   professor   of  chemistry  at  the  Imperial  College  of  Science,  Technology  and  Medicine  in  London,  produced  a  hand-­‐drawn  map  showing   the   relationships   between   the   branches   of   natural   science   and   technology.   The   illustration   was    premised  on  the  distance-­‐similarity  metaphor,  in  which  disciplinary  domains,  more  similar  to  each  other,  were  more  proximate  in  space,  with  additional  cross-­‐disciplinary  relationships  indicated  by  the  direction  of  the  labels  on   the   map.   Furthermore,   Ellingham   overlaid   the   coverage   of   each   of   the   available   index   and   abstracting  services  in  the  United  Kingdom  onto  the  chart  to  indicate  which  areas  of  science  the  indexes  covered  and  how  different  disciplines  negotiated  the  same  set  of  scholarly  references  due  to  the  fact  that  real-­‐life  problems  they  tried   to   address   had   similarities.   Ellingham   also   intended   that   his   two-­‐dimensional   map   be   wrapped   to   a  cylindrical   form   to   show   the   continued   relationships   of   topics   on   the   extreme   left   side   with   those   on   the  extreme  right  side,  somewhat  recreating  the  encyclopedic  metaphor  of  Ames  Technologia.  In  Ellingham's  map  of  science,  the  delineating  boundaries  of  some  disciplines,  illustrated  as  adjacent  domains    due  to  similarities  of  the   subject   areas   they   addresses,   was   crossed   or   negotiated   due   to   overlaps   created   via   scholarly   cross-­‐referencing   between   these   domains.  Meanwhile,  more   distant   disciplines   (literally   and   figuratively)   did     not  have  much  to  share  hence  remained  discrete  from  each  other.  5    

                                                                                                                         4 http://www.leaderu.com/aip/docs/scott.html#ref3 http://thenjournal.org/feature/116/ Lee W. Gibbs, "Introduction" in William Ames, Technometria, (Philadelphia: University of Pennsylvania Press, 1979), 38-39. 5 http://scimaps.org/maps/map/a_chart_illustrating_124/ http://scimaps.org/maps/map/a_chart_illustrating_124/detail/ http://www.scimaps.org/maps/map/a_chart_illustrating_32/ Ellingham, H.J.T. 1948. “Divisions of Natural Science and Technology.” In Report and Papers Submitted to The Royal Society Scientific Information Conference. London: Burlington House. Ellingham, H.J.T. 1948. A Chart Illustrating Some of the Relations Between the Branches of Natural Science and Technology. Courtesy of The Royal Society. In “7th Iteration (2010): Science Maps as Visual Interfaces to Digital Libraries,” Places & Spaces: Mapping Science, edited by Katy Börner and Michael J. Stamper. http://scimaps.org.

Page 4: Senseable City Lab :.:: Massachusetts Institute of Technologysenseable.mit.edu/papers/pdf/20140225_Nabian_etal_BordersSelectively_BridgesBorders .pdfSenseable City Lab :.:: Massachusetts

 

  Another   telling   illustration,   a  more   recent   data-­‐driven  map  of   science,   diverges   fundamentally   in   its  formalization  of  the  relation  of  different  disciplines  by  presenting    it  as  an  interconnected  web  with  numerous  overlaps,   bridges   cross   all   disciplines   and   rhyzomatic   inter-­‐connections.   The   visualization   begins   with   all   of  science  all  at  once,  represented  conceptually  via    800,000  published  papers.  The  circles  represent  papers  that  cite  one  another.  They  are  associated  with  a  string  of  phrases  that  relate  to  their  fields,  and  are  connected  with  lines  of  various  heaviness  and  length,  depending  on  the  cross-­‐linkages.  There  is  no  discrete  boundary  condition  defining   the   extremities   of   disciplines   in   relation   to   each   other   but   overlapping   domains   with   diffused  boundaries.    The  visualization  focuses  on  the  fact  that  with  access  to  massive  online  databases,  information  is  shared  cross  disciplines  with  ease  and  at  unprecedented  volumes.  Here,  Katy  Borner,  Chaomei  Chen  and  Kevin  Boyack  highlight  “domains  of  knowledge”  by  mapping  the  growing  domain  structure  of    scientific  disciplines  through  citations  indexes.  The  visualized  web  of  inter-­‐connections,    less  hierarchical  and  more  natural,  almost  biological   in   shape,   is   based   on   hundreds   of   thousands   of   citations     are   analyzed   and   visualized   to   identify  emergent   paradigms   of   scientific   knowledge   domains.   As   a   "Knowledge   Domain”   map,   the   visualization  illustrates   the   radial   patterns   and   connections   between   different   types   of   knowledge,   and   relationships  between  disciplines  where  the  branching  connections  and  overlaps  between  research  is  highlighted.6  

