shaking entanglement · c. simon, r. sorkin, l. smolin, and d. r. terno, fundamental quantum optics...

1
S HAKING ENTANGLEMENT T ELEPORTATION IN M OTION Nicolai Friis University of Nottingham, School of Mathematical Sciences, Nottingham, UK R ELATIVISTIC Q UANTUM I NFORMATION (RQI) RQI aims to investigate the relationship of quantum information and relativity: Overlap of quantum information, quantum field theory, quantum optics, special- & general relativity Identify physical systems to store, process and transmit quantum information in relativistic settings Effects of gravity and motion on quantum information: Unruh-Hawking- & dynamical Casimir effect M OTIVATION ( SEE R EFS . [1, 8]) Experiments are reaching regimes where relativistic effects are non-negligible, e.g., quantum communication between moving satellites: need toy models & table top setups to inform future space-based experiments. N ON - UNIFORM CAVITY MOTION ( SEE R EFS . [2, 3, 4, 5]) Φ n a b x ct Φ n Φ m ~ Α mn Β mn a b x ct Φ n Η=Η 1 Φ m ~ Α mn Β mn Α * nm nm G n HΗ 1 L a b x ct Fig.1(a): Inertial cavity of width δ = b - a Fig.1(b): Sudden acceleration at t =0, cavity rigid Fig.1(c): Finite duration: modes pick up phases G n Real scalar field: φ = n (φ n a n + φ * n a n ) Rindler coordinates: ct = χ sinh η , x = χ cosh η Inverse transformation: A -1 (α, β )= A(α * , -β ) Klein-Gordon Equation: (μ μ + m 2 ) φ(x)=0 Rindler quantization: φ = n ( ˜ φ n ˜ a n + ˜ φ * n ˜ a n ) Compose transformation A -1 (α, β )G(η )A(α, β ) Dirichlet boundaries: φ(t, a)= φ(t, b)=0 Bogoliubov transformation: φ n = m (α * mn ˜ φ m - β mn ˜ φ * m ) , α mn =( ˜ φ m n ), β mn = -( ˜ φ m * n ) F OCK STATE PROCEDURE (i) Select in-region state: ρ (ii) Transform to out-region: ρ ˜ ρ Vacuum: | 0 i = exp ( 1 2 p,q V pq ˜ a p ˜ a q ) ˜ 0 where V = -β * α -1 Fock states: act on | 0 i with creation operators a n = m α * mn ˜ a m + β mn ˜ a m (iii) Trace out inaccessible modes (iv) Study entanglement properties G AUSSIAN STATES CONTINUOUS VARIABLES (CV) ( SEE R EF . [6]) Covariance matrix: Γ ij = X i X j + X j X i ρ - 2 X i ρ X j ρ Quadratures: X (2n-1) = 1 2 (a n + a n ) , X (2n) = -i 2 (a n - a n ) Bogoliubov transformation symplectic transformation S ˜ Γ= S Γ S T Γ= C 11 C 12 C 13 ... C 21 C 22 C 23 ... C 31 C 32 C 33 ... . . . . . . . . . . . . ˜ Γ= ˜ C 11 ˜ C 12 ˜ C 13 ... ˜ C 21 ˜ C 22 ˜ C 23 ... ˜ C 31 ˜ C 32 ˜ C 33 ... . . . . . . . . . . . . S = M 11 M 12 M 13 ... M 21 M 22 M 23 ... M 31 M 32 M 33 ... . . . . . . . . . . . . M mn = Re α mn - β mn -i(α mn + β mn ) i(α mn - β mn ) α mn + β mn ! where ˜ C mn = i,j M mi C ij M T nj Trace out/remove inaccessible modes study entanglement between remaining modes T ELEPORTATION IN M OTION ( SEE R EF . [7]) Alice wants to teleport a coherent state — standard CV protocol: (i) Resource: two-mode squeezing r : modes k (Alice) & k 0 (Rob) (ii) Alice’s Bell measurement: double homodyne detection (iii) Results: sent to Rob classically to retrieve teleported state Fidelity of teleportation degraded by Rob’s motion: Coefficients: α mn = α (0) mn + α (1) mn h + O (h 2 ), β mn = β (1) mn h + O (h 2 ) h := δ ˙ v c 2 , with ˙ v ... acceleration at center of cavity Fidelity optimized over local Gaussian operations: ˜ F opt compensate phases from time evolution ˜ F opt = ˜ F (0) opt - ˜ F (2) opt h 2 + O (h 4 ) ˜ F (0) opt = ( 1+ e -2r ) -1 , ˜ F (2) opt = ˜ F (0) opt 1 2 n6=k 0 |β (1) nk 0 | 2 + |α (1) nk 0 | 2 Tanh(2r ) S IMULATION ( SEE R EF . [7, 8]) L eff L 0 d Ht L - d Ht L + 1 - dim transmission line for microwave radiation terminated by superconducting circuits (SQUIDs) simulate boundary conditions for a cavity of effective length L eff = L 0 + d + (t)+ d - (t). Predicted degradation of optimal teleportation fidelity for realistic parameters: 4% of ˜ F (0) opt . R EFERENCES [1] D. Rideout, T. Jennewein, G. Amelino-Camelia, T. F. Demarie, B. L. Higgins, A. Kempf, A. Kent, R. Laflamme, X. Ma, R. B. Mann, E. Martín-Martínez, N. C. Menicucci, J. Moffat, C. Simon, R. Sorkin, L. Smolin, and D. R. Terno, Fundamental quantum optics experiments conceivable with satellites – reaching relativistic distances and velocities, Class. Quantum Grav. 29, 224011 (2012), Focus Issue on ‘Relativistic Quantum Information’. [2] D. E. Bruschi, I. Fuentes & J. Louko, Voyage to Alpha Centauri: Entanglement degradation of cavity modes due to motion, Phys. Rev. D 85, 061701(R) (2012). [3] N. Friis, A. R. Lee, D. E. Bruschi & J. Louko, Kinematic entanglement degradation of fermionic cavity modes, Phys. Rev. D 85, 025012 (2012). [4] N. Friis, D. E. Bruschi, J. Louko & I. Fuentes, Motion generates entanglement, Phys. Rev. D 85, 081701(R) (2012). [5] N. Friis, M. Huber, I. Fuentes & D. E. Bruschi, Quantum gates and multipartite entanglement resonances realized by non-uniform cavity motion, Phys. Rev. D 86, 105003 (2012). [6] N. Friis & I. Fuentes, Entanglement generation in relativistic quantum fields, J. Mod. Opt. 60, 22 (2013). [7] N. Friis, A. R. Lee, K. Truong, C. Sabín, E. Solano, G. Johansson & I. Fuentes, Relativistic Quantum Teleportation with Superconducting Circuits, Phys. Rev. Lett. 110, 113602 (2013). [8] C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori & P. Delsing, Observation of the dynamical Casimir effect in a superconducting circuit, Nature 479, 376 (2011).

