sfre lftc/ cr son s/4 - mit opencourseware · pdf file40 effective stress - strain rate...

39
I32) I I,A£021 S/L5 /. /4j//y %Sfre Lftc/ Cr Son s/4 52 . 53 2, Al Cinc ///6h/y Cyrnic So, P', Z "t','" . P3 , 4,, C4A( 4 ., p -r Fh, ~d c c ' hz dA c 3. Coll/apjg d Ep4an/ve Sovi/ 1 C/E/ Owuw.r . C/ /2 Co(A s ,C/,r 3, F"Op"V-K C' F5 /- 4 4 o/k Z c r-5 FA, on , //o/iV: ~cmtcc- Og d4uae oW4mu-4, Cd"~ 11 k4o%" d 6 4AA3 4 44Y /Coa4/Al4 L &wivL 4, A. c4wAu L4s Pmt (#^p&c4/ CayJ 4 7 ct Rsldad Soi/ RI Rt , e 6 sa,,, 4 tdc }4fwkn~t '~~a /9C f4 : CCL i-c a4 " 4 wr4 el4 4 aA A,4l L " V/- V/2 -' Vcrv'd Cay V/,2 " v'" V3 -/2 / +44I,4a4, 4. /k&ercnccz (OddkJ 61/-s *,~ In w w w vw v) m .- e x d n I_ I C4 (4 14 C(4 C4 (e4.1 9w C---CL" ' · Y -- r- I -- -- -·---- I (1617joholhan i -i71 M 41 9' 41271*1 3110"?7 301 04 7.1 -TL-n, ap t f)

Upload: hoangkhue

Post on 01-Feb-2018

217 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

I32) I

I,A£021 S/L5

/. /4j//y %Sfre Lftc/ Cr Son s/452

. 53

2, Al Cinc ///6h/y Cyrnic So,

P', Z "t','". P3 , 4,, C4A( 4.,

p -r Fh, ~d c c ' hz dA c

3. Coll/apjg d Ep4an/ve Sovi/

1C/E/ Owuw.r

. C/ /2 Co(A s

,C/,r 3, F"Op"V-K C'

F5 /- 4 4 o/k Z c

r-5 FA, on ,

//o/iV: ~cmtcc- Og d4uae oW4mu-4, Cd"~ 11

k4o%" d 64AA34 44Y /Coa4/Al4 L&wivL 4, A. c4wAu L4s Pmt (#^p&c4/ CayJ

4 7 ct Rsldad Soi/ RIRt

, e 6

sa,,, 4tdc }4fwkn~t'~~a /9C

f4 : CCL i-c a4 " 4 wr4 el44 aA A,4l L "V/- V/2-' Vcrv'd Cay

V/,2 " v'"

V3 -/2 / +44I,4a4,

4. /k&ercnccz (OddkJ

61/-s

*,~ Inw w w

vw v) m.- e

x d n I_ IC4

(4 14

C(4 C4(e4.19w

� C---CL"� �' · Y -- r- I -- -- -·---- I(1617joholhan i -i71M 41 9' 41271*1

3110"?7 301

04 7.1 -TL -n, ap t f)

Page 2: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

NtC 49 I3

Aqri -/yo/es A<-i ItmP

0

/

OF/Yn ceennd

r /(wCA cc/Su 53

4L /coM

' AUrUMf. Ur/odC Z OP-*

/n s,/ = I

lnpt r vs /vo4y.c' / /og4

Ak-F: /jCprc:,

/9 sy -y 4 k o/Fn g9 f C(, /as 0,

Zeoue;l 88) CGJ zs(o)

6· - Utt" vc O -IV/5/4-, E > b 4EOP

i

C¥I

I.qC / ( )

r~~~

pC C!'",U Wu . igc CA W

~·e·p~~~

.IF

Q eV /o

I. F

I I I I I I -

-,0 -9 -s -7 -6 -5

/f7 5,j

I I I i , I

/og , ( /S)

-

------

- * I >

[ II [ I m ·

-1.3116 31�� 31,11

H�qAIV S�UC&'CCIY,5et7-5 / A v'e C/OY�5

f~J

r_

/, 322

Page 3: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

40

Effective stress - strain rate relations observed in the laboratory and in situ at a

vertical strain of 10%.

60

80

60

70

60

80

100

εv, s-1

σ v, k

Pa'

10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4

90

110

130

80

100

CRSCreepMSLpMSL24In situ

εv= 10%

.

Saint-Alban (3.1 - 4.9 m)

Berthierville (3.9 - 4.8 m)

Berthierville (3.0 - 3.9 m)

Vasby (4.3 - 7.3 m) 40

60

80

10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4

Preconsolidation pressure - strain rate relations observed in the laboratory

and in situ.

εv, s-1

σ p, k

Pa'

.

CRSCreepMSLpMSL24In situ

Saint-Alban (3.1 - 4.9 m)

40

60

8030

50

70

Berthierville (3.9 - 4.8 m)

Berthierville (3.0 - 3.9 m)

18

Comparison of in situ stress-strain curves & laboratory end-of-primary compression curves

14

10

6

2

12

8

4

00 040 4080 80120 120σv, kPa

ε v, %

ε v, %

BerthiervilleEOP (4.4 m)

'

σvF'σvF'

σv, kPa'

σvF'

σvF'

In situ (3.9 - 4.8 m)

Saint-AlbanEOP (3.8 m)In situ (3.1 - 4.9 m)

VasbyEOP (5.9 m)In situ (4.3 - 7.3 m)

GloucesterEOP (3.6 m)In situ (2.4 - 4.9 m)

?

?

?

1960

1968

1979

Figures by MIT OCW.

Page 4: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

0.01

1 2 4 6 8

10

Sensitivity contours

20

0

-0.40.1

Preconsolidation Pressure (TSF)

Liqu

idity

Inde

x, L

I = (W

-PL)

/(LL-

PL)

Preconsolidation Pressure vs. Liquidity Index

1.0 10 100

0.4

0.8

1.2

Figure by MIT OCW.

Adapted from:

Page 5: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

E I I 7 I I P11 I , /

3/j3 3/% 3/f9 715

// Arocctol)

( O,/ en)4fW ' /'%u

w , h vtMp

lk1 C, C?CcKC r5,07eaO02 (PI,/ a ri.bf 1)

Enip& - Tv d AC/C d

f > H i/f i A p1.Y 20/f, 'a Ž- 64, wr

2. Cia sca /ndc PpLrhL

)) Tt(#7144 It@FAol, trll~ , I 6 )

2) /6AA4 CkAt

d~i:,t fD 67ur' W9

3) Crreloli/l)n wi way ( P3) w1t )

- &A t 440 or 750't.- Ln o - G 5 (Asrm D 2974)· ["~ou Ol o G

w0, ( .)