                                                                                                                         6 Emma Marris, "2006 Gallery: Brilliant display," Nature 444(21 December 2006): 985-991. K. Boyack, D. Klavans, W. B. Paley (data: Thompson ISI, commissioned: K Borner for http://scimaps.org ) http://informationesthetics.org/documents/scienceMapPrintMockupEd2.jpg http://shapeofthought.typepad.com/shape_of_thought/revisioning-trees/ http://wbpaley.com/brad/mapOfScience/scienceMapFullColorPrint2_lowRes_b.jpg http://www.nature.com/news/2009/090309/full/458135a.html

Page 5: Senseable City Lab :.:: Massachusetts Institute of Technologysenseable.mit.edu/papers/pdf/20140225_Nabian_etal_BordersSelectively_BridgesBorders .pdfSenseable City Lab :.:: Massachusetts

 

  It   is   these   intersections  of   fields   that   prove  most   relevant   to   today's   condition.  Nowadays   complex  problems  with  no  easy  solutions  that  transcends  a  particular  discipline  and  need  to  be  addressed  scientifically  challenge   scientists   to   find   new   ways   to   integrate   knowledge   from   multiple   fields   and   diverse   skill   sets.  Increasingly   collaborative   approaches   are   changing   the  way   science   is   done   and  multifaceted   questions   are  being   answered.   To   this   effect   Many   organizations,   particularly   academic   institutions,   have   invested   in  educational   programs,   facilities,   and   enhanced   resources   to   encourage   interdisciplinary   research.   These  institutions  believe  that  it  is  only  through  the  power  of  many  and  a  diverse  approach  to  today's  problems  that  we  may  be  able  to    realize  lasting  solutions.    

  Towards  such  goal,  people  from  different  disciplines  need  to  start  acquaint   themselves  with  foreign  disciplines,  sit  down,  talk  to  each  other,  and  share  ideas  despite  the  fact  that  they  speak  different  dialects,  use  dissimilar  methods,  apply  varied  skill  sets,  tools  and  technologies  in  their  problem  solving  endeavors,  and  have  different  cultures,  different  jargon,  and  different  ways  of  thinking.  Of  course  it  takes  both  time  and  effort  for  people  to  internalize  unfamiliar  perspectives,    to  get  educated  beyond  one's  disciplinary  training,  and    to  truly  start  talking  to  and  understanding  each  other  and  resolve  the  conflictual  nature  of  their  differing  methods  and  concerns   ranging   from   theoretical   concerns   to   concerns   regarding   statistics   and   measurements   and  quantification   or   qualification   of   phenomena   under   scrutiny.   Through   this   extra   effort,   preconceived  

Page 6: Senseable City Lab :.:: Massachusetts Institute of Technologysenseable.mit.edu/papers/pdf/20140225_Nabian_etal_BordersSelectively_BridgesBorders .pdfSenseable City Lab :.:: Massachusetts

disciplinary  boundaries  are  negotiated  and  selectively  crossed  to  go    beyond  disciplines  working  separately  on  the   same   issue  within   defined   disciplinary   barriers   towards   a   true   Interdisciplinary   research   and   teamwork,  were   scientific   disciplines   are  mixed   and  different   skill   sets   are  brought   together   and  multiple   expertise   are  blend.  To  achieve  such  status  the  organizational  culture  of  the  research  entity    has  to  be  specifically  structured  for  true  cross-­‐fertilization  to  occur.7  

  Although  a  large  part  of  academia  praises  interdisciplinary  mode  of  knowledge  production,  there  are  still  organizational  and  cultural  barriers  that  slow  down  the  actual   implementation  of  a  significant  number  of  interdisciplinary  research  projects:  there  are  practical  difficulties  in  creating  effective  interdisciplinary  research  settings  when  much  of  academia   is   still  organized   in  bureaucratic  pyramids  and  disciplinary   silos;   the   tenure  system   is   still   largely   based   on   narrowly   focused   research   in   subdisciplines;   and,   differences   in   language,  literature,  ways   of  working   and   communication   have  often  been   considered   serious   limitations   in   situations  where  disciplines  meet  and  interact.  

