serie revision bac g.mecanique...serie revision bac_____ g.mecanique 1ére partie : machine a laver...

92
SERIE REVISION BAC_____________________________________ G.MECANIQUE M.Ben Mohamed

Upload: others

Post on 09-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    M.Ben Mohamed

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    1éRe partie : machine a laver professionnelle

    20 1 Roue dentée 19 3 Joint 18 1 Anneau élastique 17 1 Coussinet 16 1 Levier de commande 15 1 Fourchette 14 1 Carter 13 1 Crabot 12 1 Coussinet 11 1 Bouchon de remplissage 10 1 Carter 9 1 Coussinet 8 1 Poulie 7 1 Coussinet 6 1 Axe de commande 5 1 Vis de butée 4 4 Bague de centrage 3 1 Arbre intermédiaire Z3a = 50 ; Z3b=20 2 1 Arbre secondaire 1 1 Arbre primaire Z1= 18 dents

    Rep Nb Désignation Matière Observation

    BOITE A VITESSES

    a

    k j b

    ∅d

    Clavetages libres

    d a b j k 12à17 5 5 d-3 d+2,3

    c

    e

    lmin

    g d

    d e c lmin g 15 1 23,2 1,1 14,3

    Anneau élastique pour arbre

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    A-A

    B

    16

    B

    13196 5 1 4

    MO

    TE

    UR

    AC

    CO

    UP

    LEM

    EN

    T

    20

    A

    18 2 7 8

    15

    3a

    14 17 12

    3b

    113

    B-BA

    10 9

    Dossier technique MACHINE A LAVER PROFESSIONNELLE Page 4/4

    BOITE A VITESSES

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE A.2 - Analyse fonctionnelle de la partie opérative : En se référant au dessin d’ensemble et au schéma cinématique ci-dessous , compléter le tableau suivant :

    Fonction technique processeur Lier l’arbre moteur avec l’arbre d’entrée du réducteur (1) ……………………………..

    ………………………………………………………………………

    Crabot en position gauche

    Transmettre le mouvement de l’arbre (1) à l’arbre (2) (vitesse lente)

    ……………………………… ………………………………

    Guider en rotation l’arbre intermédiaire (3) ………………………………

    B- CALCUL DE PREDETERMINATION OU DE VERIFICATION : B-1 – Partie opérative : B-1-1 – Etude des blocs fonctionnels : En se référant au dessin d’ensemble (page 4/4 du dossier technique), Compléter les classes d’équivalences suivantes : A : 1 ………. ; B : 3 C : 2…………….. D : 14…………………………………. B-1-3 – Transmission de mouvement : En se référant au dessin d’ensemble et au schéma ci-contre. a/ Compléter le tableau ci-dessous par les caractéristiques de l’engrenage (3b ;20) Donnée : Z3b= 20 dents ; m =2 mm ; a3b-20 = 68 mm

    Roue m a Z d df da 3b 2

    68 20 ......... ......... ......... 20 .......... .......... .......... ..........

    ............................................................................................................................................

    .....................................................................................................................................................................

    .....................................................................................................................................................................

    .....................................................................................................................................................................

    Calcul :………………………. ……………………………….. ………………………………..

    B-1-2 – Schéma cinématique : En se référant au dessin d’ensemble (page 4/4 du dossier technique) ,compléter le schéma cinématique ci-contre de la boîte de vitesses de la machine à laver professionnelle.

    Système de crabot

    Système de

    A

    B C D

    3b

    a

    2

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE b/ Calculer la vitesse de rotation N8 de la poulie (8) (en considérant que le Crabot 13 est en position droite) Donnée : La vitesse de rotation du moteur est Nm = 1500 tr/min ; Z3a= 50 dents Z1= 18 dents . ……………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………

    B-1-4 – Résistance des matériaux : Torsion : Le pignon arbré (1) est assimilé à une poutre à section cylindrique creuse supposée constante sur toute la longueur de l’arbre de diamètre extérieur D= 16 mm et de diamètre intérieur d = 11 mm la longueur L = 60 mm. Il est sollicité à la torsion simple de moment de torsion M t = 20 Nm. Cet arbre est en acier de module d’élasticité transversale G = 80000 N/mm2 . a- Calculer la contrainte tangentielle maximale à la torsion ττττmax ……………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………

    b- Calculer l’angle de torsion αααα en degré entre les sections extrêmes de l’arbre : ……………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………

    N8= …………….

    ττττmax = ……………

    αααα° = ……………

    d

    D

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    • Flexion :

    L’arbre (3) assimilé à une poutre de Section cylindrique pleine de diamètre d = 24mm, est sollicité à la

    flexion plane simple sous l’action des efforts (FA, FB, FC et FD). On donne : ||FB|| = 400N, ||FC|| = 1000N

    a- Etudier l’équilibre de la poutre et déterminer les actions inconnues. ……………………………………………………………

    ……………………………………………………………

    ……………………………………………………………

    ……………………………………………………………

    ……………………………………………………………

    ……………………………………………………………

    ……………………………………………………………

    ……………………………………………………………

    ……………………………………………………………

    b- Calculer la variation du moment fléchissant et tracer cette variation sur un diagramme, sachant que || FA || = 97N, || FD || = 697N ……………………………………………………………

    ……………………………………………………………

    ……………………………………………………………

    ……………………………………………………………

    ……………………………………………………………

    ……………………………………………………………

    ……………………………………………………………

    ……………………………………………………………

    ……………………………………………………………

    ……………………………………………………………………………………………………………….

    ……

    ………………………………………………………………………………………………………….……

    …………………………………………………………………………………………….…………………

    ………………………………………………………………………………………………………………

    ………………………………………………………………………………………………………………

    x

    A B C D X

    FA

    24 FB 72 FD

    123,96

    Y

    FC

    Mf[N.mm]

    Echelle 1000N.mm ����2mm

    FA = …………N FD = …………N

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE ………………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………

    c- Sachant que cet arbre est de matériaux de résistance élastique Re = 80 N/mm2 et que le coefficient

    adopté est s = 4. Vérifier la résistance de cet arbre.

    ………………………………………………………………………………………………………………

    ………………………………………………………………………………………………………………

    ………………………………………………………………………………………………………………

    ………………

    C-1 – Partie opérative : On désire remplacer les coussinets (9) et (12) du dessin d’ensemble de la page 4/4 du dossier technique Par des roulements (22) et (23) de type BC, représentés sur le dessin ci-dessous.

