sg2215 exam questions.pdf

16
SG2215 Exam Questions 7. Describe the Fanno flow and how it can be calculated Fanno flow refers to an adiabatic flow through a constant area where friction is taken into consideration. The flow is assumed to be steady and onedimensional, and no mass is added within the duct. It is an irreversible process due to viscous friction changing the flow properties along the duct. This is calculated by assuming a shear stress on the wall acting on the fluid with uniform properties over any cross section of the duct. 8. How does the total temperature vary over a stationary normal shock? Explain! Stationary shock wave is when the fluid travels at the same speed of the shock but in the opposite direction. The relative velocity between the two is zero. The total temperature doesn’t change across a stationary normal shock. The shock wave does no work and there is no heat addition, therefore total enthalpy and total temperature are constant. Governing equations ! + ! ! 2 = ! + ! ! 2 ! = + ! 2 , , ! = !" !" = !" ! ! ! ! !" ! !" = ! !" !" = !" , !" = !" 9. What is the Mach Angle? The mach angle is the angle of the mach wave relative to the flow direction. This mach angle is dependent on the upstream Mach number and is independent of the gas used. = 1

Upload: stephanie-edwards

Post on 21-Apr-2017

278 views

Category:

Documents


5 download

TRANSCRIPT

SG2215  Exam  Questions  7.  Describe  the  Fanno  flow  and  how  it  can  be  calculated  Fanno  flow  refers  to  an  adiabatic  flow  through  a  constant  area  where  friction  is  taken  into  consideration.  The  flow  is  assumed  to  be  steady  and  one-­‐dimensional,  and  no  mass  is  added  within  the  duct.  It  is  an  irreversible  process  due  to  viscous  friction  changing  the  flow  properties  along  the  duct.  This  is  calculated  by  assuming  a  shear  stress  on  the  wall  acting  on  the  fluid  with  uniform  properties  over  any  cross  section  of  the  duct.    8.  How  does  the  total  temperature  vary  over  a  stationary  normal  shock?  Explain!  Stationary  shock  wave  is  when  the  fluid  travels  at  the  same  speed  of  the  shock  but  in  the  opposite  direction.  The  relative  velocity  between  the  two  is  zero.    The  total  temperature  doesn’t  change  across  a  stationary  normal  shock.  The  shock  wave  does  no  work  and  there  is  no  heat  addition,  therefore  total  enthalpy  and  total  temperature  are  constant.    Governing  equations  

ℎ! +𝑢!!

2 = ℎ! +𝑢!!

2  𝐸𝑁𝐸𝑅𝐺𝑌  

ℎ! = ℎ +𝑢!

2 , 𝑖𝑠  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  𝑎𝑐𝑟𝑜𝑠𝑠  𝑡ℎ𝑒  𝑠ℎ𝑜𝑐𝑘  

𝐶𝑎𝑙𝑜𝑟𝑖𝑐𝑎𝑙𝑙𝑦  𝑝𝑒𝑟𝑓𝑒𝑐𝑡  𝑔𝑎𝑠, 𝑐! =ℎ𝑇  

𝑇!"𝑇!"

=𝑇!"𝑇!𝑇!𝑇!𝑇!𝑇!"

 

𝑐!𝑇!" = 𝑐!𝑇!"  ℎ!" = ℎ!"  𝐹𝑜𝑟  𝑝𝑒𝑟𝑓𝑒𝑐𝑡  𝑔𝑎𝑠,𝑇!" = 𝑇!"  

 9.  What  is  the  Mach  Angle?  The  mach  angle  is  the  angle  of  the  mach  wave  relative  to  the  flow  direction.  This  mach  angle  is  dependent  on  the  upstream  Mach  number  and  is  independent  of  the  gas  used.    

𝜇 = 𝑎𝑟𝑐𝑠𝑖𝑛1𝑀  

   10.  Show  how  one  determines  the  properties  across  an  oblique  shock.  Show  that  the  velocity  component  parallel  to  the  shock  does  not  change  across  the  shock.  Use  the  shock  as  a  control  volume.  Therefore,  has  to  satisfy  continuity,  momentum  and  energy  equation.    For  steady  flow,  Continuity  

𝜌𝑉!.!

∙ 𝑑𝑆 = 0 = −𝜌!𝑢!𝐴 + 𝜌!𝑢!𝐴 → 𝜌!𝑢! = 𝜌!𝑢!  

 

 Momentum  Steady  flow  without  body  forces  

(𝜌𝑉!.!

∙ 𝑑𝑆)𝑉 = − (𝑝)𝑑𝑆!.!

 

(𝜌𝑢!.!

)𝑉𝑑𝐴 = − 𝑝𝑑𝑆!.!

 

 Tangential  component  

0 = −𝜌!𝑢!𝑤!𝐴 + 𝜌!𝑢!𝑤!𝐴  but,  𝜌!𝑢! = 𝜌!𝑢!  from  continuity  therefore,  

𝑤! = 𝑤!  and  tangential  velocity  is  constant  across  oblique  shockwave    Normal  component  

−𝜌!𝑢!!𝐴 + 𝜌!𝑢!!𝐴 = −(𝑝! − 𝑝!)𝐴 → 𝑝! + 𝜌!𝑢!! = 𝑝! + 𝜌!𝑢!!    Energy  

ℎ! +𝑉!!

2 = ℎ! +𝑉!!

2  

𝑉!! = 𝑢!! + 𝑤!!  𝑉!! = 𝑢!! + 𝑤!!  

𝑤! = 𝑤!  therefore,  

ℎ! +𝑢!!

2 = ℎ! +𝑢!!

2  𝑀!! = 𝑀!𝑠𝑖𝑛𝛽  

𝐹𝑜𝑟  𝑎  𝑐𝑎𝑙𝑜𝑟𝑖𝑐𝑎𝑙𝑙𝑦  𝑝𝑒𝑟𝑓𝑒𝑐𝑡  𝑔𝑎𝑠  𝜌!𝜌!=

(𝛾 + 1)𝑀!!!

(𝛾 − 1)𝑀!!! + 2

   

𝑝!𝑝!= 1+

2𝛾𝛾 + 1 (𝑀!!

! − 1)  

𝑀!!! =

𝑀!!! + [2/(𝛾 − 1)]

[2𝛾/(𝛾 − 1)]𝑀!!! − 1

 

𝑇!𝑇!=𝑝!𝑝!  𝜌!𝜌!  