  One  of   the   future   challenges   for   the   academia   is   trying   to   overcome   these  barriers   and   limitations,  creating  environments  that  favor  productive,  complex  interdisciplinary  interchanges.  Disciplinary  borders  have  to  be   selectively   crossed   in   order   to   acquire   a   delicate  balance  between   complexity   and   chaos.   This   is   even  more   relevant  when   it   comes   to   design   and   the   institutions   involved   in   teaching   it   and   advancing   research  relevant   to   its   different   fields.     SENSEable   City   Lab,   a   research   group   nested   within   the   City   Design   and  Development   group   at   the   Department   of   Urban   Studies   and   Planning   at   Massachusetts   Institute   of  Technology,  tries  to  address  these  challenges  through  its  organizational  culture  and  interdisciplinary  mode  of  operation.      

  As   from   its   organizational   culture,   SENSEable   City   Lab   acts   as   an   initiative   that   coagulates  multiple  creative   streams   and   productive   energies   coming   from   in-­‐house   interdisciplinary   researchers   and   external  collaborations   with   other   institutions,   laboratories,   companies.   Along   these   reactive   and   agile   joints,  SENSEable   City   Lab   generates   disruptive   work   that   spans   from   innovative   product   design,   such   as   The  Copenhagen  Wheel,  a  responsive  system  that  transforms  ordinary  bicycles   into  hybrid  sensors/actuators  that  provide   feedback  on  pollution,   traffic  congestion  and  road  conditions   in   real-­‐time,   8     to  urban  scale,   situated  sensing   systems,   such   as   Trash|Track,   an   initiative   that   used   hundreds   of   small   location-­‐aware   tags   to   track  different   types  of   trash   to   reveal   the   final   destination  of   our   everyday  objects,   and   the  waste  management  practices  behind  the  removal  process.  9  

   

                                                                                                                         7 Jill U. Adams "Interdisciplinary Research: Building Bridges, Finding Solutions," Science 23 (November 2007):1315-1318. http://sciencecareers.sciencemag.org/career_development/previous_issues/articles/2007_11_23/science_opms_r0700032 8    9    

Page 7: Senseable City Lab :.:: Massachusetts Institute of Technologysenseable.mit.edu/papers/pdf/20140225_Nabian_etal_BordersSelectively_BridgesBorders .pdfSenseable City Lab :.:: Massachusetts

  At   SENSEable   City   Lab   in   the   past   7   years   roughly   350   collaborators,   representing   more   than   60  different   scientific  disciplines,  have   collaborated  on  more   than  50  project.  With   its   interdisciplinary,   context-­‐driven,   problem-­‐focused   approach,   the   lab   truly   embodies   'Mode-­‐2'   knowledge   production   practices.  SENSEable   City   Lab   therefore   represents   a   unique   observation   landscape   to   investigate   organizational   and  cultural   components   that   favor   interdisciplinarity.  An   interdisciplinary   spirit   is  woven   across   the   laboratory's  adaptive,   self-­‐organizing   structure   as   temporary,   lightly   bonded   interdisciplinary   organizational   structures  emerge  from  processes  of  semi-­‐spontaneous  clustering.  

  More   specifically,   at   SENSEable   City   Lab,   interdisciplinarity   seems   to   be   favored   by   some   peculiar  organizational  traits:  

  The   front   door   of   the   lab   is   almost   always   open   during   the   day.   Lab   members   and   collaborators  constantly  flow  in  and  out.  The  lab  follows  extremely  flexible  engagement  processes:  hundreds  of  people  have  collaborated  with  SENSEable  City  Lab's  projects  over  time,  some  of  them  for  longer  periods  while  others  only  for  a  limited  period  of  time  (even  for  merely  a  few  weeks);    some  of  the  members  live  in  Cambridge  and  have  a  specific  (or  exclusive)  engagement  with  the  lab,  some  others  collaborate  on  a  part-­‐time  basis,  maintaining  their  affiliations  with  other  MIT  departments,  other  universities,  other  research  centers  or  come  from  the  industry  or  government  bodies.   The   lab   also   relies  on  a  widely  distributed  network  of   collaborators   scattered  across  several  countries.  