    • Compléter le montage de ces deux roulements. • Réaliser la liaison encastrement de la roue (21) sur l’arbre (3). • Indiquer les ajustements NB : Utiliser la clavette et l’anneau élastique

    11 222'2123 14 25

    3

    │Mf Maxi│ = …………..……

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    2éme partie unité de conditionnement de ballasts NOMENCLATURE

    18 1 Boîtier de positionnement 36 1 Roulement type KB

    17 1 Carter avant 35 4 Vis H

    16 1 Carter arrière 34 1 Cale de réglage

    15 1 Disque mobile 33 1 Carter du réducteur

    14 1 Vis H 32 1 Arbre de sortie

    13 1 Bobine 31 1 Roue à denture hélicoïdale

    12 1 Boîtier 30 1 couvercle

    11 1 Axe 29 1 Anneau élastique

    10 1 Ecrou H 28 1 Roulement BC

    9 1 Ressort 27 1 Vis sans fin

    8 1 Ecrou spécial 26 1 Roulement BC

    7 1 Butée 25 1 Rondelle frein

    6 1 Disque 24 1 Ecrou à encoches

    5 1 Vis H 23 1 Joint à lèvres

    4 1 Carter inférieur 22 1 Plateau récepteur

    3 1 Roue 21 1 Plateau moteur

    2 1 Arbre moteur 20 1 Vis CHC

    1 1 Boîtier 19 1 Rondelle

    Rep Nbr DÉSIGNATION Rep Nbr DÉSIGNATION

    MOTO-REDUCTEUR

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    A / ANALYSE FONCTIONNELLE :

    INDIQUER SUR LE F.A.S.T SUIVANT LES SOLUTIONS TECHNIQUES RETE98NUES PAR

    LE CONSTRUCTEUR POUR LA FONCTION ‘’TRANSMETTRE ET VARIER LES

    CARACTERISTIQUES DU MOUVEMENT DE ROTATION DE L’ARBRE MOTEUR (2) A L’ARBRE

    DE SORTIE (32) ’’.

    B/ ETUDE CINEMATIQUE : 1° en se referant au dessin d’ensemble du dossier technique, completer ci-dessous le schema

    cinematique relatif au dispositif de freinage 2° mettre une croix dans la case correspondante pour la position freinee :

    transmettre et varier les caracteristiques

    du mouvement

    transmettre le mouvement du moteur au reducteur

    Modifier les caracteristiques du

    mouvement

    Etablir la liaison De l’arbre moteur (2)

    avec la vis sans fin (27)

    etablir la liaison complete entre

    le carter du moteur (17) et le carter

    du reducteur (33)

    ...........................

    ...............................

    ........................

    ...........................

    ...............................

    ........................

    ...............................

    ................................

    ................................

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    Element position freinee

    bobine 13 alimentee non alimentee

    roue (3) tourne ne tourne pas

    ressort (9) allonge Comprime

    3° on donne les caracteristiques suivantes :

    d31 = 82 mm ; module m=2 ; z27 = 1 filet ; vitesse de rotation du moteur nm =1500 tr/min.

    calculer la vitesse de rotation de l’arbre de sortie 32

    ………………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………………

    4° tracer sur le dessin ci-dessous la chaine de cotes relative a la condition ja :

    c/ etude de la r.d.m : dans cette partie on etudiera la resistance du support du verin v1, pour cela on assimule ce support a une

    poutre de section rectangulaire pleine sollicitee a la flexion plane simple (voir schema ci-dessous) 1°) etudier l’equilibre de la poutre et determiner les actions inconnues

    z

    y

    FC = 30 N

    FB = 52.5N

    Y

    A B C x

    FC

    FB

    20 10

    AUTRE

    DESSIN

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE ………………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………………

    ………………………

    2°) donner et representer la variation de l’effort tranchant le long de la poutre

    3°) donner et representer la variation du moment

    flechissant le long de la poutre

    4°) calculer la contrainte normale maximale (σmaxi) et representer la repartition des contraintes normales

    dans la section la plus chargee.

    ………………………………………………………………………………………………………………

    ………………………………………………………………………………………………………………

    ………………………………………………………………………………………………………………

    ………………………………………………………………………………………………………………

    ………………………………

    …………………………………………………………

    ………………………………………………………………

    ………………………………………………………………

    ………………………………………………………………

    ………………………………………………………………

    ………………………………………………………………

    ………………………………………………………………

    …………………………………………………………

    ………………………………………………………………

    ………………………………………………………………

    ………………………………………………………………

    ………………………………………………………………

    ………………………………………………………………

    ………………………………………………………………

    ………………………………………………………………

    ………………………………………………………………

    ………………………………………………………………

    x

    TY (N)

    x

    MFZ (N.MM)

    ECHELLE : 1 MM 10 N.MM

    ECHELLE : 1 MM 1 N

    RA = MA =

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE d- production ou modification d’une solution :

    L’arbre de sortie (32) est guide en rotation par des roulements a billes a contact oblique (pour

    resister a la charge axiale) pour cela on demande de completer sur la vue de gauche en coupe a-a

    (dessin ci-dessous) :

    - Completer le montage des roulements

    - Assurer l’etancheite du mecanisme

    - Completer la liaison encastrement de la roue (31) sur l’arbre (32)

    - Indiquer les ajustements necessaires pour le montage des roulements ainsi que pour le

    joint a levres

    � utiliser l’extrait du guide de dessinateur fourni au dossier technique pour relever les dimentions des composants standard a completer

    32

    3136

    35

    34A - A

    ECHELLE 1 :1

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    3 eme partie : fauteuil roulant electrique

    En fonctionnement normal, un moteur transmet par l’intermédiaire de deux étages de réduction(Voir figure 3 ci-dessous) la puissance à chacune des roues arrières du fauteuil. Ainsi lorsque

    les moteurs ne sont pas alimentés, le fauteuil est par sécurité automatiquement freiné par un frein à

    manque de courant.

