shankar quantum mechanics solution

Upload: ignaz96

Post on 06-Jul-2018

1.210 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/18/2019 Shankar Quantum Mechanics Solution

    1/327

    SOLUTION MANUAL

    COMPILED BY YEMI BUKKY+234(0)8057474928; +234(0)8064974071

    [email protected]

    Department of Physics,

    Federal University of Technology,

    Minna, NG

    Nigeria

    mailto:[email protected]:[email protected]:[email protected]

  • 8/18/2019 Shankar Quantum Mechanics Solution

    2/327

    PRINCIPLES OF QUANTUM

    MECHANICS

    BY R. SHANKAR

    SECOND EDITION

    SOLUTIONSCOMPILED BY YEMI BUKKY (  [email protected])

    Department of Physics,

    Federal University of Technology, Minna, NG

    Nigeria

    +2348057474928

    1

    mailto:[email protected]:[email protected]:[email protected]

  • 8/18/2019 Shankar Quantum Mechanics Solution

    3/327

    2

  • 8/18/2019 Shankar Quantum Mechanics Solution

    4/327

    3

  • 8/18/2019 Shankar Quantum Mechanics Solution

    5/327

    4

  • 8/18/2019 Shankar Quantum Mechanics Solution

    6/327

    5

  • 8/18/2019 Shankar Quantum Mechanics Solution

    7/327

    6

  • 8/18/2019 Shankar Quantum Mechanics Solution

    8/327

    7

  • 8/18/2019 Shankar Quantum Mechanics Solution

    9/327

    8

  • 8/18/2019 Shankar Quantum Mechanics Solution

    10/327

    9

  • 8/18/2019 Shankar Quantum Mechanics Solution

    11/327

    10

  • 8/18/2019 Shankar Quantum Mechanics Solution

    12/327

    11

  • 8/18/2019 Shankar Quantum Mechanics Solution

    13/327

    12

  • 8/18/2019 Shankar Quantum Mechanics Solution

    14/327

    13

  • 8/18/2019 Shankar Quantum Mechanics Solution

    15/327

    14

  • 8/18/2019 Shankar Quantum Mechanics Solution

    16/327

    15

  • 8/18/2019 Shankar Quantum Mechanics Solution

    17/327

    16

  • 8/18/2019 Shankar Quantum Mechanics Solution

    18/327

    17

  • 8/18/2019 Shankar Quantum Mechanics Solution

    19/327

    18

  • 8/18/2019 Shankar Quantum Mechanics Solution

    20/327

    19

  • 8/18/2019 Shankar Quantum Mechanics Solution

    21/327

    20

  • 8/18/2019 Shankar Quantum Mechanics Solution

    22/327

    21

  • 8/18/2019 Shankar Quantum Mechanics Solution

    23/327

    22

  • 8/18/2019 Shankar Quantum Mechanics Solution

    24/327

    23

  • 8/18/2019 Shankar Quantum Mechanics Solution

    25/327

    24

  • 8/18/2019 Shankar Quantum Mechanics Solution

    26/327

    25

  • 8/18/2019 Shankar Quantum Mechanics Solution

    27/327

    26

  • 8/18/2019 Shankar Quantum Mechanics Solution

    28/327

    27

  • 8/18/2019 Shankar Quantum Mechanics Solution

    29/327

    28

  • 8/18/2019 Shankar Quantum Mechanics Solution

    30/327

    29

  • 8/18/2019 Shankar Quantum Mechanics Solution

    31/327

    30

  • 8/18/2019 Shankar Quantum Mechanics Solution

    32/327

    31

  • 8/18/2019 Shankar Quantum Mechanics Solution

    33/327

    32

  • 8/18/2019 Shankar Quantum Mechanics Solution

    34/327

    33

  • 8/18/2019 Shankar Quantum Mechanics Solution

    35/327

    Physics 710-712 due October 30, 2009

    Problem Set 4

    Problem 1:   Do exercise 2.5.3 of the text.Solution:   The problem asks us to get the equations of motion using the Hamiltonian method

    for the system shown in Figure 1.5 (p. 46) of the text. Using   x1   and   x2   shown there as

    the generalized coordinates, the kinetic energy and potential energy are

    T   =  m

    2 ẋ21

     + m

    2 ẋ22

    , V    =  k

    2x21

     + k

    2(x1 − x2)