  In   organizational   terms,   SENSEable   City   Lab   is   not   structured   as   a   bureaucratic   pyramid   with   a  traditional  vertical  reporting  system.  Small  teams  are  the  key  elements  of  a  more  flexible  organizational  order.  Each   team   is   in   charge  of  one  or  more  projects.   Some  of   the  projects  have  a  pre-­‐set  outcome  and  a   clearly  specified   deadline.   Others   start   as   ideas   that   get   shaped   along   the  way   and   therefore   are   initially   oriented  towards   less   defined   outcomes.   Projects'   lifetimes   span   from   few   weeks   to   several   months   or   years.   The  number  of  members  per  team  varies  from  few  people  for  smaller  projects  to  several  dozens.  

  Although  there  are  some  management  roles  that  are  transversal  to  the  entire  group,  teams  are  usually  the  key  units  for  managing  all  these  projects.  A  network  of  authority  and  control  based  on  knowledge  of  the  task  replaces  the  traditional  hierarchical  structure.  Within  the  team,  tasks  and  responsibilities  are  distributed  depending   on   the   available   personal   expertise   and   the   operational   context.   Mutual   adjustment   and  redefinition  of  tasks  are  common  within  and  across  teams.  

  The  organizational  structure  literally  emerges  from  the  interweaving  of  processes  carried  out  by  these  distributed   teams.   A   complex   horizontal   and   vertical   integration   is   constantly   reshaped   as   a   relational  configuration  drawn  together  by  internal  connectedness  and  emergent  behaviors.  Order  is  not  imposed  from  the  top  down  but  appears  as  teams  work  together  responding  to  internal  and  external  inputs  and  changes.  

  Teams   are   usually  managed   by   a   team   leader.   This   is   not   a   rule   that   applies   to   all   projects,   though  bigger  projects  tend  to  have  a  project  leader.  Team  leaders  are  generally  not  professionals  specifically  trained  in  project  management   techniques  but  members  of   the   lab  who  have  knowledge  and  competencies   for   the  task.  Since  some  projects  have  a  longer  lifespan,  there  are  cases  where  different  project  leaders  have  been  in  charge  during  different  phases  of  the  project.  Teams  are  usually  started  and  initially  shaped  by  the  lab's  senior  members  but  the  distribution  of  roles  is  flexible.  

Page 8: Senseable City Lab :.:: Massachusetts Institute of Technologysenseable.mit.edu/papers/pdf/20140225_Nabian_etal_BordersSelectively_BridgesBorders .pdfSenseable City Lab :.:: Massachusetts

  Membership  within  the  lab  and  among  the  teams  is  extremely  fluid.  Short  and  part-­‐time  engagements  with  flexible  roles  over  time  are  rather  common.  The  lab's  current  members  reflect  a  combination  of  academic  and  professional  competences.  Some  people  collaborate  at  a  distance,  while  others  from  the  lab  in  Cambridge.  

  The  organizational   culture   is  also  very  effective   in  creating  an  environment  where  people   think   that  they  can  give  a  significant  contribution.  The  flexible  structure  of  the  lab  and  the  subsequent  decentralization  of  power   across   horizontal   connections   create   a   sort   of   'distributed   ownership':   people   know   that   they   are  contributing  to  influencing  the  lab  in  a  significant  way.  

  Ownership  and  trust  mechanisms  are  also  built  through  some  important  organizational  rituals,  such  as  the  pecha-­‐kucha  meetings  held  every  Tuesday,  frequent  brainstorming  sessions,  a  yearly  retreat  for  all  the  lab's  members  in  a  special  location  to  collectively  discuss  and  reshape  the  lab's  vision.  

  The  Lab  is  also  involved  in  inquiry-­‐  and  discovery-­‐based  learning  through  offering  graduate  workshops  and   seminars   at   MIT.   During   the   course   of   these   semester-­‐long   seminars   and   workshops,   students,  researchers,   and  professors  work   together  with  external  partners  on   real  world  projects,  mixing   theory  and  pactice,  thus  carrying  out  research  activity  in  a  'Mode-­‐2'  knowledge  production  way.    