300/ boo

Yt ( C)

/,03

T, s '5m P 7.o.75 , .A/5,psf 7. kPoats i, - 30Jf - I.s *4

<<<-44

:3-- 1CCCVVV.. VI

OC

" 2zIoIlk

CFoiiw Fais (r"1)

Go~eh-r vt,Ih .

40 - soo

t WY

fou

t)200

0

t,. f u\

-

,fI 13 rD;)Pr, /,1a

Page 6: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

i ( ( / /1gqA I /- pkPC ETs

r 3/'?6 3 'let

3- (eono/,/a (/-O): Genfml oq Aavlur

A

> /0, Cf lS

< O~~/-9, y

*

f k dtGC4ea "I AAb ci

2 t / s- k - ywPI -omwsa/ r- 3 .. / ,0-/ "t C# CLAI

* O/4 tr'*P4 cE °gxtal'S4Cp4 4.~ Au~ b .ce -- Ovo(7+) (a1v Pe, Fg.i /) y

C4 4 4o t 07e ~ 4 A~ (DM-7 4/)

cV d4 4 4S4, 4 t4 of /-2n'd4t4 oe h4 1 /k) (sc P4 b)

4. C77rnftng Etlc SeFft/1rte '43 P4a a tn (r& C C,c 21 ). , ,i .r< , / ..., (, 4

) $YAC/ F*zit 4As *1jL / uiO2 (W.t<E.l2),,. 5) vR/icHl Our FOg /eE ,t97TER,91 DEFORe9Vhl (ay/orect)

U)

= It .

o..00B

-1·

OCC

...

.t i

I-n

II

Ir<0 = 1 -o2

r 2;<e

3 z

I

g0

eq

,4kib \

b

I ' s f , I -_ I -1

�p

/09 0;CI~~ ~1

-3

322

Cmre.5sli'lliy

~La~~VC U984)r

l

~~7ypTy C, c I 0 Y

Page 7: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

I !

, I I

.N

_ .

1I

-- fit.<. Mwvkag Engr.Io ok,. -6s

.t' vw A/doc O'Y74)

,I /

!-

i :iI

Wc~rWat 1Wor Cown

/VDIX PPPepf45pE q 1

-= /I /I// /

9zt ocloi, 11/

f./l, / 3I- 1 /74 I-

CL 3/ 4

/'

".3v

I.I

/t0

8o

C

N

'M

N-

40

'20

0

:3.0

iR 5

" 19

-, f V

XII<K11

I- 20 4

Xx III

i I

I

-f �.-

A

-F . . v

10 /500

!

Q - ::-I i 0 - /O

Page 8: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

r 7 -,

I

.

-i,) .o <b'i) co'-/#

-13045I,!f .I dao. er,

I I I I

'IVG

From L, Cosogrnde (/9z)

.j3)

FV'NG/MA/i/CG PoPPevrtE o Per Cct 0/74

9,

k-

d o.4

I,a:

k'

0..2

0-

'1%.1tl

'\6

-a -1

d-- w

, ,

_ .· _ , * ,i. * * .t

I

..~j

t .. · ! : .:

;

�UI� I�K)

I

.

M2/'S

I 3 2 2 - ./. r-

Page 9: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

10

Values of natural water content and compression index for peats as compared to those of soft clay and silt deposits.

0.1

1Cc

Wo, %

10

100 1000

PeatsClay and silt deposits

Values of Ck for peats as compared to those of soft clay and silt deposits.

2

4

6

8

10

00 5

Ck

eo

Ck = eo/4

Ck = eo/2

10 15 20 25

Clay & silt depositsPeats from literature (table 1)Middleton peat

0.0

Relationship between secondary compression index and compression index for Middleton peat.

Cc /(1+eo)

Cα / Cc = 0.052

/(1+e

o)

0.00

0.01

0.02

0.03

0.04

0.05

0.2 0.4 0.6 0.8 1.0

Figure by MIT OCW. Figure by MIT OCW.

Figure by MIT OCW.

Adapted from:

Adapted from:

Page 10: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

/nf/qance of Lorgv Se/vonnf, Con so/bdo,2f, 59rCss

/A /7T/ COMOI//om (t'o) w/TIH SE77TLEA/T

-Id(cui rafi

(C(Eipii4oA. c' Wi)

Cvc (s s)10 /2 14. 1

/'/- ' sc?" /.Omgb .o8 7cn

fi Cvrl17,1ani Fv

Corrtedd C f n f .c

I /f cfo

Lj. C. V t VU.LU vy

(eL 4//q9 -2P5Ul-

<<"IDOOC

. d1Z-Zno

_-I

OG5

-77'-Z'_'I 2

L

I _

/It (if

oll , 11 nc~:; bjHLO O1 ®bO//Orn - //~,/490 ~n ~ -o f L1 (ey) -f ?

3 (m)

.

. -

%,

_

II!· ...... I ,,z ,,

1322O3 49

3/4M

j Fi· 1 I I

l

f�,

v .I

p /, , 4 er

1.� I �III I . I. , AH) 4

71T

Page 11: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

Co0a 4P3/AAE' JSI w/aS/

/ /'7+ochuc.A4

Q CCUL , U kU 0 ((ss s A"4-7l)

* /g,//>t/;/>6/26I)7 8 .)

0 10 20 3 o 40 so 6 70 80 q /06

to

70

7o

IrO

h.PO

/) 4 ppc - , -7 CL lC. Uz,p)w r ,)

4orss ( 4" e 4a ) m 5S .#/, at"-, 4 kJ

j adcas Y~~v bs\ , r v I v

¢3) Fad cA "sfz Zi - 1 4

&4t kuuoiCII~

(2>r ~

KJJ

<.<~zzI(33c

.vv

rc...

"IR

e e

... i,

$ Z<eaI~I

v%.

a a.5 =0o o

2. Wi-

-s "6r'- CcWCa46

- a+-

_ _ l r J r t _ I I_ rv U - ·< rr i ~ i . p

.