    2 + k

    2x22

    ,

    so the Lagrangian is   L =  T  − V    and thus the generalized momenta are

     p1   =  ∂ L

    ∂  ẋ1=

      ∂T 

    ∂  ẋ1= mẋ1,   ⇒   ẋ1  =

      p1

    m,

     p2   =  ∂ L

    ∂  ẋ2=

      ∂T 

    ∂  ẋ2= mẋ2,   ⇒   ẋ2  =

      p2

    m,

    so the Hamiltonian is

    H =  T  + V    =  p2

    1

    2m +

      p22

    2m +

     k

    2x21 +

     k

    2(x1 − x2)

    2 + k

    2x22

    ,

    and Hamilton’s equations are

    ẋ1   =  ∂ H

    ∂p1=

      p1

    m,   ˙ p1   =   −

    ∂ H

    ∂x1= −2kx1 + kx2,

    ẋ2   =  ∂ H

    ∂p2=

      p2

    m,   ˙ p2   =   −

    ∂ H

    ∂x2= −2kx2 + kx1.

    Problem 2:   Do exercise 2.7.2 of the text.Solution:   (i):

    {q i, q j}   :=k

    ∂q i

    ∂q k·

    ∂q j

    ∂pk−

      ∂q i

    ∂pk·

    ∂q j

    ∂q k

    =k

    ∂q i

    ∂q k·0 − 0·

    ∂q j

    ∂q k

    = 0

    { pi, pj}   :=k

    ∂pi

    ∂q k·

    ∂pj

    ∂pk−

      ∂pi

    ∂pk·

    ∂pj

    ∂q k

    =k

    ∂pj

    ∂pk−

      ∂pi

    ∂pk·0

    = 0

    {q i, pj}   :=k

    ∂q i

    ∂q k·

    ∂pj

    ∂pk−

      ∂q i

    ∂pk·

    ∂pj

    ∂q k

    =k

    (δ ikδ jk − 0·0) =  δ ij,

    and

    {q i,H}   :=k

    ∂q i∂q k ·

    ∂ H

    ∂pk −

      ∂q i

    ∂pk ·

    ∂ H

    ∂q k

    =k

    δ ik·

    ∂ H

    ∂pk − 0·

    ∂ H

    ∂q k

    =

      ∂ H

    ∂pi = q̇ i,

    { pi,H}   :=k

    ∂pi

    ∂q k·

    ∂ H

    ∂pk−

      ∂pi

    ∂pk·

    ∂ H

    ∂q k

    =k

    ∂ H

    ∂pk− δ ik·

    ∂ H

    ∂q k

    = −

    ∂ H

    ∂q i= ˙ pi,

    where in the last steps I used Hamilton’s equations.

    (ii): The Hamiltonian given is   H =  p2x + p2

    y +  ax2 + by2. If   a =  b,   H   has a

    34

  • 8/18/2019 Shankar Quantum Mechanics Solution

    36/327

    symmetry under simultaneous rotations in the   x-y   and   px- py   planes, under which   z   (the

    generator) is conserved. Therefore   {z,H} = 0.

    We check this as follows:

    {z,H} =k

    ∂z

    ∂q k·

    ∂ H

    ∂pk−

      ∂z

    ∂pk·

    ∂ H

    ∂q k

    =

      ∂z

    ∂x·

    ∂ H

    ∂px+

     ∂z

    ∂y ·

    ∂ H

    ∂py−

      ∂z

    ∂px·

    ∂ H

    ∂x −

      ∂z

    ∂py·

    ∂ H

    ∂y .

    But

    ∂ H

    ∂pk= 2 pk,

      ∂ H

    ∂xk=

    ∂ H

    ∂x  ,

      ∂ H

    ∂y

    = (2ax ,   2by) ,

    ∂z

    ∂pk=

      ∂ (xpy − ypx)

    ∂pk=

    ∂z

    ∂px,

      ∂z

    ∂py

    = (−y , x) ,

      ∂z

    ∂q k=

    ∂z

    ∂x  ,

      ∂z

    ∂y

    = ( py   ,   − px) ,

    so

    {z   ,   H} =  py·2 px + (− px)·2 py − (−y)·2ax − x·2by = 2xy(a − b)

    which vanishes if   a =  b.

    Problem 3:   Do exercise 2.8.1 of the text.Solution:   Since   g =  p1 + p2, it generates the infinitesimal transformations

    δx1   = + ∂ g

    ∂p1= +, δp1  =  −

      ∂g

    ∂x1= 0,

    δx2   = + ∂ g

    ∂p2= +, δp2  =  −

      ∂g

    ∂x2= 0.