    Figure 3 (sans le couvercle et le bâti)

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    5 - Etude du mécanisme d'embrayage:

    Afin de faciliter le manoeuvre du mécanisme

    d’entraînement, il existe un mode de

    fonctionnement « manuel » permettant de

    débrayer la roue de l’axe de l’arbre de sortie

    (4). Ceci s’effectue par l’action d’un levier de

    commande, non représenté sur le dessin

    d’ensemble, qui transmet un effort axial à

    l’axe de commande (16). Cette action a pour

    conséquence d’écarter ou de rapprocher les

    trois billes (15) de l’axe de l’arbre de sortie et

    donc de réaliser l’embrayage ou non de la

    roue (5) sur l’arbre de sortie (4). Ainsi une

    personne peut venir pousser librement le

    fauteuil qui fonctionne alors en roues libres.

    Eclaté du mécanisme d 'embrayage.

    Billes d'indexages

    Ressort

    Axe de commande

    La zone F montre la position débrayée.

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    17 1 Anneau élastique 16 1 Axe de commande 15 3 Bille d'indexage 3billes à 90° 14 1 Ressort de

    compression

    13 1 Frein à manque de courant

    12 1 Pignon moteur 8 dents 11 1 Moteur 10 2 Anneau élastique 9 2 Roulements BC 8 2 Roulements BC 7 1 Roue dentée 60dents 6 1 Pignon arbré 9 dents 5 1 Roue dentée 68 dents 4 1 Arbre de sortie 3 1 Carter

    intermédiaire

    2 1 Couvercle 1 1 Bâti

    Rep Nb Désignation observation

    FAUTEUIL ROULANT

    ELECTRIQUE Echelle:1:2

    2 12

    13

    6

    16

    4

    14

    9

    5 3 1

    10

    17

    7

    8

    11

    10 4

    14 15

    17

    165

    Embrayage en position débrayée à l’échelle 4:5

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    Dossier réponse FAUTEUIL ROULANT ELECTRIQUE Page 1 sur 5

    A- PARTIE GENIE MECANIQUE :

    1- Etude de la transmission du fauteuil électrique.

    En se référant au dossier technique du système pages 4/5 et 5/5,

    1-1 Compléter le diagramme F.A.S.T ci-dessous en inscrivant les fonctions techniques et les

    composants manquants. (3pts)

    PROCESSEURS Convertir l’énergie

    électrique en énergie mécanique

    de rotation.

    Adapter l’énergie mécanique de

    rotation.

    Motoriser les roues arrières.

    Commander la propulsion

    Créer un effort manuel.

    ……………………………………………………………….

    Transmettre

    à volonté le

    mouvement

    de rotations

    à l'arbre (4)

    Axe de

    commande (16)

    FT1

    FT2

    FT11

    FT12

    FT21

    FT122

    FT121

    FT212

    FT211

    FT1222

    FT1221

    FP1

    Débrayer

    le mécanisme.

    ……………………………………………………… ………………...

    Transmettre le mouvement de

    l’arbre moteur au pignon arbré

    (6).

    …………………………………………………………………………

    Propulser

    le

    fauteuil ………………………………………………………………

    Engrenage

    (6-5)

    Per

    met

    tre

    le d

    épla

    cem

    ent d

    ’un

    lieu

    à un

    aut

    re d

    ’un

    utili

    sate

    ur

    FT22

    …………………………………………

    ……………………………………………………………..

    Créer un effort presseur

    Ecarter les trois billes (15)

    Axe de

    commande (16)

    FT222

    FT221

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    1-2 En se referant au dossier technique pages 3/5 et 5/5, compléter le schéma cinématique du mécanisme au cours du fonctionnement normal: (2.5 pts)

    1-3 Etude de la motorisation de la roue arrière:

    En se référant au dossier technique pages 3/5 et 5/5 et le schéma cinématique,

    a- Calculer le rapport global rg du réducteur (1 pt) ………………………………………………………………………………………………………………………………

    …………………………………………………………………………………………………………………..

    b- Calculer la vitesse de rotation de l'arbre (4) N4 sachant que la Vitesse de rotation du moteur

    Nm = 2400 trs /mn (0.75 pts)

    ………………………………………………………………………………………………………………………………

    …………………………………………………………………………………………………………………….

    c- Calculer la vitesse linéaire V en m/s du fauteuil, sachant que le diamètre de la roue arrière du fauteuil dr = 400 mm (0.75 pts) ………………………………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………………

    d- Déduire la vitesse V en Km/h (0.5 pts) ………………………………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………………

    1- 4 Etude de l'embrayage de la roue arrière:

    En se referant au dessin d'ensemble de l'embrayage" position débrayée" et la vue en 3D pages 4/5 et 5/5 du

    dossier technique:

    a- la transmission de mouvement de rotation de la roue (5) à l'arbre de sortie (4) est- elle obtenue par

    obstacle ou par adhérence? Expliquer (0.75 pts)

    ………………………………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………………

    Rou

    e ar

    rière

    Moteur

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    b- indiquer la nature de commande de cet embrayage. (0.5 pts)

    …………………………………………………………………………………………………………………………

    c- de quel type s'agit –il? (instantané – progressif)……………………………………. (0.25 pts)

    d- Compléter à l'échelle du dessin la représentation du dispositif d'embrayage en position "embrayée ".

    (1.25 pts)

    e- Proposer un ajustement pour le montage de l'axe de commande (16). (0. 5 pts)

    2- Etude de résistance de l'arbre de sortie (4): Dans cette étude, on ne tiendra que des actions mécaniques induisant la flexion de l'arbre de sortie (4) : Hypothèses : Poids de l'arbre de sortie (4) négligé Frottement négligé. Tous les actions supposés exercés sur l'axe de symétrie. L'arbre de sortie (4) est assimilé à une poutre cylindrique creuse modélisée comme suit:

    On donne: Le cœfficient de charge linéique répartie sur la zone AA' appliqué par la roue arrière sur l'arbre de sortie (4)

    P= 40 N/mm

    La force Fc est un effort radial appliqué par la roue (5) au point c.

    Les deux réactions au point B et D.

    A A' C D

    B

    50 mm 70 mm 30 mm 30 mm

    X

    Y

    FC P

    4

    5

    10

    14

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    b- Donner l'expression littérale du moment fléchissant Mf dans la zone BC . (1 pt) ………………………………………………………………………………………………………………………………

    ………………………………………………………………………………………………………………………………

    ………………………………………………………………………………………………………………………………

    ………………………………………………………………………………………………………………………………

    ………………………………………………………………………………………………………………………………

    ……………………………………………………………………………………………..

    c - Déduire la valeur de la force FB (1 pt) ………………………………………………………………………………………………………………………………

    ………………………………………………………………………………………………………………………………

    ………………………………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    ................................................................................................................................................................................