  As   an   interdisciplinary   setting   the   Lab   is   a   contact   zone,   a   social   space   where   disciplinary   cultures  meet,   clash,   and   grapple  with   each   other,10   and   coexist   in   a   state   of   continuous   tension   and   dialogue.   This  dynamic,   energetic   quality   is   what   James   Clifford   refers   to   when   he   defines   contact   zones   as   “relational  ensembles  sustained  through  processes  of  cultural  borrowing,  appropriation,  and  translation  -­‐  multi-­‐directional  processes.”11  

  SENSEable  City  Lab's  organizational  culture,  as  embodied  in  its  physical   infrastructure,  organizational  patterns   and    cultural   artifacts,   could   give   some   insightful   suggestions   on   how   research   groups   can   foster  interdisciplinarity   and   at   the   same   time   ignite   people's   imagination   and   passion.   SENSEable   City   Lab's  organizational  culture  is  articulated  as  such  so  that  disciplinary  boundaries  are  meant  to  be  selectively  crossed  in  order  to  favor  meaningful  interchanges:  SENSEable  City  Lab  has  hosted  researchers  with  radically  different  disciplinary   backgrounds:   urban   planners,   architects,   interaction   designers,   mechanical   engineers,   but   also  experts   in  theology,  game  programming,  russian  studies,  medieval  studies,  sport,  music,  space  science,  Asian  arts,   economics,   and   culture,   etc.   The   lab's   adaptive   and   configurable   organizational   structure  works   as   an  active  background  for  the  processes  of  cultural  borrowing,  appropriation  and  translation  from  and  to  different  disciplines.   Individuals   weave   their   knowledge,   narratives,   points   of   view   into   this   complex,   multi-­‐layered  system,   fluctuating   inside   and   outside   their   disciplinary   borders.   Meanwhile,   the   delicate   balance   between  complexity  and  chaos  is  acquired  within  this  polycentric  multiplicity.  

  MIT  SENSEable  City  Lab  operates  on  the  premise  that  finding  design  solutions  for  complex  real-­‐world  problems   call   for   truly   interdisciplinary   adventures,   where   both   academia   and   industry   need   to   build  connections   that   profoundly   reshape   the   way   research   that   derives   design   is   carried   out.   To   this   effect,  Copenhagen   Wheel   and   many   other   projects   at   MIT   SENSEable   City   Lab   that   are   envisioned,   designed,  developed  and  prototypically  implemented  as  a  result  of  truly  interdisciplinary  teamwork,  push  the  boundaries  of  how  designers  may  rethink  the  relation  of    research  and  design.  Research  by  design  and  design  by  research:  this  is  how  interdisciplinary  design  projects  should  be  implemented.  The  process  of  design    starts  with  a  vision  

                                                                                                                         10 (Pratt 1991, p.34). 11 (Clifford 2003, p.34).

Page 9: Senseable City Lab :.:: Massachusetts Institute of Technologysenseable.mit.edu/papers/pdf/20140225_Nabian_etal_BordersSelectively_BridgesBorders .pdfSenseable City Lab :.:: Massachusetts

of  how  we  can  transform  our   interaction  with  the  built  environment  using  plethora  of  new  technologies  and  scientific   discoveries   across   disciplines.   This   is   then   developed   into   a   partial   implementation   in   the   city   –an  ‘urban  demo’–  which  allows  the  researcher-­‐designers  to  gather  feedback  from  people  and  study  the  impact  of  the   project   in    creating   positive   lifestyles.   Extensive   scientific   work   follows   this    phase,   where   the   main  questions  raised  by  the  vision  are  addressed.  At  this  stage  the  scientific  exploration    does  not  limit  its  range  of  activities   to   a   particular   discipline   and   benefits   from   trans-­‐disciplinarity   –   from   science   and  mathematics   to  design  and  sociology.    

  Nowadays,   many   new   technologies   and   scientific   discoveries   are   forcefully   entering   architectural  design  and  drastically  changing  the  ways  in  which  we  understand,  design  and  inhabit  space.  The  perimeter  of  our  discipline  is  being  redefined,  transforming  the  discipline  from  a  discreet  one  with  clear  boundaries  to  one  with   diffused   extremities   that   its   bridges   across   other   disciplines   need   to   be   constantly   provoked   and  negotiated.  This  allows  the  researcher-­‐designer  to  envision  an  ‘architecture  beyond  architecture’  as  new  inter-­‐disciplinary  field.    