-I~ j l j!aw i : e-V 's . / vz >. W c 1";

0 Aek rd d ;AA p , : - Y-P"414-

I

co//O-P-51)g · , !I

Page 12: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

,-,L~ "~Hzoi 7 tI .It _ I -LJ , I .I ' I

,l/q 3/o

A E x_ _ _ __,,_,-jv 4 4 4fpJi)~,- sak 5s -rue, j4 ^ !1 vd/ 7

'r\ \ -Cl Stt *~fVrkfp

.4) 544hleStu4.V

' ai u-9;s aatmed 4Am a 1U T _

* "Daoa/ct Odone cr" (C/.&n. f F9in 18/)

Fe, h4kipodyao;^d I;> Or&P6 .1 i W

Seanj o a;, GUru~ r, r~rrivf 4O1 L L ~a,/og

Ict 4d 4

,dt 5 5, 4)"IT.43E IM 4

f(4 d4W1 SdAAV( ^**APX

Zs// (4dC9s)

0 Pe ) wa # t etd4If" a c D - 6&oD kvJ&iOftrpdA~t e)

)o v/ronmetn/ b Sr6C

or% 7*2X1ny

P/41 $ .-r ,h,£ d II

I t". <S A rf

f

.-/9-JAA /QQ ,^/' X cncj

0'3C-2n

:2:2:= I, .X.

,n2.

I

ZI

I

)q, - - .- Y

/ X.)

Page 13: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

- -- Lr'. -

) G cnrd ci 5t SA'- 'o, Ua6

Ctik (Uo I U.s .St"A co,,. 4) hPtw d4,,4 £,v144-Lff- colad da7,44.c "tb w dto s5"4ut4i

/

· tUdt ,,4,) (/9q/): ;,20

(o aopts)( it 301if S)

/5

/o

5-1o/y° 5/' d, a . t'h, b ," ", o,w,4 0

S^44 ( 5 ,> ~~~/O 20 130 40 0

74+ f #/ )

2) I//&4Adl 0 S 6a uAa/c ktWAw

0a)

1o

I a

/arE': 'V&aQr 7?, -4Y'

;44444 . d4.4.,

I~

"I

...U Iv IICC VV I

V Z

V V

4M,14, C&je ,-ws4A/·9tc~

5;~cr

l5EFlBfE

EvA port 1 t (+)

LI'rt' "'·-· ' l " 06 q-

e

------- ,

,3(1 [I

.3, _fXpqn,5lvt Clt?~As

-6

('('/ Mz/ I /. 32 2 1

Page 14: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

Ce #/z/H9

3) IE/wv4'md S &i 7 (.in 1# A re L)13) -F4FM4 J 7AO PK 40 Oy h)

I 2 4-

/09 Gv /°9 TV (Q&)

15Saps (At eocJ ceoM)

.Skfdr tv, D&/vs, a (wCkA N)

I 6 w ipp /t,1 rp /V 1 o- ev - - e cu a4d W4d' Add wa7&tr >/ C 57; o : 2va-t-foe /rlD

(. SP: 5sl /2 Prssurr !b pcever'v* Swe//ty af 4) Xi4e /t3-c,

4) Q6Z/e Ordorncer tennng f Kn'rff, /qs7, 17/ci'FE)

* ·C ~~ &SC54Jaitpli~ ? 'U4 La4 Wt ~ c~

M OJE:aC$ WY 7 P. -Fs d4, dA +sav' ° u8IJ/<aD a 14, 4f @ dm Ov6 c <A

Aedud~jet

~n/'7: 5Jfna~ma of UftI anrn wi 60tS nt me?44ia.'aj4, 1 0 -o 0 n h&4 & c#v4 .q Mbwalnow AecC6, ctj Wtvlz 4A f fv CA i ot #,a *Lk Cdwn Wr

1. 32 2

)

rC/F'

/

...

,,,_zI

OGCe

vlog

o7oo

- nii-0, 0,s 8 A

I I m I II

-iTPI \

I

I I I

Page 15: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

Water Surplus

0 J F M A M J J A S O N D

200

P an

d E A

:mm P

EA EA

Water Deficit

Water Surplus

Month Malaysia

P

400

0 J F M A M J J A S O N D

200

P an

d E A

:mm

PP

EAEA

Water Deficit Water Deficit

Month

Melbourne, Australia

Johannesburg, SA

400

0 J F M A M J J A S O N D

200

P an

d E A

:mm

P

C

D

A

B

P

EAEA

Water Deficit

Month

400

Cape Town, SA

0 J

Illustrations of different types of atmospheric water balance: (A) Kuala Tahan, Malaysia, 1984; (B) Melbourne, Australia, 30-year average; (C) Johannesburg, South Africa, 1987; (D) Cape Town, South Africa, 1992. EA, A-pan evaporation; P, precipitation.

F M A M J J A S O N D

200

P an

d E A

:mm

PP

EA EAWater DeficitWater Deficit

Month

400

Figures by MIT OCW.

Adapted from:

Page 16: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

FIG. 1 Climatic Ratings (C.) for Continental United States (ARC te wri/f )

'adjZ4s sa' 5 S i A,*~ ~ figu,,,&nAh 1; .e Acp P/&,l ; , av * A

- Pwry C I

VJ--- #e~ Ail O + itoff24,

f//

/

I

I ~ ? 4 CA ~

'a

o0-E0U)

0t)dCzw

4

ftlk / 321 1 14v*" 1 b06 31;431VI

Page 17: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

1445144014351430142514201415

Maize

DryDry

Horizontal distance: mElev

atio

n ab

ove

datu

m:m

WT

WT

710m4m

Water table depression beneath eueatyptus plantations: (a, b) near Johannesburg;(c) at the site of a power station near Johannesburg.

00

100 200 300 400 500 600 700 800 900 10001100 12001300

1470

1460

1450

1440

1430

1420

Horizontal distance: m

Elev

atio

n ab

ove

datu

m:m

Position of piezomters

Originalground level

Approximate limit oftree area Power

station terrace

Piezomatric level in sandstone

Piezomatric level in residual silt stone and shale

Top of sandstone

Weathered silt stone

Base of Alluvium

0 100 200 300 400 500 600 700 800 900

1445144014351430142514201415

Maize

DryDry

Dry

Dry

Horizontal distance: m

18m

Eucalyptus

Elev

atio

n ab

ove

datu

m:m

WT

Plazometers

Bedrock

Water cable

A

B

C

Figure by MIT OCW.Adapted from:

Page 18: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

30

5

Measurements of heave with depth, indicating a depth of active zone of about 30m.