    ...........................................................................................................................................................

    d- calculer le module de flexion (IGZ/ V) sachant que le diamètre extérieur minimal D = 26mm et celui de l'intérieur égal à 0.75 D. (1 pt) ………………………………………………………………………………………………………………………………

    ………………………………………………………………………………………………………………………………

    ………………………………………………………………………………………………………………………………

    ……………………………………………………………………………………

    e- calculer la contrainte normale maximale σ max (0.75 pts) ………………………………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………………

    3- Etude de guidage de l’arbre de sortie (4): (4pts)

    215190

    50

    Mf(x) N.m

    A A' B C D X

    a- Rechercher sur le diagramme ci-contre la section de la poutre la plus sollicitée? (0. 5 pts)

    ……………………………………….. Déduire Mfmax = ………………. (0.25 pts)

    IGZ/ V =…………….

    σ max=…………….

    FB =…………….

    Diagramme du moment fléchissant Mf(x)

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    Les charges axiales appliquées sur la roue arrière dans les virages et les actions de l’engrenage hélicoïdal

    sont transmises à l’arbre de sortie (4). Pour mieux supporter ces charges, on se propose de modifier le

    guidage en rotation de l’arbre de sortie (4) en remplaçant les roulements (9) (voir page 5/5 du dossier

    technique par deux roulements à billes à contact oblique (R1 et R2) voir le dessin ci-dessous.

    On demande de compléter le dessin ci-dessous ; en assurant :

    5-1 Le guidage en rotation de l’arbre de sortie (4) par les roulements (R1et R2).

    5-2 L’étanchéité du mécanisme.

    5-3 L’inscription des ajustements relatifs au montage des roulements et du joint d’étanchéité.

    16

    4 2

    5

    3

    14

    R2

    R1

    1

    ECHELLE : 1:1

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    UNITE DE PRODUCTION DE BOISSONS GAZEUSES 1) Description de la chaîne :

    Le système étudié est une chaîne de production de boissons gazeuses. Elle est constituée par :

    - Un chariot élévateur qui dépose une à une les palettes chargées des caisses. - Un dépalettiseur muni d’un bras manipulateur permettant le déchargement des palettes. - Une videuse de caisses. - Une laveuse permet de laver les bouteilles. - Un poste de remplissage des bouteilles - Un poste de bouchage - Une étiqueteuse pour les bouteilles. - Une remplisseuse de caisses. - Une laveuse de caisses. - Deux postes de contrôle pour le bon déroulement des opérations de remplissage. - Deux points de comptage.

    UNITE DE PRODUCTION DE BOISSONS GAZEUSES

    1ére partie : Etude du mécanisme de bouchage : Description de fonctionnement du mécanisme de bouchage : Notre étude se limite à la partie opérative du sous système de bouchage. Ce mécanisme permet de boucher les bouteilles après avoir été remplies de boissons gazeuses.

    Sontireuse(Remlissage)

    Boucheuse

    Poste de contrôle des bouteilles remplies

    Poste de contrôle des bouteilles vides

    Laveuse des caise vides

    Laveuse de bouteilles

    Encaisseuse

    Décaisseuse

    Etiquetteuse

    Campteur de bouteilles remplies

    Campteur de caises avec bouteilles remplies

    Dépalatisseur

    Palatisseur

    Stock de caises avec bouteilles vides

    Stock de caises avec bouteilles remplies

    Chariot élévateur

    Bras manupilateur

    Fin

    DébutTapis

    Convoyeur à chaîne

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    V1 : Capteur présence bouteille V2 : Capteur bouteille bouchée

    Ce mécanisme est composé d’un moteur – réducteur et d’un système de transformation de mouvement . la présence d’une bouteille vide déclenche la rotation de l’arbre (2) . Le système bielle-manivelle (7 et 12)

    transforme le mouvement de rotation en mouvement de translation alternatif du coulisseau (14) . La bouteille est bouchée lorsque le coulisseau arrive à la position basse .

    V1L11L10

    L21L20

    C2 C1

    Tapis roulant

    Moteur réducteur M12

    Bielle

    Coulisseau

    Moteur du tapis M11

    Tombour

    V2

    SOUS SYSTEME DE BOUCHAGE

    Rp Nb Désignation1234567

    1122211

    CorpsArbre moteur

    Rondelle plateCoussinet à collerette

    Anneau élastique

    ManivelleClavette parallèle, A 10x10x30

    Coussinet29Axe d'articulation28

    Bielle

    Vis C HC ,M10-20

    Rondelle plate

    Coulisseau

    Glissière

    Ecrou H , M16

    14 14122

    1110

    1312

    115

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    B-B

    14

    15

    2

    1

    3 4 5

    12

    6 7 8 10911

    13

    Ø26 H7f7 Ø42 H7p7

    A A

    BB

    A-A

    LYCEE SECONDAIRE BEB EL KHADRA TUNIS

    Labo de Mécanique

    Echelle1:2

    MECANISME DE BOUCHAGE

    BAC 2008Page ..../....

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    A)Donner La fonction principale du Mécanisme de bouchage ………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… B/ DEFINITION DES ELEMENTS D’UN PRODUIT : B-1) Justifier le choix de l’ajustement Ø26 H7/f7 et Ø42 H7/p7 …………………………………………………………………………………………………………………….. …………………………………………………………………………………………………………………….. …………………………………………………………………………………………………………………….. …………………………………………………………………………………………………………………….. B-2) Tracer les chaînes de cotes minimales qui installent les cotes conditions JA et JB.

    15

    JCC1C15

    1

    14

    B-1-5) On donne la chaîne de cotes minimales qui installe la cote

    condition JC. Sachant que C1 =0,2

    08+

    et C =0,20,53

    +−

    12

    11

    JA JB

    a) Ecrire les équations donnant les cotes JCMaxi et JC mini JCMaxi = ................................................................................................................................................. JC mini = .................................................................................................................................................. b)Déterminer la cote C15 C15Maxi =................................................................................................................................................. C15 mini ....................................................................................................................................................

    C14= .