   

Page 10: Senseable City Lab :.:: Massachusetts Institute of Technologysenseable.mit.edu/papers/pdf/20140225_Nabian_etal_BordersSelectively_BridgesBorders .pdfSenseable City Lab :.:: Massachusetts

 

The idea behind Copenhagen Wheel is very simple and addresses a real condition: thanks to pervasive electronics and ubiquitous computing our objects are starting to “talk back to us”, opening up unprecedented possibilities in the daily interaction between people and the built environment. What could this mean for a rather traditional object, such as a bicycle? We set forth to find out in 2009 as part of a interdisciplinary research collaboration with the City of Copenhagen. After several months of work in team – including designers, mechanical engineers, computer scientists, programmers and interaction designers – we came up with the concept of the Copenhagen Wheel. The Wheel is a fully self-contained e-bike retrofit, that captures the energy dissipated while cycling and braking (as hybrid cars do) and saves it for when you need a bit of a boost. With no external batteries or wires, and no throttle, the wheel is controlled primarily through your feet, amplifying your torque, as a shadow cyclist silently multiplying each of your pedal strokes. The Wheel also collects data. Interfaced with your smart-phone via a wireless Bluetooth connection, information on location, speed and biked miles can be used for urban incentives – something similar to a frequent flyer program, but good for the environment. At the same time pollution levels, traffic congestion, and road conditions, sensed in real time via an embedded sensor unit, can be shared onto the Cloud to create a fine-grained database of urban environmental information.  Project Team: Carlo Ratti , Director | Assaf Biderman , Associate Director | Christine Outram , Project Leader | Rex Britter | Andrea Cassi | Xiaoji Chen | Jennifer Dunnam | Paula Echeverri | Myshkin Ingawale | Ari Kardasis | E Roon Kang | David Lee | Vincenzo Manzoni | Sey Min | Max Tomasinelli, Photographer | Mark Yen    

   

   

Page 11: Senseable City Lab :.:: Massachusetts Institute of Technologysenseable.mit.edu/papers/pdf/20140225_Nabian_etal_BordersSelectively_BridgesBorders .pdfSenseable City Lab :.:: Massachusetts

   

   *Screen Captures from The Copenhagen Wheel iPhone App, MIT SENSEable City Lab©

* Close up of The Copenhagen Wheel, Photograph by Max Tomasinelli , MIT SENSEable City Lab©

Page 12: Senseable City Lab :.:: Massachusetts Institute of Technologysenseable.mit.edu/papers/pdf/20140225_Nabian_etal_BordersSelectively_BridgesBorders .pdfSenseable City Lab :.:: Massachusetts

* The Copenhagen Wheel installed on a Bicycle, Photograph by Max Tomasinelli , MIT SENSEable City Lab©

* Close up of The Copenhagen Wheel, Photograph by Max Tomasinelli , MIT SENSEable City Lab©

Page 13: Senseable City Lab :.:: Massachusetts Institute of Technologysenseable.mit.edu/papers/pdf/20140225_Nabian_etal_BordersSelectively_BridgesBorders .pdfSenseable City Lab :.:: Massachusetts

* The Copenhagen Wheel installed on a Bicycle, Photograph by Max Tomasinelli , MIT SENSEable City Lab©  

 

   

Page 14: Senseable City Lab :.:: Massachusetts Institute of Technologysenseable.mit.edu/papers/pdf/20140225_Nabian_etal_BordersSelectively_BridgesBorders .pdfSenseable City Lab :.:: Massachusetts