𝑀! =𝑀!!

sin(𝛽 − 𝜗)  

Type  equation  here.  𝑁𝑜𝑡𝑒:  𝐶ℎ𝑎𝑛𝑔𝑒𝑠  𝑎𝑐𝑟𝑜𝑠𝑠  𝑛𝑜𝑟𝑚𝑎𝑙  𝑠ℎ𝑜𝑐𝑘  𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  𝑜𝑓  𝑜𝑛𝑙𝑦  𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚  𝑀𝑎𝑐ℎ  𝑛𝑢𝑚𝑏𝑒𝑟  

𝐶ℎ𝑎𝑛𝑔𝑒𝑠  𝑎𝑐𝑟𝑜𝑠𝑠  𝑜𝑏𝑙𝑖𝑞𝑢𝑒  𝑠ℎ𝑜𝑐𝑘  𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  𝑜𝑓  𝑀!  𝑎𝑛𝑑  𝛽  𝑀!  𝑐𝑎𝑛′𝑡  𝑏𝑒  𝑓𝑜𝑢𝑛𝑑  𝑢𝑛𝑡𝑖𝑙  𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛  𝑎𝑛𝑔𝑙𝑒  𝜃  𝑖𝑠  𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑  

𝐵𝑢𝑡  𝜃  𝑐𝑎𝑛  𝑏𝑒  𝑓𝑜𝑢𝑛𝑑  𝑎𝑠  𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  𝑜𝑓  𝑀  𝑎𝑛𝑑  𝛽  𝑠𝑒𝑒  𝑛𝑒𝑥𝑡  𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛  

   

11.  Describe  how  the  deflection  angle,  the  shock-­‐wave  angle  and  the  Mach  number  are  related  for  oblique,  attached  shock  waves.  What  happens  for  large  deflection  angles?  Deflection  angle,  θ  Shock  wave  angle,  β  Mach  number,  M    

tan𝜃 = 2 cot𝛽𝑀!

! sin! 𝛽 − 1𝑀!

!(𝛾 + cos 2𝛽)+ 2  

 For  a  large  deflection  angle,  the  oblique  shock  wave  is  no  longer  attached  to  the  corner  and  is  replaced  by  a  detached  bow  shock.    For  relatively  low  values  of  theta,  there  will  be  two  solutions  for  beta.  Therefore  there  are  two  possible  shock  waves.  The  shockwave  with  the  higher  beta  is  the  strong  shockwave,  while  the  lower  one  is  the  weak  shock  wave.  The  weak  shock  wave  usually  almost  always  exists  and  so  the  smallest  beta  can  usually  be  used.      12.  What  is  a  Prandtl-­‐Meyer  expansion  and  how  are  the  conditions  downstream  the  expansion  calculated?  A  Prandtl-­‐Meyer  expansion  is  when  supersonic  flow  turns  around  a  convex  corner.  This  process  is  also  isentropic.    Because  this  process  is  isentropic,  equations  can  be  used  to  determine  the  fluid  properties.    

𝑇!𝑇!=

1+ 𝛾 − 12 𝑀!!

1+ 𝛾 − 12 𝑀!!  

𝑝!𝑝!=

1+ 𝛾 − 12 𝑀!!

1+ 𝛾 − 12 𝑀!!

!!!!

 

𝜌!𝜌!=

1+ 𝛾 − 12 𝑀!!

1+ 𝛾 − 12 𝑀!!

!!!!

 

 The  mach  number  after  the  turn  M2  is  related  to  the  initial  mach  number  M1  and  the  turn  angle,  θ,  by  

𝜃 = 𝜈(𝑀!)− 𝜈(𝑀!)  v(M)  is  the  Prandtl-­‐Meyer  function.    This  number  is  defined  through  an  equation  where  you  can  then  calculate  v(M2).  From  v(M2),  M2  can  be  determined  and  thus  the  properties  of  the  fluid  downstream  can  be  calculated.    13.  What  is  wave  drag  and  how  is  it  calculated  for  a  parallelogram  without  angle  of  attack?  Wave  drag  is  a  component  of  drag  (forces  opposing  the  direction  of  motion  with  respect  to  a  surrounding  fluid)  that  is  caused  by  the  presence  of  shock  waves.  Wave  drag  is  calculated  for  a  parallelogram  without  angle  of  attack  through  the  thickness  of  the  parallelogram,  t,  and  the  pressures  along  the  parallelogram.  

𝐷 = 𝑝!𝑡 − 𝑝!𝑡 = 𝑡(𝑝! − 𝑝!)        

         P3  <  P2  P2  >  P1      

P2   P3    

23.  Under  what  conditions  is  the  following  equation  for  the  disturbance  velocity  potential  obtained?:  

(𝟏−𝑴!𝟐)𝝏𝟐𝝓𝝏𝒙𝟐 +

𝝏𝟐𝝓𝝏𝒚𝟐 +

𝝏𝟐𝝓𝝏𝒛𝟐 = 𝟎  

For  steady  flow,  the  potential  flow  theory  can  be  used  to  model  irrotational,  isentropic  flow.  For  either  subsonic  or  supersonic  (not  transonic  or  hypersonic)  flows,  at  small  angles  of  attack  and  thin  bodies,  we  can  assume  that  the  velocity  potential  is  split  into  an  undisturbed  onflow  velocity  V∞  in  the  x-­‐direction,  and  a  small  perturbation  velocity  

∇Φ = 𝑉!𝑥 + ∇𝜑  From  this  assumption,  the  linearized  small-­‐perturbation  potential  equation  –  an  approximation  to  the  full  equation  –  can  be  used.      

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦  𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛  

−2𝜙!𝜙!𝑎! 𝜙!" −

2𝜙!𝜙!𝑎! 𝜙!" −

2𝜙!𝜙!𝑎! 𝜙!" = 0  

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒  𝑡ℎ𝑖𝑠  𝑏𝑦  𝑎!  𝑎𝑛𝑑  𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔  𝑡ℎ𝑒  𝑎𝑏𝑜𝑣𝑒  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛    

𝑇𝑜𝑡𝑎𝑙  𝑒𝑛𝑡ℎ𝑎𝑙𝑝𝑦  𝑖𝑠  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑜𝑢𝑡  𝑓𝑙𝑜𝑤  

ℎ! +𝑉!!

2 = ℎ +𝑉!

2 = ℎ +(𝑉! + 𝑢′)! + 𝑣′! + 𝑤′!

2  

𝑎! = 𝑎!! −𝛾 − 12 (2𝑢′𝑉! + 𝑢′! + 𝑣′! + 𝑤′!)  