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    C-RESISTANCE DE MATERIEAUX : Etude de l’arbre moteur (2) La figure ci-contre représente l’arbre moteur (2) , il est assimilé à une poutre de poids négligeable et de diamètre d=22 mm qui se repose sur deux appuis B et C. Elle supporte deux charges localisées en A et

    en D avec A DF F 1500N= =uur uur

    ; Re = 750Mpa

    et s=3

    1. Déterminer analytiquement les réactions BRuuur

    et CRuuur

    En appliquant le P.F.S :

    ………………...………………………………………………………………………………………………

    …………………………………………………………………………………………………………………

    ………………...………………………………………………………………………………………………

    …………………………………………………………………………………………………………………

    ………………...………………………………………………………………………………………………

    ………………...………………………………………………………………………………………………

    …………………………………………………………………………………………………………………

    ………………...………………………………………………………………………………………………

    2. Calculer la variation de l’effort tranchant et tracer cette variation sur un diagramme. …………………………………………………………………………………………………………………

    ………………...………………………………………………………………………………………………

    ………………...………………………………………………………………………………………………

    …………………………………………………………………………………………………………………

    …………………………………………………………………………………………………………………

    …………………………………………………………………………………………………………………

    …………………………………………………………………………………………………………………

    …………………………………………………………………………………………………………………

    3. Calculer la variation du moment fléchissant et tracer cette variation sur un diagramme. …………………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………………

    ………………………………………………………………………………………………………………

    …………………………………………………………………………………………………………………

    ………………...………………………………………………………………………………………………

    ………………...………………………………………………………………………………………………

    ………………...………………………………………………………………………………………………

    …………………………………………………………………………………………………………………

    …………………………………………………………………………………………………………………

    60mm50mm

    B

    BR

    AF

    C45mm

    RD

    F DDC

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    Diagramme des efforts tranchants

    T (N)

    x

    Diagramme du moment fléchissant Mf (Nm)

    x

    4. Calculer la contrainte tangentielle maximale

    ………………...………………………………………………………………………………………………

    …………………………………………………………………………………………………………………

    ………………...………………………………………………………………………………………………

    5. Calculer la contrainte normale maximale due à la flexion ………………...………………………………………………………………………………………………

    …………………………………………………………………………………………………………………

    ………………...……………………………………………………………………………………………………

    ……………………………………………………………………………………………………………

    ………………...………………………………………………………………………………………………

    ………………...………………………………………………………………………………………………

    6. Calculer la valeur de la résistance pratique ………………...………………………………………………………………………………………………

    …………………………………………………………………………………………………………………

    7. L’arbre résiste-il à la flexion plane simple ………………...………………………………………………………………………………………………

    ………………...………………………………………………………………………………………………

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    Etude de l’axe d’articulation L’axe d’articulation (8) est modélisé par une poutre de section circulaire encastrée au point

    K et supportant une action Fuur

    = 10000 N

    comme l'indique le croquis suivant Sachant que cette poutre est constituée en acier de limite élastique Re = 420 N/mm², on désire un coefficient de sécurité de 3

    1. Déterminer KFuur

    la réaction en K et eMuuur

    le moment d’encastrement

    ……………………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    2. Calculer la variation de l’effort tranchant et tracer cette variation sur un diagramme.

    …………………………………………………………

    …………………………………………………………

    …………………………………………………………

    …………………………………………………………

    ………………………………………………………… I K

    3. Calculer la variation du moment fléchissant et tracer cette variation sur un diagramme.

    ………………………………………………………

    ……………………………………………………… I K

    ………………………………………………………

    ………………………………………………………

    ………………………………………………………

    ………………………………………………………

    ………………………………………………………

    ………………………………………………………

    4. Déterminer la contrainte normale maximale. et déduire d

    ……………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………

    ……………………………………………………………………………………………………………

    X

    Y

    K I

    110mm

    F

    Mf (Nm)

    T (N)

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    5éme partie : Etude du tapis de déplacement des bouteilles vides Description du réducteur

    Le tapis de déplacement des bouteilles vides est entraîné, à travers un réducteur de vitesse à engrenage droite constitué d’un pignon (9) solidaire à l’arbre intermédiaire (16)et une Couronne dentée (8) solidaire à l’arbre de sortie (1) (voir dessin d’ensemble page10/44), Description de l’embrayage L’embrayage ; à commande pneumatique ; reçoit le mouvement par l’intermédiaire d’une cloche (30) solidaire à l’arbre moteur (26) :Nm= 1500 tr/min . Le raccord (17) distribue l’air comprimé qui par son action sur le piston (18) assure l’effort presseur entre les disques (32) et (33). Nomenclature

    13 4 Entretoise 26 1 Arbre moteur 39 1 Joint plat 12 2 Roulement BC 25 2 Vis CHc 38 1 Couvercle 11 2 Bâtie 24 1 Rondelle spéciale 37 1 Roulement BT 10 2 /…………….. 23 3 Ressort 36 1 Corps 9 1 Pignon m=3 Z9 22 1 Plateau gauche 35 1 Joint torique 8 1 Couronne m=3 Z8 21 1 Poussoir 34 3 Doigt 7 1 Flasque 20 1 Joint torique 33 2 Disque moteur 6 1 Clavette // 19 1 Roulement BT 32 1 Disque récepteur 5 1 Ecrou à encoches 18 1 Piston 31 1 Plateau droit 4 2 Roulement KB 17 2 Raccord 30 1 Cloche 3 1 Couvercle 16 1 Arbre intermédiaire 29 1 Clavette // 2 4 Joint à lèvre 15 1 Joint à lèvre 28 1 Rondelle spéciale 1 1 Arbre de sortie 14 2 Couvercle 27 1 Clavette //

    Rep Nb Désignation Rep Nb Désignation Rep Nb Désignation

    A-1 Analyse fonctionnelle de la partie opérative En se référant au dessin d’ensemble de l’embrayage réducteur (page 10/44 ), Compléter le tableau ci-

    dessous (le processeur ou la fonction technique)

    Fonction technique Processeurs

    Lier l’arbre moteur (26) à la cloche (15) ........................................

    ................................................................................... Couple d’engrenage (8-9)

    Commander l’embrayage .........................................