Upload: others

Post on 30-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • SHAKING ENTANGLEMENTTELEPORTATION IN MOTION

    Nicolai FriisUniversity of Nottingham, School of Mathematical Sciences, Nottingham, UK

    RELATIVISTIC QUANTUM INFORMATION (RQI)RQI aims to investigate the relationship of quantum information and relativity:

    Overlap of quantum information, quantum field theory, quantum optics, special- & general relativity

    Identify physical systems to store, process and transmit quantum information in relativistic settings

    Effects of gravity and motion on quantum information: Unruh-Hawking- & dynamical Casimir effect

    MOTIVATION (SEE REFS. [1, 8])Experiments are reaching regimes where relativistic

    effects are non-negligible, e.g., quantum communication

    between moving satellites: need toy models & table top

    setups to inform future space-based experiments.

    NON-UNIFORM CAVITY MOTION (SEE REFS. [2, 3, 4, 5])

    Φn

    a bx

    ct

    Φn

    Φm~

    Α mn

    Β mna b

    x

    ct

    Φn

    Η = Η1Φm~

    Α mn

    Β mn

    Α*nm

    -Β nm

    GnHΗ1L

    a bx

    ct

    Fig.1(a): Inertial cavity of width δ = b− a Fig.1(b): Sudden acceleration at t = 0, cavity rigid Fig.1(c): Finite duration: modes pick up phases Gn

    Real scalar field: φ =∑n

    (φn an + φ∗n a†n) Rindler coordinates: ct = χ sinh η , x = χ cosh η Inverse transformation: A−1(α, β) = A(α∗,−β)

    Klein-Gordon Equation: (∂µ∂µ + m2)φ(x) = 0 Rindler quantization: φ =∑n

    (φ̃n ãn + φ̃∗n ã†n) Compose transformation A−1(α, β)G(η)A(α, β)

    Dirichlet boundaries: φ(t,a) = φ(t,b) = 0 Bogoliubov transformation: φn =∑m

    (α∗mn φ̃m − βmn φ̃∗m) , αmn = (φ̃m, φn), βmn = −(φ̃m, φ∗n)

    FOCK STATE PROCEDURE(i) Select in-region state: ρ

    (ii) Transform to out-region: ρ→ ρ̃

    Vacuum: | 0 〉 = exp(

    12

    ∑p,q

    Vpq ã†p ã†q

    ) ∣∣ 0̃ 〉where V = −β∗α−1

    Fock states: act on | 0 〉with creation operators

    a†n =∑m

    (α∗mn ã

    †m + βmn ãm

    )(iii) Trace out inaccessible modes

    (iv) Study entanglement properties

    GAUSSIAN STATES — CONTINUOUS VARIABLES (CV) (SEE REF. [6])Covariance matrix: Γij =