Trash|Track, another project by MIT SENSEable City lab, again addresses a very real challenge of urban living: Promoting a culture of recycling both as an actual mode of operation and a cultural image of urban living can decrease urban waste. This is important to establishing a sense of ownership and belonging that contributes to the urbanite’s self-image as a member of a collective social entity. To this effect, cyber structures of social networking can provide various opportunities to incentivize recycling between their members. Additionally, situated technologies can be deployed in the waste management and urban removal chain to secure the maximum efficiency of waste treatment and waste recycling on a large-scale and centralized mode. To address this issue with partnered with Architectural The project consists of digitally enhanced tags that can be attached to objects and report their location to an Internet backbone infrastructure via the cellular network. Trash|Track makes use of these location-reporting tags to track urban disposal and study the efficiency of the urban removal chain. The platform allows designers and planners to make well-informed, high-level decisions about how a given constructed landscape is managed, by analyzing the acquired data. Therefore, a multiplicity of questions about the dynamics of urban removal chain can be addressed empirically: is our removal chain efficient? Is hazardous waste managed properly, or are there loopholes in our system that need to be taken care of? Is the recycled waste really recycled, or does it end up in dumps? The Trash Track system can have a great impact in the nature of the perceptual relationship that a city or region develops with their waste. Generally, people assume that once they dispose of waste, it is no longer their responsibility. Offering a real-time view of how the disposed items travel through the landscape of their daily lives will perceptually expand each citizen’s sphere of responsibility from the domestic space, to the space of the city. For example, witnessing that a pile of recycled paper ends up somewhere in a dump and is never actually recycled, can be quite an arresting experience. Perhaps such real-time urbanity can result in a more responsible urbanity after all. Yet, Smart Trash is but one possible scenario in a more comprehensive concept of a world populated with Smart Objects. Given the right technological platform, the only limits are those in our imaginations. This project was made possible with support of The Architectural League of New York as part of the Exhibition, Toward the Sentient City. To realize the project partnerships with companies such as Waste Management, Sprint, and Qualcomm was created and urban demos of the platform were conducted by soliciting collaboration from interested members of the public to tag their trash on one hand and City of Seattle as the test bed on the other hand. Not only an interdisciplinary team of researchers and designers were involved in the implementation of the project, but also the project was envisioned as a thoroughly participatory project where citizens would contribute to a fine grain sensing innitiative to better understand the relation of the city with its recyclable waste in the greater context of United States. Project Team: Carlo Ratti , Director | Assaf Biderman , Associate Director | Dietmar Offenhuber, Team Leader| Eugenio , Team Leader (Concept) | Musstanser Tinauli, Team Leader (First Phase)| Kristian Kloeckl, Team Leader (Second Phase)|Lewis Girod, Engineering | Jennifer Dunnam | E Roon Kang | Kevin Nattinger | Avid Boustani | David Lee Programming | Alan Anderson | Clio Andris | Carnaven Chiu | Chris Chung | Lorenzo Davolli | Kathryn Dineen | Natalia Duque Ciceri | Samantha Earl | Sarabjit Kaur | Sarah Neilson | Giovanni de Niederhausern | Jill Passano | Elizabeth Ramaccia | Renato Rinaldi | Francisca Rojas | Louis Sirota | Malima Wolf | Eugene Lee | Angela Wang | Armin Linke, Video | Rex Britter, Advisors| Stephen Miles, Advisors| Tim Gutowski, Advisors Lead Volunteers: Tim Pritchard, Jodee Fenton, Lance Albertson, Chad Johansen, Christie Rodgers, Shannon Cheng, Jon Dreher, Andy Smith, Richard Auger, Michael Cafferty, Shalini Ghandi.

* Diagram illustrating the information flow on Trash Track system, MIT SENSEable City Lab©

Page 15: Senseable City Lab :.:: Massachusetts Institute of Technologysenseable.mit.edu/papers/pdf/20140225_Nabian_etal_BordersSelectively_BridgesBorders .pdfSenseable City Lab :.:: Massachusetts

* Close-up view of the trash track tag, MIT SENSEable City Lab©

Page 16: Senseable City Lab :.:: Massachusetts Institute of Technologysenseable.mit.edu/papers/pdf/20140225_Nabian_etal_BordersSelectively_BridgesBorders .pdfSenseable City Lab :.:: Massachusetts

* Example of data visualization of trash track, illustrating the route that an aluminum can travels within the removal chain of the city, MIT SENSEable City Lab©

Page 17: Senseable City Lab :.:: Massachusetts Institute of Technologysenseable.mit.edu/papers/pdf/20140225_Nabian_etal_BordersSelectively_BridgesBorders .pdfSenseable City Lab :.:: Massachusetts

* Visualization of aggregate data regarding how recyclable waste travels throughout United States, MIT SENSEable City Lab©