    ................................................................................... Ressort (23)

    ................................................................................... Pièce (10)

    ................................................................................... Trois Doigt (34)

    ................................................................................... Joint torique (20)

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    1

    2

    3

    4

    5

    6

    7

    8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

    24

    25

    26

    27

    28

    29

    3031323334363839

    EMBAYAGE REDDUCTEUR

    LYCEE SECONDAIRE BEB EL KHADRA TUNIS

    le ...-05-08Labo de Mécanique

    Page ./.Echelle1:1

    3537

  • SERIE REVISION BAC_____________________________________

    G.MECANIQUE

    B/ CALCUL DE PREDETERMINATION OU DE VERIFICATION B1- Etude cinématique

    La vitesse de rotation de l’arbre de sortie (1) N1=250 tr/mn L’entraxe a 8-9 = 120 mm

    1- Calculer le rapport global de réduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    2- Calculer Z8 et Z9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    B2 - ETUDE DE L’EMBRAYAGE : 1) Quel est le type d’embrayage utilisé ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2) Les circonférences minimales et maximales des surfaces de contact des disques ont :

    Diamètre maxi = D et Diamètre mini = d Mesurer les deux diamètres sur le dessin d’ensemble (Echelle 1/2) D = . . . . . . . . . d = . . . . . . . . . . 3) Sachant que : -Le coefficient de frottement f = 0,18

    -L’effort presseur Nuuur

    = 1200 N

    Calculer le couple (Ct) transmissible par cet embrayage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B3 - CALCUL DE PREDETERMINATION : 1°) L’arbre (16) de section cylindrique de diamètre 40 mm est sollicité à la torsion simple . 1-1 Sachant que la résistance pratique au glissement du matériau de cet arbre est Rpg= 20.N/mm2 , calculer le moment de torsion maxi ( Mt maxi) pouvant être appliqué sur cet arbre. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2- Sachant que le module d’élasticité transversale G = 80.103 N/mm2 , calculer l’angle unitaire de torsion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3- Calculer en degré l’angle de décalage α entre les sections extrêmes de l’arbre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    rg = . . . . ……………

    Z9. = . . . .

    Z9. = . . . .

  • SERIE REVISION BAC_____________________________________

    G.MECANIQUE

    2/ L’arbre de sortie (1) est en acier de résistance à la limite élastique Re =295 N/mm2 et de diamètre d. Cet arbre est assimilé à une poutre de section circulaire pleine, elle est en équilibre sous

    l’action de 4 forces ARuuur

    ; BF 600 N=uur

    ; q 15N / mm= et DRuuur

    3-1. Déterminer les réactions RA et RD …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    3-2. Calculer la variation du moment fléchissant et tracer cette variation sur un diagramme. …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    ………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    X

    Y

    X(mm)= 0.00 40 80 160

    A B C D C’

    140

    q BFuur

  • SERIE REVISION BAC_____________________________________

    G.MECANIQUE

    3-3. Déduire le diamètre minimale d min si le coefficient de sécurité s = 4 ….……………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    ……………………………………………………………………………

    4/ L’arbre (1) est cylindrique plein transmet une puissance de 30 KW 4-1. Calculer le couple qui sollicite cet arbre. …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    ……………………………………………………

    4-2. Calculer son diamètre sachant que Reg = 160 N/ mm2. s=4 …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    X

    MF(N .m)

    A B C D C’

  • SERIE REVISION BAC_____________________________________

    G.MECANIQUE

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    4-3. Calculer l’angle unitaire de torsion G=80 000 N/mm2 …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    ……………………………………………………

    4-4. Si on veut limiter l’angle unitaire de torsion à une valeur θθθθmax =1,250/m, rechercher le diamètre de l’arbre(16)

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    4-5. Quel diamètre faut-il choisir ? Justifier ton choix. …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    C2-2 /Le tambour du tapis a une section cylindrique creux de diamètres D = 200 mm, d = 0,8D a une longueur de 0,8m. a) Calculer le module de torsion. …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    b) Calculer le couple transmis sachant que la contrainte tangentielle maxi est de 30 N//mm2

  • SERIE REVISION BAC_____________________________________

    G.MECANIQUE

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    c) Déduire la puissance à transmettre pour N= 100 tr / mn. …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    d) Calculer l’angle relatif de torsion entre les deux sections extrêmes, on donne G=8.104 N/mm2 …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    …………………………………………………………………………………………………………

    D –PRODUCTION D’ UNE SOLUTION OU D’ UNE MODIFICATIO N :

    On désire remplacer les roulements (4) de type K B, du dessin d’ensemble du dossier technique

    par les roulements de type BC, R1 et R2 représentés sur le dessin ci- dessous.

    a- Compléter le montage de ces deux roulements ; l’arrêt en translation du coté gauche est assuré

    par un écrou à encoche.

    b- Réaliser la liaison encastrement de la couronne (8) sur l’arbre (1),

    c- Indiquer les ajustements nécessaires aux montages des roulements et de la couronne (8).

    1

    2

    R1 7 98 11R2

  • SERIE REVISION BAC_____________________________________

    G.MECANIQUE

    6éme partie : Etude du mécanisme d’entraînement du tapis de déplacement des caisses

    I-DESCRIPTION DU MECANISME D’ENTRAINEMENTSE DU TAPIS ROULANT La figure ci-dessous, représente le mécanisme d’entraînement du tapis de caisses constitué de :

    � Un moteur électrique muni d’un frein électro-magnétique � Une poulie motrice solidaire à l’arbre de sortie(48) d’une boîte de vitesse. � Une poulie de renvoie � Une poulie réceptrice solidaire au tambour

    Bâtie

    Courroies

    Poulie motrice

    Boîte de vitesses

    Poulie de renvoie

    Tanbour

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    Moteur frein + Boite de vitesses Dossier Tech Page 5/6