Seasonal changes in water content observed under the shoulders of an airport pavement in Israel.

20

Dep

th:

mD

epth

: m

10

00 100 200

Heave: mm

300 400 500

Site I: Heave after 9-8 yrs.Site II: Heave after 3-6 yrs.

South Africa

Israel

za

za = 5m

30m!

4

3

2

1

0 15 30

Water content: %

March (end wet season)

Oct./Nov.(end day season)

45

Figure by MIT OCW.

Page 19: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

-20

0

20

Mov

emen

t (m

m)

200

d) Seasonal effects on movement and depth to WT

8

6

1"

Wat

er T

able

Dep

th(m

)

0

Seasonal variations in surface movement and water table depthfor an old building in Cap Town

FM M J JA A AS SO ON ND D SONDJFM MJ JA AJFM M J JA

100

10

Rai

nfal

l (m

m)

Month

10'

0

Road Surface(SA?)

20

Hea

ve M

ovem

ent (

mm

)

40

60

61 2

Surface heave movements and a rise of the water table that occurredas a new water balance was established in a recently urbanized area

3Year

4 5 6 7

5

Wat

er T

able

Dep

th(m

) 4

3

c) Long time to reach maximum swelling (than seasonal effects)Note significant rise in WT

Figures by MIT OCW.

Page 20: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

1.32L-'

E} A1'bDQ#r/°oA1 -A6/& OA/ EXP4IS/Ve *S6/46

/ &st SO/1 4hs l7401 eld &4i ZS . -g P tk PtA &v

#zI 4 A4mf 4&

bLu 0 A,

M-lccdt " q/4ht 2(4"4*,t k1md1i ___ 4W.W 4-A, 44r~b 4Q M#4*4 PaA&

8.Palr/ia 5oe f

d) PAgtwe s - Af p kdUe1 W/4+

b) fUs2- 4im, s ur>- on asL

~cu- Wd 4ul 0

Wgo MU. (1q?2) tp->, x fS~le

Er�i��c<ccce

-:,---B�S�RSW"':"""",trt__'--"5I---'

�-�-oc---- i--·---:--- ·;

--- iic·--u,-II

"-s���

·;��?�

e

I

BI

01

I-

- I· Y -- ' I ---- -- -- L �

-

&ad.., Lw~ll.CO 3n,19P.

Page 21: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

,,322 7PS IDLZ ,So/LS

/) 3 du1,/ oi ol A4c-r k -. So t (exI S)

,2) CbrgdAo s WARM-'iEr CILtwrnC (Set g2)

C· " t * 1 " t -' /_F,_

- C Sc/; ce d(,)- mcU "od" zmL-M //

) z c4 Ptv4,- ( /saI2,3)- ~ ~ "'Ac~~p -,

2)

..o

i,

I~ ~ ~ I

rocG Ak4 b4SLCGLI (e+C{Gc Pf~b~ (R, sS)t.~~~3~~ R ,, ;z* bot;d

.k k ak k- 7~ _ _ _ _ _ _

3 c) C4A4 of Se.WM6

* 4 , e

*u wiY ShT or At1f4, (R4)

AA / / 4 6APaJ" 5* d 6? f (Q-Ya) + fwe-Ww)

(i D~na~ c yZs~4 une f@ r/ I 2 )

3/27/9i Y*

/. id&ckgrowd

e

e.

I f ' J ~ ~ I

I . }----' '~' ''-' "' · · '--l -

i

("p-II

Iti 4A et

Page 22: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

TROPICAL RESIDUAL SOILS*

C.C. Ladd 1.322 3/82

1.0 DEFINITIONS AND SPECIAL COMPOSITION

1.1 Tropical = ±220 N-S

Residual soil = in situ weathering of rock to produce soil.

1.2 Composition of Tropical Residual Soils in Warm-WetClimates

(1) Crystalline rock and poor drainage + smectite

(2) Crystalline rock and good drainage + Red Laterites(also called Oxisols)

· Kaolinite plus Fe/Al. oxides (reddish color)

· Low "activity" with a lot of cementation

· Considered "good" MH soil

(3) Weathering of volcanic ash/rock + Andisols

Halloysite (tubes + spheres) plus amorphous.

alumina & silica (very high SSA but low surface

charge) and maybe smectite (usually dark color)

· Generally high wN and P.I.

· Considered "poor" MH soil

2.0 CHARACTERISTICS OF RED RESIDUAL SOILS (LATERITES) WHICHOFTEN REQUIRE DIFFERENT ENGINEERING PRACTICE (Compared tosaturated sedimentary clays).

2.1 Index Testing and Correlations with Atterberg Limits(See Mitchell & Sitar, 1982, for examples).

(1) Halloysite

· Tubular structure very low dry density

· Dehydration when dried

(2) Fe & Al. oxides plus silica gel act as strong cementingagents.

· Decreases effective SSA

· Highly variable in situ

Panel discussions and Proceedings ASCE GED Spec. Conf. onEngr. and Construction in Tropical and Residual Soils,Honolulu, Hawaii, Jan. 1982 (Availab.e from ASCE).

Page 23: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

- 2 -

(3) Drying soil generally increases amount of cementationand reduces plasticity.

(4) Amount of mechanical remolding can greatly affectmeasured Atterberg Limits (more remolding + increasedplasticity).

(5) Conclusions

· Can't use empirical correlations developed fortemperate clays

. Any correlation with index properties likely to bevery scattered

2.2 Heterogeneity

(1) Profile characterized by differential weathering andcementation. See Brand (1982) for classificationsystem for Hong Kong.

(2) Because of above, properties highly variable and

· Undisturbed sampling difficult to perform

· Conventional size samples don't reflect mass properties

(3) Conclusions

Base design on local experience and/or large in situtesting

2.3 Saturation - Rainfall

(1) Strata'ofmain interest usually occur above the watertable and are characterized by:

· Partial saturation

· Generally high in situ permeability

(2) How to define a in partially saturated soils?

· If S > 80%, a = a-uw probably reasonable (discon-

tinuous air voids)

. Otherwise, must consider two components, i.e. a =

fl(a-ua) + f2 (ua-uw)

(3) Variation in uw greatly affect slope stability

. Seasonable variations

. Effect of heavy rainfalls

Influence of modifying drainage pattern

Page 24: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

CCl 3/3o/Rn/ 3 22 So//- ./,q vo,

/rti/ ,, (1 (/?77) Z"As £ c5 . e //e iJ n 'cJ,L,,/SoX/,"A/SCc, J'CFS/ V/o 03, GT7, p, . /97-2/./

I oC reSclu/l O// c/cy/oped r,3 gnecouJ e/ IQernorpA4c rockM osf/y JM /v ML ftflwolr m//oher /Q?/J W 30-7o/ f..