    〈XiXj + XjXi

    〉ρ− 2〈Xi〉ρ

    〈Xj〉ρ

    Quadratures: X(2n−1) = 1√2 (an + a†n) , X(2n) = −i√2 (an − a

    †n)

    Bogoliubov transformation→ symplectic transformation S

    Γ̃ = S ΓST

    Γ =

    C11 C12 C13 . . .C21 C22 C23 . . .C31 C32 C33 . . .

    ......

    .... . .

    → Γ̃ =C̃11 C̃12 C̃13 . . .

    C̃21 C̃22 C̃23 . . .

    C̃31 C̃32 C̃33 . . ....

    ......

    . . .

    S =

    M11 M12 M13 . . .M21 M22 M23 . . .M31 M32 M33 . . .

    ......

    .... . .

    Mmn = Re(

    αmn − βmn −i(αmn + βmn)

    i(αmn − βmn) αmn + βmn

    )

    where C̃mn =∑i,jMmiCijMTnj

    Trace out/remove inaccessible modes⇒ study entanglement between remaining modes

    TELEPORTATION IN MOTION (SEE REF. [7])Alice wants to teleport a coherent state — standard CV protocol:

    (i) Resource: two-mode squeezing r: modes k (Alice) & k′ (Rob)

    (ii) Alice’s Bell measurement: double homodyne detection

    (iii) Results: sent to Rob classically to retrieve teleported state

    Fidelity of teleportation degraded by Rob’s motion:

    Coefficients: αmn = α(0)mn + α

    (1)mn h +O(h

    2), βmn = β(1)mn h +O(h

    2)

    h := δv̇c2

    , with v̇ . . . acceleration at center of cavity

    Fidelity optimized over local Gaussian operations: F̃optcompensate phases from time evolution ⇒ F̃opt = F̃ (0)opt − F̃

    (2)

    opt h2 +O(h4)

    F̃ (0)opt =(1 + e−2r

    )−1, F̃ (2)opt = F̃

    (0)

    opt12

    ∑n 6=k′

    (|β (1)nk′ |

    2 + |α (1)nk′ |

    2 Tanh(2r))

    SIMULATION (SEE REF. [7, 8])

    Leff

    L 0 d HtL-d HtL+

    1− dim transmission line for microwave radiationterminated by superconducting circuits (SQUIDs)

    ⇒ simulate boundary conditions for a cavity ofeffective length Leff = L0 + d+(t) + d−(t).

    Predicted degradation of optimal teleportationfidelity for realistic parameters: ≈ 4 % of F̃ (0)opt.

    REFERENCES[1] D. Rideout, T. Jennewein, G. Amelino-Camelia, T. F. Demarie, B. L. Higgins, A. Kempf, A. Kent, R. Laflamme, X. Ma, R. B. Mann, E. Martín-Martínez, N. C. Menicucci, J. Moffat,

    C. Simon, R. Sorkin, L. Smolin, and D. R. Terno, Fundamental quantum optics experiments conceivable with satellites – reaching relativistic distances and velocities, Class. QuantumGrav. 29, 224011 (2012), Focus Issue on ‘Relativistic Quantum Information’.

    [2] D. E. Bruschi, I. Fuentes & J. Louko, Voyage to Alpha Centauri: Entanglement degradation of cavity modes due to motion, Phys. Rev. D 85, 061701(R) (2012).[3] N. Friis, A. R. Lee, D. E. Bruschi & J. Louko, Kinematic entanglement degradation of fermionic cavity modes, Phys. Rev. D 85, 025012 (2012).[4] N. Friis, D. E. Bruschi, J. Louko & I. Fuentes, Motion generates entanglement, Phys. Rev. D 85, 081701(R) (2012).[5] N. Friis, M. Huber, I. Fuentes & D. E. Bruschi, Quantum gates and multipartite entanglement resonances realized by non-uniform cavity motion, Phys. Rev. D 86, 105003 (2012).[6] N. Friis & I. Fuentes, Entanglement generation in relativistic quantum fields, J. Mod. Opt. 60, 22 (2013).[7] N. Friis, A. R. Lee, K. Truong, C. Sabín, E. Solano, G. Johansson & I. Fuentes, Relativistic Quantum Teleportation with Superconducting Circuits, Phys. Rev. Lett. 110, 113602 (2013).[8] C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori & P. Delsing, Observation of the dynamical Casimir effect in a superconducting circuit,

    Nature 479, 376 (2011).