    Echelle 1 :4

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

    21 46 45 44 43 42 41 40 39 38 37 36

    47

    48

    49

    50 51

    52 53

    54

    2223 24 25 26 27 28 29

    30 31 32 33 34

    35

    55

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    27 1 Boîtier 54 1 26 1 Axe de Fourchette 53 1 Bâti 25 1 Fourchette 52 1 Roue dentée 24 16 Vis H, M8-28 51 1 Roue dentée 23 2 Joint plat 50 1 Roue dentée 22 1 49 1 Roulement 55 BC 03 21 1 Boîtier 48 1 Arbre de sortie 20 1 Roulement 55 BC 03 47 1 Clavette parallèle 19 4 Ecrou H, M10 46 1 Joint à lèvre 18 16 Rondelle élastique 45 2 Garniture 17 1 Plateau intermédiaire 44 2 Clavette parallèle 16 1 Plateau moteur 43 1 Joint à lèvre 15 4 Vis H, M10-70 42 1 Roulement 70 BC 03 14 1 Plateau récepteur 41 1 arbre moteur 13 1 Anneau élastique pour arbre 40 1 Roulement 70 BC 03 12 1 Couvercle 39 1 Bague entretoise 11 1 Corps 38 1 Ressort 10 1 Stator 37 1 Garniture 9 1 Rotor 36 1 Clavette parallèle 8 2 Charbon 35 1 Poulie motrice 7 1 Bobine électromagnétique 34 2 Courroie trapézoïdale 6 1 Cloche fixe 33 1 Roulement 55 BC 03 5 1 Cloche mobile 32 4 Bague 4 1 Disque 31 1 Arbre intermédiaire 3 1 Rondelle W36 30 2 Clavette parallèle 2 1 Ecrou H, M36 29 1 Roulement 55 BC 03 1 1 Capot 28 1

    Rep Nbre Désignation Rep Nbre Désignation

    1- Etude technologique :

    a- Nommer l’élément (28) :………………………………………………………………………

    b- Donner le nom, et les fonctions des éléments (22) et (54) :

    Fonction de (22) :…………….……..……

    Fonction de( 54) :………………...………...

    c- Donner le nom de l’organe former par A={14-15-16-17-18-19-45} :………………………..

    Préciser deux fonctions pour cet organe.

    Fonction1 :…………………………………………………………………………………….

    Fonction2 :…………………………………………………………………………………….

    d- Préciser la fonction du ressort (38) :…………………………………………………………..

    e- Donner la fonction de l’élément (37) :………………………………………….…………….

    f- La boite à vitesses utilisées est–elle synchroniseé ? Justifier ?…………………………….....

    …………………………………………………………………………………………………

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    2- Etude cinématique : En se référant au dessin d’ensemble, compléter le schéma cinématique ci-dessous.

    Sachant que toutes les roues sont à denture droite de module m = 2 mm, compléter le tableau suivant.

    Roues

    (28c) (52) (28b) (50) (28a) (51)

    Nbre des dents : Z

    ……….. ……….. ……….. 105 ……….. ………..

    Diamètre primitif : d 168

    ……….. ……….. ……….. ……….. ………..

    Entre-axe : a

    a1 = …………….. a2 = 226 a3 = ……………..

    Raison : r

    r1 = ……………… r2 = ……………… r3 = 0,725

    Sachant que les poulies motrice et réceptrice ont pour diamètre respectivement 200 mm et 1000 mm, calculer la raison de cette transmission. ……………………………………………………………………………………… en déduire alors les trois raisons globales du moteur à la coquille. ………………………………………………………………………………………

    ………………………………………………………………………………………

    ………………………………………………………………………………………

    Sachant que le moteur tourne à une vitesse 500 tr/mn, trouver les trois vitesses de la coquille.

    ………………………………………………………………………………………

    ………………………………………………………………………………………

    ………………………………………………………………………………………

    A 31 4

    35

    51

    Moteur

    38

    10

    41

    28a 28b

    28c

    5052

    48

    34

    rg1 =………….

    rg2 =………….

    rg3 =………….

    N2 =………….

    N3 =………….

    N1 =………….

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    3- Côtation fonctionnelle : La côte condition « A » est-elle représentée en maxi ou en mini ? Justifier. ………………………………………………………………………………………………… Etablir les chaînes minimales de côtes relatives aux conditions « A » et « B ».

    4-Etude de résistance des matériaux

    L ’axe du poulie de renvoie est assimilé à une poutre de section circulaire pleine de diamètre d=28mm encastrée à une de ces deux extrémités en (A) , est supposé sollicité à la flexion simple.

    13 42 12 11 41 40 39 5

    1

    3

    2

    4

    37

    6

    B

    A…….

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    Echelle : 1mm 5Nm

    B2-1) En se référant au diagramme des efforts tranchants donné par la fig .c en déduire :

    ......................AR =uuuur

    et ............................BF =uuuur

    B2-2) Calculer et représenter sur la fig .b le moment

    d’encastrement AMuuuuur

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    B2-3) Ecrire l’expression des moments fléchissant : a) Entre les section A et B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    b) Entre les section B et C

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B2-3) Tracer le diagramme de variation des moments fléchissant le long de la poutre fig .d : B2-4) En déduire la valeur du moment fléchissant dans la section la plus sollicitée de la poutre

    max ............................iMf Nmm=uuuuuuuur

    B2-5) Calculer la valeur de la contrainte normale maximale due à la flexion

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    B2-6) Le constructeur décide de prendre un coefficient de sécurité d’une valeur s=6 , calculer la valeur de la limite élastique minimale correspondante du matériau pour satisfaire cette condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    B2-7) En déduire toutes les nuances de matériau du tableau ci-dessous qui garantissent la résistance de l’axe (2) Nuance de matériau

    C22 C25 C35 C40 C45 Re [N/mm2] 255 285 335 355 375

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    A B C

    X

    95 25Y

    FB

    A

    Y

    C

    X

    T (daN)

    X

    X

    50100

    +

    Mf(N.m)

    Fig .a

    Fig .b

    Fig .c

    Fig .d

    B

    +

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    7éme partie : Etude de l’unité de lavage de bouteilles

    I- Motorisation de l’unité de lavage des bouteilles :

    Le mécanisme de l’unité de lavage des bouteilles donné à la page …/….

    4- Description de la transmission du malaxeur

    a- motorisation : (voir figure 3 ci-dessous et dessin d'ensemble page 6/6 du dossier technique)

    Le moto-réducteur frein (Mt1) transmet son mouvement de rotation au malaxeur par: - un système pignons et chaîne à rouleaux double (4-47-56); - un engrenage cylindrique à denture droite (8-12)

    b- Freinage : (voir figure 4 ci-dessous et dessin d'ensemble page 6/6 du dossier technique) Le moto-réducteur du malaxeur est équipé d'un frein à disque à manque de courant qui fonctionne comme suit : A la mise sous tension du moto-réducteur frein, l'électro-aimant (31) attire le plateau mobile (33) qui comprime le ressort (32) et libère le disque (35). Le frein est alors hors service. A la mise hors tension, l'électro-aimant (31) n'est plus alimenté, il libère le plateau mobile qui, sous la pression du ressort (32), presse le disque sur le plateau fixe (23) pour arrêter le malaxeur au cours du changement du sens de rotation.