A /?commnd c/J/,t? Sc4 ,,nrbono, mc,dc

leM C, 6 z- /Z 3'A E5 = p, (/4enarc/ressur,,zjc

* /7 ,on no/ olo;/o//) can use a prox, A/vs. M, cor(fc0/on ' &

/, ?,oJc/olfd y ScoJe Ja/7 ;. fco. f oz OoCfc,,//n graar VCE. .C. req on/

IA'

I

'V

,/

?x

x\- (Q.as 5uaresdo/fa aonUI /

I I I

,c7 / / 2o~-" 0.97

I I I I I

2OO 460 6o /1

2000

,,.

CC Arx. -i s 80o

Loo

/008oIDo

rI

hI

/I

I I

4o

20

/OI Z -4 S /o 20 40 o0 8c/Oo

A/ (/ovs/f/: Aor- -/2,;.)

,f w~~_ r /~~~~~~~sa

I i i i I I I I

- _ I, U IV

.)

_

I.

L/

I

i I II I-- 1

Page 25: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

Peda

logi

c H

.Pi

nnac

le S

lot

Roc

k

0 25N

Dome Cavity

Soft

50 75

Residual Soil Settlement Related to the Weathering Profile

Res

idua

l Soi

l

Residual Soil Profile in Limestones

00 0.2 0.4 0.6 1.00.8

Void Ratio

Sowers, 1963 Best Fit

DIB 1985

Sowers 94% Range

155 Tests, 50 Sites Southeastern USA

A. Gneiss, Schist, Granite: Sowers 1963

Com

pres

sion

Inde

x, C

cC

ompr

essi

on In

dex,

Cc

1.2 1.4 1.6 1.8 2.0

0.4

0.6

0.8

0.2

1.0

1.2

2.0

1.0

00 0.2 0.4 0.6

Sowers 1963

62 Tests in One Site Northern (Tropical) Brazil

0.8 1.0Void Ratio

B. Basalt, Quartzite, Schist Gneiss: DIB 1985

Relationship Between the Void Ratio and Compression Index in Residual Soils Derived from Crystalline (Igneous and Metamorphic) Rocks.

1.2 1.4 1.6 1.8

0.4

0.2

0.6

0.8

Figure by MIT OCW.

Figure by MIT OCW.Adapted from:

Page 26: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

Weathering profiles in crystalline Rock: Gneiss to Schist, Granite to Gabbro

Roc

kPa

rtly

Wea

ther

ed

Peda

logi

c H

oriz

on

Sapr

olite

Roc

kPa

rtly

Wea

ther

ed

Peda

logi

c H

oriz

on

Sapr

olite

Grant to GabbroGneiss to Schist

Foundations and Embankm

ents deformations

NN0 25 500 25 50

Never Block ρ problemButean be collapsible

∆v due to swelling & shrinkageHighly plasticSee Fig.3 Compressibility

Roc

kPE

D

Wea

ther

ed

0 25 50N0 25 50

N

Residual Soil Settlem

ent

Mudstones, Shales

Roc

k

Sandstone, Conglomerate

Weathering Profiles in Clastic Sedimentary Rock: Sandstones and Shales

Partl

y W

eath

ered

Ful

lyPe

dalo

gic

Mai

nly

agric

ultu

ral r

athe

r the

n ge

otec

hnic

al

Figures by MIT OCW.Adapted from:

Page 27: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

C 4LA/2/B4 /. 2 Y"A*VED CLAYV

Co/t

See Y3 (Fg,2) See V8 (¢l. )

V ///////

, _` LI i<Z

kI

W( Cod Arm. k

2) Co idtfti (o'awK A 4,r,~, ~ei". Nv US). .7. C,)i.'., ,1,4, o A )

7cu~e ,d.C 4,t., = C* vit.ei+, /4I.CL p /4, V 4!-f. 3)A· fe~aA? BESt drpyn at-Va ve

' X'c b44I"'y BEs; dryin" Irnol ;vt f',.fr)

' (- 4 x vrC: / .a"r"p-"

. /-D Co//b'd .t,,

Gn/n ci4 - (vs) S C J -o p. -/s

.C; . t .,~ ( V6) .- o30- o -, CR .Os -6.410 (or)

W;r 4 (C w (V7) Oo, e#30-7o cnl4 fO 4a ffWl/y (N s)t

IVIIFF Qxd-o/X 3(5' &t halt do) t W444t

(<<

300X=

1.7.oocc_-,

:I'll;z

it 'e

e

i I I

I

A

-.

Page 28: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

C_ 4/ib .322 I v/f'VFD C;,s

3. Anl7Ijoroec F/owi

(. h..r c 4

2) 4d4[ R rk Y/kv (z's~ v ( y. 2)

3) )Ai d4d l 4/OZt"

L9B a) v\/ Ota 4AA

Cor k'/kc too 9 6 pt) - k-:( du) r 2 S s

" c . // (ac c-/)( 1(Cv "~lilii~ 1H Ch 1 I~~ C4 ~ ~~44cvit mr ,1 Ffith 7

b) oCxCwrVC LJ/ w/ to. t4,-,t

') '/l? W " C// 1"'Y, C4,4-i 4Aav

cl) Lv 't dtant l SC a

C/ Jtp &" OVA44<xch,4t k h ' 7X

/,A / ,,e t Ir/kI i F

17T Y lL, r r" " I__"I' __ 4d ~

tV thc 4 0I-:1 [F,1 Ccd/ ,

A?4 ~*l4r

C)

4) Re,'sut, V/2 (Tale C-2)

* C." V4*L&6tf Ad - r 3

t /< tY

4kV

kcv -e;kh r- ,

Q/01

0<

/ k

/

1,V

i

/ b a06Lkloc to i .NJ ta >> 4

t A- _ A }

-- ----

J

i77 77-4--17M7--- I

,. - r 1

,5."A AUAC~, ASn4-144

F191-1 a) Ai~~~, 04,wtca,6-,tra,,1-1 , iXA " l AL"" '

---I --- ,I pnCdU~

,411 , 4k 8Cm/i8~y

Page 29: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

30Natural Water Content WN (%)

Water Content Variation within a Varved Clay from the Connecticut Valley

Northeastern US Varved Clays

Notes:1) V1, V2, etc. refer to separate varves2) Sample from Northampton, Ma., WN = 56.7%3) Data from Ladd and Wissa (1970)

0 0

5

10

Gradual

FairlyAbrupt

}

}

}

V1

V2

V3

V4

V5

V6

V7

V8

5

Ver

tica

l D

ista

nce

(cm

)

10

40 50 60 70 80

}

Figure by MIT OCW.