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒  𝑡ℎ𝑖𝑠  𝑖𝑛𝑡𝑜  𝑎𝑏𝑜𝑣𝑒  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛  𝑓𝑜𝑟  𝑠𝑚𝑎𝑙𝑙  𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛𝑠,  

𝑢′𝑉!,𝑣′𝑉!,𝑤′𝑉!

≪ 1  

𝑢′𝑉!

!

,𝑣′𝑉!

!

,𝑤′𝑉!

!

≪≪ 1  

𝑊𝑖𝑡ℎ  𝑡ℎ𝑖𝑠  𝑖𝑛  𝑚𝑖𝑛𝑑, 𝑡𝑒𝑟𝑚𝑠  𝑐𝑎𝑛  𝑐𝑎𝑛𝑐𝑒𝑙  𝑜𝑢𝑡  𝑎𝑠  𝑡ℎ𝑒𝑦  𝑎𝑟𝑒  𝑡𝑜𝑜  𝑠𝑚𝑎𝑙𝑙  𝑒𝑥𝑐𝑒𝑝𝑡  𝑓𝑜𝑟  𝑀!  𝑖𝑛  𝑡ℎ𝑒  𝑟𝑎𝑛𝑔𝑒  𝑜𝑓  0− 0.8  𝑎𝑛𝑑  1.2− 5  

𝑇ℎ𝑒  𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒  𝑜𝑓  𝑀!! (𝛾 + 1)

𝑢′𝑉!+⋯

∂u′∂x  

𝑖𝑠  𝑠𝑚𝑎𝑙𝑙  𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑  𝑡𝑜  𝑡ℎ𝑒  𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒  𝑜𝑓  

(1−𝑀!! )𝜕𝑢′𝜕𝑥  

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝑖𝑔𝑛𝑜𝑟𝑒  𝑡ℎ𝑒  𝑓𝑜𝑟𝑚𝑒𝑟  𝑡𝑒𝑟𝑚  𝑊𝑖𝑡ℎ  𝑡ℎ𝑒𝑠𝑒, 𝑡ℎ𝑒  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛  𝑟𝑒𝑑𝑢𝑐𝑒𝑠  𝑡𝑜  𝑡ℎ𝑒  𝑛𝑒𝑒𝑑𝑒𝑑  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛.  

 This  is  a  linearized  equation  that  can’t  be  associated  with  transonic  flow  (extreme  sensitivity  to  geometry  changes  at  sonic  conditions)  or  hypersonic  flow  (strong  shock  waves  close  to  geometric  boundaries).    24.  Derive  an  expression  for  the  linearized  pressure  coefficient  Definition  of  pressure  coefficient  for  incompressible  flow  

𝑐! =𝑝 − 𝑝!12𝜌!𝑉!

!  

When  flow  is  compressible,  more  sense  to  use  M∞  as  normalizing  parameter.  12𝜌!𝑉!

! =12𝛾𝑝!𝛾𝑝!

𝜌!𝑉!! =12 𝛾𝑝!𝑀!

!  

𝑎!! = 𝛾𝑝!𝜌!  

Therefore,  

𝑐! =𝑝 − 𝑝!12 𝛾𝑝!𝑀!

!=

2𝛾𝑀!

! (𝑝𝑝!

− 1)  

 Energy  Equation  

ℎ +𝑉!

2 = ℎ! +𝑉!!

2  ℎ = 𝑐!𝑇  𝑓𝑜𝑟  𝑐𝑎𝑙𝑜𝑟𝑖𝑐𝑎𝑙𝑙𝑦  𝑝𝑒𝑟𝑓𝑒𝑐𝑡  𝑔𝑎𝑠  

𝑇 +𝑉!

2𝐶!= 𝑇! +

𝑉!!

2𝐶!  

𝑇 − 𝑇! =12𝐶!

(𝑉!! − 𝑉!)  

𝑇𝑇!

= 1+1

2𝐶!𝑇!(𝑉!! − 𝑉!) = 1+

𝛾𝑅2𝐶!𝑎!!

(𝑉!! − 𝑉!)  

𝛾𝑅𝐶!

=𝐶!𝐶!(𝐶! − 𝐶!)

𝐶!= 𝛾 − 1  

𝑇𝑇!

= 1+𝛾 − 12𝑎!!

(𝑉!! − 𝑉!)  

𝑇𝑇!

= 1−𝛾 − 12𝑎!!

(𝑉! − 𝑉!!)  

𝑠𝑖𝑛𝑐𝑒,𝑉! = (𝑉! + 𝑢′)! + 𝑣′! + 𝑤′!  𝑇𝑇!

= 1−𝛾 − 12𝑎!!

(2𝑢′𝑉! + 𝑢′! + 𝑣′! + 𝑤′!)  

 𝐼𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐  𝐹𝑙𝑜𝑤  𝑝𝑝!

=𝑇𝑇!

!!!!

 

𝑝𝑝!

= 1−𝛾 − 12𝑎!!

𝑀!! (2𝑢′𝑉!

+𝑢′! + 𝑣′! + 𝑤′!

𝑉!)

!!!!

 

𝑆𝑚𝑎𝑙𝑙  𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛𝑠  𝑠𝑜  𝑖𝑡  𝑟𝑒𝑑𝑢𝑐𝑒𝑠  𝑡𝑜  𝑝𝑝!

= 1− (𝛾 − 1)𝑢!!𝑢𝑢!

!!!!

 

which  is  of  the  form,  (1− 𝜀)! = 1+ 𝑛𝜀 +⋯  expanded  using  binomial  theorem.  Therefore,  

𝑝𝑝!

= 1−𝛾2𝑀!

! (2𝑢′𝑉!

+𝑢′! + 𝑣′! + 𝑤′!

𝑉!)+⋯  

𝐶! =2

𝛾𝑀!! 1−

𝛾2𝑀!

! (2𝑢′𝑉!

+𝑢′! + 𝑣′! + 𝑤′!

𝑉!)+⋯− 1  

= −2𝑢′𝑉!

−𝑢′! + 𝑣′! + 𝑤′!

𝑉!+⋯ = −

2𝑢′𝑉!  