    FREIN A DISQUE

    Bobine Disque Ressort

    MOTO-REDUCTEUR FREIN

    Moteur

    Pignons et

    chaîne

    Engrenage

    Frein

    Figure 3 Figure 4

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    5 - Composants normalisés

    6- Nomenclature

    28 1 Vis spéciale 56 1 Chaîne à rouleaux double 27 1 Cache 55 1 Joint plat 26 3 Ecrou hexagonal 54 3 Vis à tête cylindrique à six pans creux 25 3 Rondelle Grower 53 1 Stator 24 3 Goujon 52 1 Rotor 23 1 Plateau fixe 51 1 Anneau élastique pour arbre 22 6 Bloc en caoutchouc 50 1 Anneau élastique pour arbre 21 1 Flasque 49 1 Arbre moteur 20 1 Douille 48 1 Clavette parallèle Forme A 19 1 Arbre du malaxeur 47 1 Pignon double pour chaîne 18 1 Goupille élastique 46 1 Joint à lèvres 17 1 Goupille élastique 45 1 Roulement à une rangée de billes 16 1 Manchon 44 2 Vis à tête cylindrique à six pans creux 15 1 Arbre de sortie 43 2 Rondelle plate 14 1 Joint à lèvres 42 3 Goujon 13 1 Clavette parallèle Forme A 41 3 Ecrou hexagonal 12 1 Roue dentée 40 3 Rondelle Grower 11 1 Couvercle 39 1 Bloc moteur 10 3 Roulement à une rangée de billes 38 1 Carter 9 2 37 1 Ventilateur 8 1 Pignon arbré 36 1 Clavette parallèle Forme A 7 1 Carter 35 1 Disque frein 6 1 Roulement à une rangée de billes 34 2 Garniture 5 4 Vis à tête cylindrique à six pans creux 33 2 Plateau mobile 4 1 Roue double pour chaîne 32 1 Ressort 3 1 Corps 31 1 Electro-aimant 2 4 Vis à tête cylindrique à six pans creux 30 1 Corps porte électro-aimant 1 1 Cache 29 1 Ecrou hexagonal

    Rep Nb Désignation Rep Nb Désignation

    Clavette parallèle, forme A

    a

    b

    k

    j

    d

    d a b j k

    de 17 à 22 inclus 6 6 d-3,5 d+2,8

    22 à 30 8 7 d-4 d+3,3

    30 à 38 10 8 d-5 d+3,3

    38 à 44 12 8 d-5 d+3,3

    Anneau élastique pour arbre k min

    f(H13)

    e (h11)

    d g C

    d e c f g k 17 1 25,6 1,1 16,2 1,2 20 1,2 29 1,3 19 1,5 22 1,2 31,4 1,3 21 1,5 25 1,2 34,8 1,3 23,9 1,65 28 1,5 38,4 1,6 26,6 2,1

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    1- Etude du moto réducteur frein

    MOTO-REDUCTEUR FREIN

    MO

    TO

    -RE

    DU

    CT

    EU

    R F

    RE

    IN

    Echelle

    3 : 4 A

    3

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    En se référant au dessin d'ensemble du moto réducteur frein

    1-1 Compléter le diagramme F.A.S.T relatif à la fonction FT "Transmettre le mouvement de rotation de l'arbre moteur (49) à l'arbre du malaxeur (19)":

    Composants

    2- Etude du frein

    En se référant au dessin d’ensemble et à la figure 4 du dossier technique, 2-1 Donner le rôle du ressort (32). ……………………………….………………………………………………………………………………………. 2-2 Compléter sur la figure b ci-dessous le schéma cinématique correspondant à la position freinée.

    3- Etude de l’assemblage du couvercle (11) avec le carter (7)

    En se référant au dessin d’ensemble et à la nomenclature (voir dossier technique pages 5/6 et 6/6) : 3-1 Donner le nom et le rôle de l’élément (9) Nom : ……….…………………………………………….…………

    Rôle : ……….……………………………………………….………

    ………………………………………………….…………………….

    49

    31

    33

    35

    23+38+39…

    Figure a : Position libre (liaisons masquées)

    FT : Transmettre la rotation de l'arbre moteur ( 49)

    FT1 : Transmettre la rotation de l'arbre moteur (49) au pignon arbré (8)

    …….…………………………………......

    FT2 : Transmettre la rotation du pignon arbré (8) à l'arbre de sortie (15)

    FT3 : Transmettre la rotation de l'arbre de sortie (15) à l'arbre du malaxeur (19)

    …….…………………………………......

    …….…………………………………......

    Figure b : Position freinée

    49

    31 23+38+39…

  • SERIE REVISION BAC_____________________________________ G.MECANIQUE

    3-2 Donner le type des ajustements suivants : - Ajustement entre (9) et (7) : ………………………..…………

    - Ajustement entre (9) et (11) : …………………………………

    4- Lubrification de l'engrenage (8-12)

    Donner la nature du lubrifiant utilisé pour cet engrenage ……….……………………………………………………………………………………………………………… 5- Etude du réducteur de vitesse

    Le réducteur représenté à la page 6/6 du dossier technique et schématisé ci-contre est à deux étages:

    •••• pignon (47), roue (4) et chaîne à rouleaux double de rapport r1 = 0,625;

    •••• pignon (8) et roue (12) à denture droite de : - rapport r2= 4/15 ; - module de denture m = 2 mm; - entraxe a12-8 = 95 mm ;

    Le moteur est de puissance P = 0,55 KW et de vitesse de rotation Nm = 740 tr/min . Le rendement global du réducteur ηηηη = 0,7.

    5-1 Calculer les nombres de dents Z8 et Z12. ……………………………….………………………………………………………………………………

    ……………………………….………………………………………………………………………………

    ……………………………….………………………………………………………………………………

    ……………………………….………………………………………………………………………………

    ……………………………….………………………………………………………………………………

    ……………………………….……………………………………………………………

    5-2 Calculer le rapport global rg du réducteur.

    ……………………………….………………………………………………………………………………

    ……………………………….……………………………………………………………

    5-3 Calculer la valeur de la vitesse de l'arbre de sortie (15). ……………………………….………………………………………………………………………………………

    ….……………………………….……………………………………………………………………………………

    …….……………………………….……………………………………………………………

    5-4 Calculer