Adapted from:

Page 30: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

0 0

Verti

cal S

train

εv

Log Time t

Strain vs. Log Time from Incremental Consolidometer Test Showing Effect of Load Increment Ratio (N.C. Clay)

Cα= ∆εv/∆log ttp

Type III (Small L.I.R.)

Type I (Large L.I.R.)

t

20Liquid Limit, wL %

Plas

ticity

Inde

x, P

I %

Plasticity Chart for Typical varved clays from Northeastern United States.

40

"Clay" layers

A Line

Note:Range shown for varved clays having wL >30 % for bulk material

"Silt" layers

Upper limit line

60 80 100

20

40

60

IOt

∆u = zero

Figure by MIT OCW.

Page 31: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

0.1

24

20

16

12

8

4

0

0.2

1 TSF = 95.8 kN/m2

Verti

cal S

train

εv,

%

Typical Compression Curves for Connecticut Valley Varved Clays

0.5Consolidation Stress σvc, TSF

1 2 5 10 20

Curve

24 hr. 36.2 0.11 Chicopee-

Holyoke

8 *

Incremental 50.2 0.236

CRSC61.9 0.30 Northampton

Amherst

2.5

65.4 0.25

0.20

0.192

LocationMax. Min.Type of Test WN (%) σvm TSF

A

B

C

D

CR

A

B

C

D

A B

C D

Haley & Aldrich (72)

M.I.T. Test Program

Figure by MIT OCW.

Adapted from:

Page 32: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

1r T

Ill I I

II 9

.ik lW~.~ar.-t..~!'r.,=~ .l~,.i. .L~-)- I I

.4.

+ Nr ¢o~~~r¢;H~ .or/·i " ' ' i-lI , i'"t'r---~[-4 i -;, +4 w rf t~~~~~ ;1tti-

i4W~r~o S ̂ (ij7JV _T,[- ; Le. .T I ,N,,_f_ .' i,

-;-F- 4 Ij j -1. 1 .. i..t-,.I-, t Il I., I : _ .: I . .

, j! ' r : I ,' I. ·f- --- -

; :!-_-l. ,-....-il- I-i-. :---.l~ ' . ' i· ! I....

r-i-·-.:~r-.-i-i. i, '--I-· -i-c-,-

. ' °' I |- , · I

., . ;, .J..:..._. . ..-;'-i=-L ., n

.(..1.. .J.. ' i;; . | r,

"i-. _...- .I

I ..

r

-r'l11T'' Y- -t-l-1-' -T-T-'--r. "r.. , i,-X--.;. i b 4-j - -+- .. ;i r-iim ] -- -:-i-'- '1l- "

I' iI : i ! -

-i t· '-t-i+-

-I r _-t.

-i :4i L. ri ;- i -

.IT ~~(-L_i. r4- i -i B[I r -

'

' F' 't I?., tt-4. 4- -. *- I·

-'I ii' -. 'T . ", -;..·;; ..II 1. It t: I:;_J

T__ @~-__ __ _ $ r T�ITr_.

I

Tt. . . '; ;; . .I ,,,, .. ;;. 1 ;. .

. I- ! .

.--. '4

- .- : ' . r ; ! :I r.

.1

·- - i ' '~... .. r: , _ ./OA7.- } '

it; _, I I i--.. , .. ____.

.. I t _ ....

L..... ]Z ~ ._ : _: _I: i ,.. 7- t .- Oq

_!+. I' I m . - - - ,'~~r-I- -. ., . .:1~ .-_; .

I iI

-. -, . -. -t-,- f-l- -t-' 't ' i' t

; : I. - I, ·- l.. .,,. .T,.+

-g T, II H -:· -.,t- :-tl, I - i1'r-i'.'l 'l' !'- :"i" I .... I

I -F-- I-t - !

,.... _ -

_-._,_...:- ..,;+..J.;

t-I '.r· . ..... r . ;.. r ..' , ., ...... * -- - -- --tv- +-tT- t t, 'ttttI T T - I

.F '- I ' I F !

TI-r n r i ;

I

. .. ....c.. ! . .__'1-I -7"1I .I, -7,-,--,

--;. .-.. . .

. .. . . .

..

Il :.lt.a . . .

........ I

.. o.'-- st-.--.-.--.,i.. vl.::· tt

--1 .... l~lr

. L 14i 47,

i.. i

-t !-,t i: I-;--i . c-,

. .... .-i I i I· ·e * ;.ILI L:

...... ........ I .^ . r· . ... ., I~ --4--F ,-l-r+--

........ O· ·.r-kI[-"/,,l'""i ''{

''

t ,~ii

.. .I; ~ t 'I-HH-- ,' jr"!-..... : + ',_~

:' ": , t--i-t-tt.,-..... ..

1 >4..... ..... >-

Ii I tr .:._l:_i,

'T

I I I L I...... ·r~ - .. ic- II fiQ4_

.. ........ 4. -. ..

1 .

.. .

-i . .

1-. .. :I...

T·-----

I - . ..-

+1 8

i

iII

-''-1-TT-- rrT' '·.. i . .L.l .-I -: . . L.., -:.....0- ;-- i L*_1- ---', ;