 25.  Show  how  the  Prandtl-­‐Glauert  rule  is  derived.  What  does  it  mean?  Prandtl-­‐Glauert  rule  allows  for  solving  of  compressible  flow  problems  through  the  use  of  incompressible  flow  calculation  methods.  Valid  for  2D  subsonic  flow  over  thin  aerofoil.    From  Boundary  Conditions  

𝑑𝑓𝑑𝑥 =

𝑣′𝑉! + 𝑢′

= 𝑡𝑎𝑛𝜃  

𝐹𝑜𝑟  𝑠𝑚𝑎𝑙𝑙  𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛𝑠,𝑢′ ≪ 𝑉!  𝑎𝑛𝑑  𝑡𝑎𝑛𝜃 = 𝜃  𝑑𝑓𝑑𝑥 =

𝑣′𝑉!

= 𝜃  

𝑣′ =𝜕𝜃𝜕𝑦  

𝜕𝜃𝜕𝑦 = 𝑉!

𝑑𝑓𝑑𝑥  

𝑇ℎ𝑖𝑠  𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠  𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  𝑎𝑡  𝑡ℎ𝑒  𝑠𝑢𝑟𝑓𝑎𝑐𝑒  𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡  𝑤𝑖𝑡ℎ  𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑  𝑡ℎ𝑒𝑜𝑟𝑦  

 𝐿𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑  𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛  𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦  𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙  𝑒𝑞. 𝑠𝑢𝑏𝑠𝑜𝑛𝑖𝑐  

𝛽!𝜙!! + 𝜙!! = 0  𝛽 = 1−𝑀!

!    

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚  𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒  𝑠𝑦𝑠𝑡𝑒𝑚  𝜉 = 𝑥  𝜂 = 𝛽𝑦  

𝜙(𝜉, 𝜂) = 𝛽𝜙(𝑥,𝑦)  𝑁𝑜𝑡𝑒  

𝜕𝜉𝜕𝑥 = 1        

𝜕𝜉𝜕𝑦 = 0        

𝜕𝜂𝜕𝑥 = 0        

𝜕𝜂𝜕𝑦 = 𝛽  

𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠  𝑜𝑓  𝜙(𝑥,𝑦)  𝑎𝑟𝑒  𝑟𝑒𝑙𝑎𝑡𝑒𝑑  𝑡𝑜  𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠  𝑜𝑓  𝜙(𝜉, 𝜂)    

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔  𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑒𝑠  𝑖𝑛𝑡𝑜  𝐿𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑  𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛  𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦  𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙  𝑒𝑞.  

𝛽!(1𝛽𝜙!!)+ 𝛽𝜙!! = 0  

𝜙!! + 𝜙!! = 0  𝑇ℎ𝑖𝑠  𝑖𝑠  𝐿𝑎𝑝𝑙𝑎𝑐𝑒′𝑠  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛,𝑤ℎ𝑖𝑐ℎ  𝑔𝑜𝑣𝑒𝑟𝑛𝑠  𝑖𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑏𝑙𝑒  𝑓𝑙𝑜𝑤  𝜙  𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠  𝑖𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑏𝑙𝑒  𝑓𝑙𝑜𝑤  𝑖𝑛  (𝜉, 𝜂),𝑤ℎ𝑖𝑐ℎ  𝑖𝑠  𝑟𝑒𝑙𝑎𝑡𝑒𝑑  

𝑡𝑜  𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑏𝑙𝑒  𝑓𝑙𝑜𝑤  𝜙  𝑖𝑛  (𝑥,𝑦)    

𝑆ℎ𝑎𝑝𝑒  𝑜𝑓  𝑎𝑖𝑟𝑓𝑜𝑖𝑙  

𝑉!𝑑𝑓𝑑𝑥 =

𝜕𝜙𝜕𝑦 =

1𝛽𝜕𝜙𝜕𝑦 =

𝜕𝜙𝜕𝜂  

𝑉!𝑑𝑞𝑑𝜉 =

𝜕𝜙𝜕𝜂  

𝑑𝑓𝑑𝑥 =

𝑑𝑞𝑑𝜉  

𝑇ℎ𝑖𝑠  𝑖𝑠  𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡  𝑎𝑠  𝑖𝑡  𝑑𝑒𝑚𝑜𝑛𝑠𝑡𝑟𝑎𝑡𝑒𝑠  𝑡ℎ𝑒  𝑠ℎ𝑎𝑝𝑒  𝑜𝑓  𝑡ℎ𝑒  𝑎𝑖𝑟𝑓𝑜𝑖𝑙  𝑖𝑠  𝑡ℎ𝑒  𝑠𝑎𝑚𝑒  𝑖𝑛  𝑏𝑜𝑡ℎ  𝑠𝑝𝑎𝑐𝑒𝑠  

𝐶! = −2𝑢′𝑉!

= −2𝑉!𝜕𝜙𝜕𝑥 = −

2𝑉!1𝛽𝜕𝜙𝜕𝑥 = −

2𝑉!1𝛽𝜕𝜙𝜕𝜉  

𝐶! =1𝛽 (−

2𝑢𝑉!)  

𝐶!" = −2𝑢𝑉!  

𝐶! =𝐶!"1−𝑀!

!  

   26.  Show,  using  the  linearized  theory,  how  the  position  of  a  streamline  above  an  airfoil  changes  as  the  Mach  number  (<1)  is  increased?    27.  Show  how  the  pressure  coefficient  for  linearized  supersonic  flow  is  derived.  How  do  shock  waves  influence  the  solutions?  For  the  derivation  you  can  assume  that  the  expression  cp=-­‐2u/u∞    

𝐿𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑  𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 − 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦  𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛  𝑓𝑜𝑟  2𝐷  𝑓𝑙𝑜𝑤  𝐹𝑜𝑟  𝑠𝑢𝑝𝑒𝑟𝑠𝑜𝑛𝑖𝑐  𝑓𝑙𝑜𝑤  𝜆!𝜙!! − 𝜙!! = 0  

𝑤ℎ𝑒𝑟𝑒  𝜆 = 𝑀!! − 1  

𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙  𝑤𝑎𝑣𝑒  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛  𝑖𝑛  𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛  𝑤𝑖𝑡ℎ  𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐  𝑡ℎ𝑒𝑜𝑟𝑦  𝜙 = 𝑓(𝑥 − 𝜆𝑦)+ 𝑔(𝑥 + 𝜆𝑦)  

𝑙𝑒𝑡  𝑔 = 0  𝜙 = 𝑓(𝑥 − 𝜆𝑦)  

𝑢′ =𝜕𝜙𝜕𝑥 = 𝑓′  

𝑣′ =𝜕𝜙𝜕𝑦 = −𝜆𝑓′  

𝑢′ = −𝑣′𝜆  

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦  𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛:  𝑑𝑦𝑑𝑥 =

𝑣′𝑉! + 𝑢′

= 𝑡𝑎𝑛𝜃  

𝑓𝑜𝑟  𝑠𝑚𝑎𝑙𝑙  𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛𝑠  𝑢′ ≪ 𝑉!  𝑎𝑛𝑑  𝑡𝑎𝑛𝜃 ≈ 𝜃  𝑣′ = 𝑉!𝜃  

→ 𝑢′ = −𝑉!𝜃𝜆  

𝐶! = −2𝑢′𝑉!