.~ ~~ ~,, I. . _-_, . .-- '- l- l I -T-1-1 ..... : I

~~~~-'~---F4-...~ .. "'"+~- - ··------------ ··· · 2-·--I r i .,O I- ,-...: "~-t.t .- . :-'r.- - ;.... O . ~' .. T,- .j

1:2 ! .*_1, _... .li

; .. .7.·

·:. .

I

''I--l-'T''_'tF+ ' , '. ."'t~F~ ' I - ' ;'.-r

1 7 I - - I - -

t+ I

. - 1 I'

I -i%1%4 4. �, .t -..._t; , iqlt-4--l.j.

4--

f-fL-_ t. n

mm H. l

r I% - r --- Y' _l I o- I . .T - , ! 14 1 - -4 -L. i- ".I lr L.

t-:t f -t -i-TSt- -'- r~- I- - .'I i. ' '-.1. --

I I t1 i_.,.__.I I l [

. _ . II I I !!!L· I T : I _l'l - t

..| , I . ,·

. .- . .

I

I

I ,-!-I .

. .-~1, t'II- -.--.

-i-r _-

! I IIl I ' I

.. ,.i..,

· · · · ·.- ·-

;·r·i·

_., .... . ......: 1 ...... ; .............

........:'. ....... .... ........ . . ..... .....

,..'. . . . ~.. . . .. ;~ . I.' i ... . , ..... !.......: ...~....:.....:FI'XFRtT6 'V/RG/): nOKPRE.55OH: kArIo RrljR$t , ----

' ' . . . . .. . . . . . . . . . . . . . . . . ~ ~ ~ ~ ~...........

J........ .. . . . . .. I... ....* *X1s ... .. . . ........ .. . ..~~ _ _ . : ..IiBl~r . -~Ln Irti. e (Q tSo-#-··85c _j - i..... [ .... :AltM .... .:CZ4Y3: 1 : : ' .* ' ' r............... ....I.. . .. ..: .. : .... .... ; ....... .... ......,: :: ::::: : ::: ::: : : : : : : . --........-'-- t ... I.....-* ;' I * *I ' @@§wi ' ...... '..'......:-.- ..:............ ................... ,,I ........ I . ... , .. ... .............. ....... .,'":, ..........!.. .... ..... i,"" . ... .'' ... .. .... .. ... ,.; .. ....... . . . .... ; . . . , , t j .it~ ~ ~ ~~ ~~: ' .. ** - I -- i i ...

/.l ALIIf&C .J.Lt LINC 10 641

i : . i

, - 7-.,. .*--4 .

".~Y~tt I---rkttflT 11(t ri t-4-. t-+-.+

; !:ll T .I.T

T- T

t-1- -1 it oT+4;T-

Ttc ttt1- t - fi T tl·__ * t-At;-'' --zr -1; 3-i4

II0

t.; (',,~,~i:2" -.-- {.' . ---, .1,i i.- -.....~~~~~..i if~ 4.-- .)iX,%je.l4, . -:f-, -. -...,t i . i

I . . .i. i I

~:-., b)-rr 'I'''''�'

I.-T~ r I '- 1 I - .- ,e'q`-·1 iI-- -1. I -i rt. t. · l ·.

"t -i r' f +t-'-Trt7 I , I,'

--. t1M. .,

i i·-l·-·i~~~~~~~~~~~~~-J· -· ---~~~~~~~~~~~~~~~i ·~~ _ I.., . I._._- - ' l .3-' ,-f .r v- --- T--r !n-T II I ' I ' I I I , I , I ' ' I ? ' : ' . . . I. ,~ ,b---i-'m' ,-. ., r .- _. _ .--- llw 0.--. * [ I 'l ll * *-ll~l *

:...S..,.L ,.;:.:.....j........... .. , ::`; .;: .40 ..:~~~~~~~~~~~~~~~~~~~~~

.·' . .... --... . .... ~o e

'' ' '

.' #oF._#

t~~~V -. 4h1 A7,~ or..r:i::l: '· i,4', uR~ W~.' ¢oVvrTER CONv.;TrT, ¢?.}::I :1........,-' .. i ...... .... i .... i ....... ... i .......

' I . .... . .... ' l i: i *Azr .o.. . ..Fbr ~~~~~fj7F~~~~Q~eA ne-Gri

I. ! . . ._. .

T -. -- ---,I- -! ' 'I *'i :~' -- Ttr

i.-:,., I

Page 33: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

0.04

Coefficient of Consolidation (Vertical Drainage)

vs. Natural Water Content for Normally Consolidated Varved Clays

30 40 50 60Natural Water Content WN, %

70 80

0.06

0.080.1

0.2

0.4

Coe

ffic

ient

of C

onso

lidat

ion

c v, f

t2 /da

y

0.6

0.81

2

4

6

810

Location*

**

**

SymbolType of Test

Amherst, MA. CRSC & Increm.

Northampton,MA.

CRSC & Increm.

E. Windsor, CT. Increm.

Jersey City, N.J. Increm.

Secaucus, N.J. * See Ladd (1975) for data sources** From square root time method

1 ft2/day = 0.093 m2/day

CRSC

New Jersey Increm. by GZA

Cv vs. WLDM-7

Figure by MIT OCW.

Page 34: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

1

2

5

10

20Case A

Case B

50

100

200

500

KcKh "Silt" Layer"Clay" Layer

Kv

KcKs hs

hcKs

2 5 10 20Ks/Kc

r k =

Kh/

Kv

Relationship Between Kh/Kv Ratio and Permeability of the Silt and Clay Layers

50 100 200 500 10001

Case A

Case B

HHKc Kc

Kshs=0.5H Ks

Figure by MIT OCW.

Page 35: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

0

t 50(2

-D)

t 50(T

erzo

ghi)

0

0.5

Christian et al. (1972)Lacasse et al. (1975)

Davis & Poulos (1972)Diffusion Theory

Biot Theory Elastic Soil

H=2Hd

Strip B

1.0

1.5

0.5 1.0H/B

(a) Effect of Lateral Drainage on Rate of Consolidation from Different Theories withIsotropic Permeabilities

1.5 2.0 2.5

}

0

t 50(2

-D)

t 50(T

erzo

ghi)

0

0.25

0.50

0.75

10 20Kh/Kv