=2𝜃𝜆  

𝑜𝑟  𝐶! =2𝜃

𝑀!! − 1

 

 28.  What  is  meant  by  the  critical  Mach  number  for  an  airfoil?  

The  critical  Mach  number  for  an  airfoil  is  the  lowest  Mach  number  at  which  the  airflow  over  some  point  of  the  aircraft  reaches  the  speed  of  sound.  A  thicker  airfoil  would  have  a  lower  critical  Mach  number  because  a  thicker  wing  accelerates  the  airflow  to  a  faster  speed  than  a  thinner  airfoil.      OR    Critical  Mach  number  is  the  free  stream  Mach  number  at  which  sonic  flow  is  first  encountered  on  the  airfoil.  This  would  happen  at  the  minimum  pressure  point  on  the  airfoil.      29.  Consider  subsonic  flow  with  the  Mach  number  M∞  over  a  wavy  wall  described  by  yw=hcos(2*pi*x/l),  where  yw  is  the  ordinate  of  the  wall,  h  is  the  amplitude  and  l  is  the  wave  length.  The  amplitude  h  can  be  assumed  to  be  small  as  compared  to  the  wavelength  l.  Using  linearized  theory,  derive  the  surface  pressure  coefficient  (cpw).  

(1−𝑀!!)𝜙!! + 𝜙!! = 0  

𝜙(𝑥,𝑦) = 𝐹(𝑥).𝐺(𝑥)  

(1−𝑀!! )𝑑!𝐹𝑑𝑥! 𝐺 + 𝐹

𝑑!𝐺𝑑𝑦! = 0  

1𝐹𝑑!𝐹𝑑𝑥! = −

1(1−𝑀!

! )1𝐺𝑑!𝐺𝑑𝑦!  

 LHS  is  only  function  of  x,  RHS  is  only  function  of  y    

1𝐹𝑑!𝐹𝑑𝑥! = 𝑐𝑜𝑛𝑠𝑡   =  −𝑘! = −

1(1−𝑀!

! )1𝐺𝑑!𝐺𝑑𝑦!  

𝑑!𝐹𝑑𝑥! + 𝐹𝑘

! = 0 → 𝐹 = 𝐵! sin(𝑘𝑥)+ 𝐵! cos(𝑘𝑥)  𝑑!𝐺𝑑𝑦! − 𝑘

!(1−𝑀!!)𝐺 = 0  

𝐺 = 𝐴!𝑒!! !!!!!! + 𝐴!𝑒

!! !!!!!!  second  term  zero  as  disturbance  should  go  to  zero  as  y  approaches  infinity  

𝜙 = 𝐹 ∙ 𝐺 = 𝑒!! !!!!!(𝐶! sin 𝑘𝑥 + 𝐶! cos 𝑘𝑥)  Cn=AnBn  and  C2=AnB2    Boundary  conditions  at  the  wall  

𝑑𝑦!𝑑𝑥 tan𝜃 =

𝑣(𝑥,𝑦!)𝑢! + 𝑢(𝑥,𝑦!)

≈𝑣𝑢!  

𝑣(𝑙,𝑦!) = 𝑣(𝑥, 0)+ 𝑦!𝑑𝑢𝑑𝑦 |!!! +⋯ ≈ 𝑣(𝑥, 0)  

𝑑𝑦!𝑑𝑥 =

𝑣(𝑥, 0)𝑢!

 

𝑦! = ℎ cos2𝜋𝑥𝑙 →

𝑑𝑦!𝑑𝑥 = −ℎ

2𝜋𝑙 sin

2𝜋𝑥𝑙  

𝑣 = 𝜙! = −𝑘 1−𝑀!! 𝑒!! !!!!! !(𝐶! sin 𝑘𝑥 + 𝐶! cos 𝑘𝑥)  

2𝜋ℎ𝑙 sin

2𝜋𝑥𝑙 = −

𝑘𝑢!

1−𝑀!! (𝐶! sin 𝑘𝑥 + 𝐶! cos 𝑘𝑥)  

C2  =  0,  k  =  2*pi/l  2𝜋ℎ𝑙 = −

𝑘𝑢!

1−𝑀!! ∙ 𝐶!  

𝐶! =2𝜋ℎ𝑙

𝑢!2𝜋/𝑙

11−𝑀!

!=

ℎ𝑢!1−𝑀!

!  

𝜙 =ℎ𝑢!1−𝑀!

!𝑒!!! !!!!!

!! sin

2𝜋𝑥𝑙  

𝑢 = 𝜙! =2𝜋𝑢!1−𝑀!

!

ℎ𝑙 𝑒

!!! !!!!!!! cos

2𝜋𝑥𝑙  

𝑣 = 𝜙! = −2𝜋𝑢!ℎ𝑙 𝑒

!!! !!!!!!! sin

2𝜋𝑥𝑙  

𝐶! =−2𝑢𝑢!

= −4𝜋

1−𝑀!!

ℎ𝑙 𝑒

!!! !!!!!!! cos

2𝜋𝑥𝑙  

𝐶!(𝑦 = 0) = −4𝜋

1−𝑀!!

ℎ𝑙 cos

2𝜋𝑥𝑙  

       

30.  Consider  the  same  wall  as  in  the  previous  problem.  Derive  the  surface  pressure  coefficient  for  the  case  of  supersonic  flow  over  the  wavy  wall.  

(𝑀!! − 1)𝜙!! − 𝜙!! = 0  

𝜙(𝑥,𝑦) = 𝑓(𝑥 − 𝑀!! − 1𝑦)+ 𝑔(𝑥 + 𝑀!

! − 1𝑦)  No  disturbances  from  infinity  Boundary  Conditions  

𝑑𝑦!𝑑𝑥 = tan𝜃 =

𝑣𝑢! + 𝑢

→𝑑𝑦!𝑑𝑥 =

𝑣(𝑥, 0)𝑢!

=𝜙!(𝑥, 0)𝑢!

 

𝜕𝜙𝜕𝑦 = 𝜙! = − 𝑀!

! − 1𝑓′  

𝜙 = 𝑓(𝜉)  𝑤𝑖𝑡ℎ  𝜉 = 𝑥 − 𝑀!! − 1𝑦  

→ 𝜙! =𝜕𝜉𝜕𝑦𝑑𝑓𝑑𝜉  

−2𝜋ℎ𝑙 sin

2𝜋𝑥𝑙 =

1𝑢!

(− 𝑀!! − 1)𝑓′(𝑥)|!!!  

→ 𝑓′(𝑥) = 2𝜋ℎ𝑙

𝑢!𝑀!! − 1

sin(2𝜋𝑥𝑙 )  

→ 𝑓(𝑥) = −𝑙2𝜋

2𝜋ℎ𝑙

𝑢!𝑀!! − 1

cos(2𝜋𝑥𝑙 ) = −

ℎ𝑢!𝑀!! − 1

cos 2𝜋𝑥𝑙  

𝜙(𝑥,𝑦) = −ℎ𝑢!𝑀!! − 1

cos(2𝜋𝑙 (𝑥 − 𝑀!

! − 1𝑦))  

𝐶! = −2𝑢𝑢!

= −4𝜋ℎ𝑙

1𝑀!! − 1

sin(2𝜋𝑙 (𝑥 − 𝑀!

! − 1𝑦))  

𝐶!(𝑦 = 0) = −4𝜋ℎ𝑙

1𝑀!! − 1

sin(2𝜋𝑥𝑙 )  

 31.  What  is  the  difference  between  transonic  flow  over  an  airfoil  as  compared  to  subsonic  and  supersonic  flow  respectively?  With  transonic  flow,  the  shockwave  can  appear  at  any  point  along  the  airfoil.  For  lower  mach  numbers  M≈0.79,  the  shockwave  appears  just  downstream  of  the  leading  edge.  This  shockwave  then  gets  terminated  by  a  nearly  normal  shockwave  as  the  measured  pressure  coefficient  drops  to  a  value  below  the  critical  pressure  coefficient  behind  the  shock.  The  flow  over  the  bottom  of  the  airfoil  also  doesn’t  have  shockwaves  and  is  completely  subsonic.  As  mach  number  increases,  the  shockwave  moves  further  along  the  airfoil  and  shockwaves  may  start  to  appear  on  the  bottom  side  of  the  airfoil  –  but  further  downstream  of  the  airfoil.    Because  of  the  shockwave  being  terminated  along  the  airfoil,  the  shock  wave/boundary  layer  interaction  appears.  The  pressure  increases  almost  discontinuously  across  the  shock  wave.  This  represents  an  extremely  large  adverse  pressure  gradient  (flow  moving  from  lower  pressure  to  higher  pressure).  Boundary  layers  separate  from  the  surface  in  regions  of  adverse  pressure  gradients.  When  the  shock  wave  impinges  on  the  surface,  the  boundary  layer  encounters  an  extremely  large  adverse  pressure  gradient  and  it  will  almost  always  separate.  Along  with  the  total  pressure  losses  caused  by  shockwaves,  the  

shock-­‐induced  separated  flows  create  large  drag  forces.  This  is  the  drag-­‐divergence  phenomenon  that  is  always  associated  with  flight  in  transonic  regime.      

   32.  What  is  meant  by  the  area-­‐rule  for  transonic  flow?  The  objective  of  the  area  rule  is  to  reduce  drag  in  the  transonic  regime.  The  area  rule  is  a  simple  statement  that  the  cross-­‐sectional  area  of  the  body  should  have  a  smooth  variation  with  longitudinal  distance  along  the  body  –  no  rapid  or  discontinuous  changes  in  the  cross-­‐sectional  area  distribution.  For  example,  on  a  conventional  wing-­‐body,  where  the  wings  are,  will  be  a  sudden  increase  in  cross-­‐sectional  area.  The  area  rule  says  that  to  compensate  for  this,  the  point  where  the  wings  attach  to  the  body,  the  body  cross-­‐sectional  area  at  that  point  should  

be  reduced,  to  produce  a  bottle  shape  and  reduce  the  overall  cross-­‐sectional  area  of  the  body.    

 Supercritical  airfoil  is  shaped  somewhat  flat  on  the  top  surface  in  order  to  reduce  the  local  Mach  number  inside  the  supersonic  region  below  what  it  would  be  for  a  conventional  airfoil.  Therefore,  the  shockwave  strength  is  lower,  boundary  layer  effects  are  less  severe  and  the  free-­‐stream  Mach  number  can  be  higher  before  drag-­‐divergence  phenomenon  sets  in.      33.  Show  how  the  transonic  similarity  equation  is  derived.  What  is  the  transonic  similarity  parameter?  How  does  the  pressure  coefficient  vary  with  the  thickness  of  the  profile  in  the  transonic  flow  regime?  

𝐼𝑛𝑣𝑖𝑠𝑐𝑖𝑑  𝑡𝑟𝑎𝑛𝑠𝑜𝑛𝑖𝑐  𝑓𝑙𝑜𝑤𝑠  𝑔𝑜𝑣𝑒𝑟𝑛𝑒𝑑  𝑏𝑦  𝑝𝑎𝑟𝑡𝑖𝑎𝑙  𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠  𝑜𝑟  𝐸𝑢𝑙𝑒𝑟  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠  

𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦:      𝜕𝜌𝜕𝑡 + ∇ ∙ (𝜌𝑽) = 0  

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚:          𝜌𝐷𝑽𝐷𝑡 = −∇𝑝  

𝐸𝑛𝑒𝑟𝑔𝑦:  𝜌𝐷ℎ!𝐷𝑡 =

𝜕𝑝𝜕𝑡  

𝑇ℎ𝑒𝑠𝑒  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠  𝑤𝑒  𝑎𝑠𝑠𝑢𝑚𝑒  𝑖𝑛𝑣𝑖𝑠𝑐𝑖𝑑,𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐  𝑓𝑙𝑜𝑤  𝑤𝑖𝑡ℎ  𝑛𝑜  𝑏𝑜𝑑𝑦  𝑓𝑜𝑟𝑐𝑒𝑠  𝐸𝑛𝑡𝑟𝑜𝑝𝑦  𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠  𝑎𝑟𝑒  𝑝𝑟𝑒𝑠𝑒𝑛𝑡  𝑖𝑛  𝑡𝑟𝑎𝑛𝑠𝑜𝑛𝑖𝑐  𝑓𝑙𝑜𝑤𝑠  𝑑𝑢𝑒  𝑡𝑜  𝑠ℎ𝑜𝑐𝑘𝑤𝑎𝑣𝑒𝑠  𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝑡ℎ𝑒𝑠𝑒  𝑓𝑙𝑜𝑤𝑠  𝑎𝑟𝑒  𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙  𝑎𝑠  𝑑𝑒𝑚𝑜𝑛𝑠𝑡𝑟𝑎𝑡𝑒𝑑  𝑏𝑦  𝐶𝑟𝑜𝑐𝑐𝑜′𝑠  

𝑡ℎ𝑒𝑜𝑟𝑒𝑚.    