(b) Effect of Anisotropic Permeability Ratio on Rate of Consolidation for H/B =1 with Double Drainage

30 40 50

Strip LoadH/B = 1 Double Drainage

Note:t50 = Time required for U = 50% at thecenterline of the load

Figure by MIT OCW.

Page 36: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

10 20 50 100Time (days)

Effect of Sand Drains on Rate of Consolidation of Normally Consolidated Varved Clay with ch/cv = 10

Ave

rage

Deg

ree

of C

onso

lidat

ion

Uv

and

Uh,

%

200

S = 10'

15' 20' Hd = 25' 50'

500

1yr 5yr 10yr 50yr 100yr

1000 5000 200005100

80

60

40

20

0

Vertical drainage onlyUv for cv = 0.1 ft2/day12 in. Dia. Sand Drains

1 in. = 2.54 cm1 ft. = 0.305 m1 ft2/day = 0.093m2/day

Uh for ch = 1.0 ft2/day

Figure by MIT OCW.

Page 37: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

'l

.: ,U) a:2

4IL)

an

.::0tA IZ0EI

[iD~U)

0

ID

04

wy

uy

an

¢

14

MEs

144

Xa

4

E

X

C;

o

mo '-i o% -01,rO r-I H- C~ e-

Ln 0

>1 r

§~~~~~~~~N ^ )o D CD (V _O r Hq-4 4o b o to>1 H t Ho)) En H~ H AZV .- a O

9 to rx 4i 0 oX _

4~~~O1 (V cocfl n~ 0 .-- 0 4-) hn ~ f 1 4U)~~~~~~~~~~~_ , o X X U Og U) O ) 4rU 'tI4J >1 0) 0

a) H to C *rq 4I I N I ( 443 4 to 4-4 H i 1 H ED H 44

H *A U )w *. 44 H O H N4 H 0lw >U) 0 co - ) a . -. r4- E ~ tO 0 n~.o *-~ 0) 4) 0 r n 4 0 4 N4

:~ n. c 0 0) - · 0 ( r 1 n OE , t:)F UH NW O4) E H 0

0). )c ..44 EJ *) *dN .o *d c4).N H U 00) 0 0 H 43,-- 430 43V) *- H w O 44 0

0 0 0) 0 0 ) 0 O E Cg cf Nk-4 H0 4)i * *H O E--- En P vr r-- ~ -H: 0 E r'-0) 4 1 4 , N *d (o ' 4) 'd O oHO0% 0 - . to 0 · O 4-) 0 0 H. 4 -, 5 ., 4 ). 0 .O .n- a 0 > )O E ( > -- I , r- =O En En '-, a.,-J . - >

O 44 0. 0 ~ · , ~ ·0 ( V 0 It3:U)N ) -H 0) 0) O - OO z c Z H .- Xn P

) m E 4 ) t .

0 N OnH3 O( 0 . 0 0 H N H N

40 4) 4 U C -'u) U)U) El) u U) 4-)a) ) 0) ) 0) 4) .t UO4 H 4 4 . U) 0) -

a) *- QH 4)(L) E ) 0 ) 4 :3 U W

to 4)0 4 0_ 4 3> : 04 )0 ) 4 ) 0 )40 4) -0 4) H W .E _ .j g -*HN *4 Ei 4 -00 00) 0 0) H- H O... 0 40 O ro ) 0 *HN *H ' o N z

*H 0O% *4 *HtU *H(~.H .QO 0 ) 4) En*H

0 OH 11 0 ( ) 0) OH 0 O O O 0)(. H V

co 0 r 4 04 E ro S H4) H H O H cO 4) 0 i .O N-O N* UH t o . 4 N P 4J -r P -r U p . .. *P

O N OO _ H OH 00 O H4) 4) 4 o U 4 U)0H O(d P . . UU4 0 ~ 4ON -N P N) cp t O 0 .N O N N * H N0)H N: g' '0 .. *.0:-. 0 - 0 4 > 0 H4).0 4 v Q 4- 4 A V k ... A 4) V w roO (-H O (H 0 ) (d0 (O *HH i * 0)H O - A LA 0 M O 0 3 >

_-I CY V Ln u WD .t

Table C-1

_,& Z/add/ Foof (/977)- .L -

-

Page 38: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

Cf % COY-N 0 0 N COaW -N oD 0a .z Vi u H H .

0C) o S .

° 0 ; = a h > o3H r.. _-~ H0) _4 +| C.).d 0 U) 4I *d

o 4 -o 0 tdu) NA fu l 4+, 4 M42 4o V) 0 NP4 +1 ,. ( ' 00'. * 1 + 1 + 1 ,.

+jn C co vq OV 0·

LO%>1H 4 J 4 >0>H ~ ~~*0 0, . n ·2 0 tO1> O oo o .-CO ? I- o, + 1 C ,_ + I

O -I - H r.4

o t W4o 3~ o o . .jW4 W W 2 a)._2 0 H m E4-'D f ,a r.I.'o L 4, 0., 0

>4a-' U o )0 C ~

-* Table C L-2z to k Cl 0 ao( .&J : 0c o S t0 00 c0J 0) C i ) Z E t

- 153 -

a',-I

02

0)

0[*rl

r2

Pro

Iq

Hte>4HuIn

'4

0

0to

0H

>4

I

0)14

Page 39: Sfre Lftc/ Cr Son s/4 - MIT OpenCourseWare · PDF file40 Effective stress - strain rate relations observed in the laboratory and in situ at a vertical strain of 10%. 60 80 60 70 60

CzL 3/3,/, 0/7 3/83 /, 3 2 z : Cnsold4A;4/84 ~2 3/P, PRo3LE7 SO'ILO

s5 Q'nc fZ7,rcncrs Ort 8,h/50;/5

Id , A* 6 A(/ /3)q cc, #4 --; ,w ' 3) &arrAi 5 .C(/Ss4) OqoOCJ F i2 - I 5 Cd1A/t 'V alej c'l (C/q84 ) geaaG7~ Al 7 ze, w'o/ ' sce' & ML eMCh

5) aAmfZ.~) /r T? fOIL (7 ",.u. .'# '~) A/~/) 6) (/,) ASCEGJ , 7G() 5ut C;I) ik/7·trr r fi49 (i77)1 & 70 )24 c -4-e

-3) 0de> e 2 (/9, ) /B4, CJ-, 2 - d - BR V'S AT/V 3fl3) SPT 8?o 7Ta 5n o/ /xuct rO L4q

i) hL7-f r GlG (/?6/)) 6 iK /CS-1 5 V&4/11) 6 6 73 -

.2V)rzo' Cby2 s '2 /b (/q8)), CSSu ,/Ea4 ,3- A/" SC/uf7iedc

#') 8tfUP,7z/d (/3wj ASCE JG, F/ - C4sJ c or 7

') I-add ' ACth~cw O6/) S/CJ~FE, h lV/ /2 - Cwta- AWo2) O W'lvdd. /o) 4-sc, ,7D, ;0/1 - Y

3) 41dAl (/92) X, W/el

) / 3Z hd, ar da c4 (,s7 ), J/77 9-C) 7 C 9) 0

:2) ~aw)a F;. l(/YS),e 4i, 66 - ,g,,14-o

Va rv- d C / a d d ( 487) c A/ e MI / tY VS4C6 41 V, r' edl2) Foad (/77) K - ·',t #W q7 -77-2/ oi