𝐻𝑜𝑤𝑒𝑣𝑒𝑟,𝑎𝑟𝑒  𝑠ℎ𝑜𝑐𝑘  𝑤𝑎𝑣𝑒𝑠  𝑤𝑒𝑎𝑘  𝑒𝑛𝑜𝑢𝑔ℎ  𝑡𝑜  𝑛𝑒𝑔𝑙𝑒𝑐𝑡  𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛  𝑜𝑓  𝑓𝑙𝑜𝑤?  𝐶ℎ𝑒𝑐𝑘  𝑒𝑛𝑡𝑟𝑜𝑝𝑦  𝑐ℎ𝑎𝑛𝑔𝑒  𝑎𝑐𝑟𝑜𝑠𝑠  𝑠ℎ𝑜𝑐𝑘  𝑤𝑎𝑣𝑒  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛  

𝑊𝑖𝑙𝑙  𝑟𝑒𝑎𝑐ℎ  𝑠! − 𝑠!𝑅 ≈

2𝛾3(𝛾 + 1)! (𝑀!

! − 1)!  

𝑆ℎ𝑜𝑤𝑠  𝑡ℎ𝑎𝑡  𝑖𝑓  𝑀!! − 1 ≪ 1, 𝑡ℎ𝑒𝑛  𝑒𝑛𝑡𝑟𝑜𝑝𝑦  𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒  𝑎𝑐𝑟𝑜𝑠𝑠  𝑠ℎ𝑜𝑐𝑘  𝑖𝑠  𝑣𝑒𝑟𝑦  𝑠𝑚𝑎𝑙𝑙  

𝐹𝑜𝑟  𝑡𝑟𝑎𝑛𝑠𝑜𝑛𝑖𝑐  𝑓𝑙𝑜𝑤  𝑤𝑖𝑡ℎ  𝑙𝑜𝑤𝑒𝑟  𝑀𝑎𝑐ℎ  𝑛𝑢𝑚𝑏𝑒𝑟𝑠,𝑤𝑒  𝑐𝑎𝑛  𝑎𝑠𝑠𝑢𝑚𝑒  𝑡ℎ𝑎𝑡  𝑡ℎ𝑒  𝑓𝑙𝑜𝑤  𝑖𝑠  𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙𝑙𝑦  𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐  𝑎𝑛𝑑  𝑖𝑟𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙.𝐻𝑜𝑤𝑒𝑣𝑒𝑟, 𝑓𝑜𝑟  

𝑀𝑎𝑐ℎ  𝑛𝑢𝑚𝑏𝑒𝑟𝑠  𝑖𝑛  𝑡ℎ𝑒  ℎ𝑖𝑔ℎ  𝑒𝑛𝑑  𝑜𝑓  𝑡ℎ𝑒  𝑡𝑟𝑎𝑛𝑠𝑜𝑛𝑖𝑐  𝑟𝑎𝑛𝑔𝑒, 𝑒𝑛𝑡𝑟𝑜𝑝𝑦  𝑐ℎ𝑎𝑛𝑔𝑒𝑠  𝑚𝑎𝑦  𝑏𝑒  𝑡𝑜𝑜  𝑙𝑎𝑟𝑔𝑒  𝑡𝑜  𝑖𝑔𝑛𝑜𝑟𝑒.  

𝐼𝑓  𝑡𝑟𝑎𝑛𝑠𝑜𝑛𝑖𝑐  𝑓𝑙𝑜𝑤  𝑖𝑠  𝑖𝑟𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙  (𝑏𝑎𝑠𝑒𝑑  𝑜𝑛  𝑣𝑒𝑟𝑦  𝑠𝑚𝑎𝑙𝑙  𝑒𝑛𝑡𝑟𝑜𝑝𝑦  𝑐ℎ𝑎𝑛𝑔𝑒𝑠)  𝑡ℎ𝑒𝑛  𝑎  𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦  𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙  𝜙  𝑐𝑎𝑛  𝑏𝑒  𝑑𝑒𝑓𝑖𝑛𝑒𝑑  𝑠𝑢𝑐ℎ  𝑡ℎ𝑎𝑡  

𝑽 = ∇𝜙  𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦  𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠  𝑐𝑎𝑛  𝑡ℎ𝑒𝑛  𝑏𝑒  𝑢𝑠𝑒𝑑.𝐴𝑠  𝑤𝑒  𝑎𝑠𝑠𝑢𝑚𝑒  𝑓𝑙𝑜𝑤  𝑖𝑠  𝑖𝑟𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙  𝑎𝑛𝑑  𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐. 𝐼𝑓  𝑤𝑒  𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟  𝑓𝑙𝑜𝑤  𝑜𝑣𝑒𝑟  𝑎  𝑠𝑙𝑒𝑛𝑑𝑒𝑟  𝑏𝑜𝑑𝑦  

𝑎𝑛𝑑  𝑠𝑚𝑎𝑙𝑙  𝑎𝑛𝑔𝑙𝑒  𝑜𝑓  𝑎𝑡𝑡𝑎𝑐𝑘,𝑤𝑒  𝑎𝑠𝑠𝑢𝑚𝑒  𝑠𝑚𝑎𝑙𝑙  𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛𝑠.  𝑇ℎ𝑖𝑠  𝑙𝑒𝑎𝑑𝑠  𝑡𝑜  𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛  𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦  𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙  𝜙 = 𝑉!𝑥 + 𝜙  

 𝑊𝑖𝑡ℎ  𝑡ℎ𝑖𝑠,𝑤𝑒  𝑟𝑒𝑎𝑐ℎ  𝑡𝑟𝑎𝑛𝑠𝑜𝑛𝑖𝑐  𝑠𝑚𝑎𝑙𝑙 − 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛  

(1−𝑀!!)𝜕!𝜙𝜕𝑥! +

𝜕!𝜙𝜕𝑦! +

𝜕!𝜙𝜕𝑧! = 𝑀!

![(𝛾 + 1)𝜙!𝑉!]𝜙!!    

𝑁𝑜𝑛  𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙𝑖𝑧𝑒  𝑡ℎ𝑖𝑠  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛  𝑤𝑖𝑡ℎ  𝑠𝑙𝑒𝑛𝑑𝑒𝑟𝑛𝑒𝑠𝑠  𝑟𝑎𝑡𝑖𝑜    𝜏 = 𝑏/𝑐  

𝑏  𝑖𝑠  𝑚𝑎𝑥𝑖𝑚𝑢𝑚  𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠, 𝑐  𝑖𝑠  𝑙𝑒𝑛𝑔𝑡ℎ  𝑜𝑓  𝑏𝑜𝑑𝑦  𝑠𝑙𝑒𝑛𝑑𝑒𝑟𝑛𝑒𝑠𝑠  𝑟𝑎𝑡𝑖𝑜  𝑤𝑖𝑙𝑙  𝑏𝑒  𝑠𝑚𝑎𝑙𝑙  𝑓𝑜𝑟  𝑠𝑚𝑎𝑙𝑙  𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛𝑠  

𝑊𝑖𝑡ℎ  𝑛𝑜𝑛  𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙𝑖𝑧𝑖𝑛𝑔,𝑤𝑒  𝑜𝑏𝑡𝑎𝑖𝑛  (1−𝑀!

! )𝜏!/! −𝑀!

! (𝛾 + 1)𝜙! 𝜙!! + 𝜙!! + 𝜙!! = 0  

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠  𝑤𝑖𝑡ℎ  𝑙𝑖𝑛𝑒  𝑎𝑏𝑜𝑣𝑒  𝑎𝑟𝑒  𝑛𝑜𝑛  𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙  𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠    

𝐷𝑒𝑓𝑖𝑛𝑒  𝑡𝑟𝑎𝑛𝑠𝑜𝑛𝑖𝑐  𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦  𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟  𝐾  𝑎𝑠  

𝐾 =(1−𝑀!

! )𝜏!/!  

𝐾 −𝑀!! (𝛾 + 1)𝜙! 𝜙!! + 𝜙!! + 𝜙!! = 0  

𝐴𝑠𝑠𝑢𝑚𝑖𝑛𝑔  𝑀𝑎𝑐ℎ  𝑛𝑢𝑚𝑏𝑒𝑟𝑠  𝑎𝑟𝑒  𝑛𝑒𝑎𝑟  𝑢𝑛𝑖𝑡𝑦  𝑓𝑜𝑟  𝑡𝑟𝑎𝑛𝑠𝑜𝑛𝑖𝑐  𝑓𝑙𝑜𝑤  𝑅𝑒𝑝𝑙𝑎𝑐𝑒  𝑀!  𝑤𝑖𝑡ℎ  𝑢𝑛𝑖𝑡𝑦, 𝑜𝑏𝑡𝑎𝑖𝑛𝑖𝑛𝑔  𝐾 − (𝛾 + 1)𝜙! 𝜙!! + 𝜙!! + 𝜙!! = 0  

 𝑊𝑖𝑡ℎ  𝑡𝑤𝑜  𝑓𝑙𝑜𝑤𝑠  𝑎𝑡  𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡  𝑀!  𝑜𝑣𝑒𝑟  𝑎  𝑏𝑜𝑑𝑦  𝑤𝑖𝑡ℎ  𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡  𝜏  

𝑏𝑢𝑡  𝑠𝑎𝑚𝑒  𝐾, 𝑡ℎ𝑒𝑛  𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  𝑓𝑜𝑟  𝑏𝑜𝑡ℎ  𝑓𝑙𝑜𝑤𝑠  𝑖𝑠  𝑡ℎ𝑒  𝑠𝑎𝑚𝑒  𝐴𝑙𝑠𝑜, 𝑡ℎ𝑒  𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒  𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠  𝑎𝑟𝑒  𝑟𝑒𝑙𝑎𝑡𝑒𝑑  𝑠𝑢𝑐ℎ  𝑡ℎ𝑎𝑡  

𝐶!𝜏!/! = −2𝜙! = 𝑓(𝐾, 𝑥,𝑦, 𝑧)  𝑎𝑛𝑑  𝑡ℎ𝑒𝑦  𝑤𝑖𝑙𝑙  𝑏𝑒  𝑡ℎ𝑒  𝑠𝑎𝑚𝑒.  

 𝑆𝑡𝑒𝑝𝑠  

1.𝐸𝑢𝑙𝑒𝑟  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠  −  𝑒𝑥𝑎𝑐𝑡  𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠  2.𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛  (𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦  𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙)  −  𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛  𝑤𝑒  𝑎𝑠𝑠𝑢𝑚𝑒  𝑠ℎ𝑜𝑐𝑘  𝑤𝑎𝑣𝑒  𝑖𝑠  𝑤𝑒𝑎𝑘  𝑒𝑛𝑜𝑢𝑔ℎ  𝑡𝑜  𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟  𝑓𝑙𝑜𝑤  𝑎𝑠  

𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐  𝑎𝑛𝑑  𝑖𝑟𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙  3. 𝑆𝑚𝑎𝑙𝑙 − 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛  𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛  −  𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛  

𝑔𝑜𝑜𝑑  𝑜𝑛𝑙𝑦  𝑓𝑜𝑟  𝑓𝑙𝑜𝑤𝑠  𝑜𝑣𝑒𝑟  𝑠𝑙𝑒𝑛𝑑𝑒𝑟  𝑏𝑜𝑑𝑖𝑒𝑠  𝑎𝑡  𝑠𝑚𝑎𝑙𝑙  𝑎𝑛𝑔𝑙𝑒𝑠  𝑜𝑓  𝑎𝑡𝑡𝑎𝑐𝑘    

𝑊𝑖𝑡ℎ  𝑎𝑙𝑙  𝑡ℎ𝑒𝑠𝑒  𝑣𝑎𝑙𝑖𝑑, 𝑡ℎ𝑒𝑛  𝑡𝑟𝑎𝑛𝑠𝑜𝑛𝑖𝑐  𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦  ℎ𝑜𝑙𝑑𝑠    34.  Give  some  examples  of  physical  effects  that  appear  in  hypersonic  flows.  Sketch  the  specific  heat,  cv,  versus  the  temperature  for  atomic  and  diatomic  gases.