    So, to order   , these give the canonical transformations   xi  →  x̄i(xj , pj)   and   pi →  ¯ pi(xj , pj)

    with

    x̄1   =   x1 + ,   ¯ p1  =  p1,

    x̄2   =   x2 + ,   ¯ p2  =  p2,

    which is precisely a spatial translation of the whole system by an amount   .

    35

  • 8/18/2019 Shankar Quantum Mechanics Solution

    37/327

    36

  • 8/18/2019 Shankar Quantum Mechanics Solution

    38/327

    37

  • 8/18/2019 Shankar Quantum Mechanics Solution

    39/327

    38

  • 8/18/2019 Shankar Quantum Mechanics Solution

    40/327

    39

  • 8/18/2019 Shankar Quantum Mechanics Solution

    41/327

    40

  • 8/18/2019 Shankar Quantum Mechanics Solution

    42/327

    41

  • 8/18/2019 Shankar Quantum Mechanics Solution

    43/327

    42

  • 8/18/2019 Shankar Quantum Mechanics Solution

    44/327

    43

  • 8/18/2019 Shankar Quantum Mechanics Solution

    45/327

    44

  • 8/18/2019 Shankar Quantum Mechanics Solution

    46/327

    45

  • 8/18/2019 Shankar Quantum Mechanics Solution

    47/327

    46

  • 8/18/2019 Shankar Quantum Mechanics Solution

    48/327

    47

  • 8/18/2019 Shankar Quantum Mechanics Solution

    49/327

    48

  • 8/18/2019 Shankar Quantum Mechanics Solution

    50/327

    49

  • 8/18/2019 Shankar Quantum Mechanics Solution

    51/327

    50

  • 8/18/2019 Shankar Quantum Mechanics Solution

    52/327

    51

  • 8/18/2019 Shankar Quantum Mechanics Solution

    53/327

    Physics 710-711-712 November 16, 2009Problem Set 5

    Problem 1:   Do exercise 4.2.1 of the text.

    (1)

    Solution:   The possible outcomes are   Lz  = {1, 0, −1}, which are the eigenvalues of   Lz.(2)

    Solution:   Lz|ψ = 1 · |ψ   implies

    |ψ =10

    0

    .

    (Note that I have normalized |ψ!) Then

    Lx   =   ψ|Lx|ψ =

    1 0 0

      1√ 2

    0 1 01 0 10 1 0

    100

     =   1√ 2

    1 0 0

    010

     = 0.

    L2x   =   ψ|L2x|ψ =

    1 0 0 1

    2

    0 1 01 0 1

    0 1 0

    0 1 01 0 1

    0 1 0

    10

    0

     =  1

    2

    0 1 0

    010

     =  1

    2.

    ∆Lx   =

     L2x − Lx2 =

     1

    2

    − 02 =   1√ 

    2.

    (3)

    Solution:   The characteristic equation for   Lx   is

    0 = det(Lx − λ) = det

    −λ   1√ 2

      01√ 2

      −λ   1√ 2

    0   1√ 2

      −λ

    = λ − λ3,   ⇒   λ ∈ {1, 0, −1}.

    The corresponding eigenvectors, |λ, then satisfy

    0 = (Lx − λ)|λ =

    −λ   1√ 2

      01√ 2

      −λ   1√ 2

    0   1√ 2

      −λ

    ab

    c

     =

    −λa +   b√ 2

    a√ 2 − λb +   c√ 

    2b√ 2 − λa

    where we have parameterized the components of |λ   by   (a b c). For   λ = 1, we can solvefor   b   and   c   in terms of   a, giving   b = √ 2a   and   c =  a. We then determine   a   by normalizing|λ = 1:

    |λ = 1 = a√ 2a

    a

    ,   ⇒   1 = λ = 1|λ = 1 = a∗ √ 2a∗   a∗

    a√ 2a

    a

     = 4|a|2,   ⇒   a =  1

    2

    52

  • 8/18/2019 Shankar Quantum Mechanics Solution

    54/327

    (where I have chosen the arbitrary phase to be 1). Thus, and doing the same thing for

    λ = 0   and   λ = −1, gives

    |λ = 1 =  12

    1√ 

    2

    1

    ,   |λ = 0 =   1√ 

    2

    1

    0

    −1

    ,   |λ = −1 =  1

    2

    1

    −√ 21

    .

    (4)

    Solution:   The possible outcomes are   Lx   = {1, 0, −1}, which are the eigenvalues of   Lx.|ψ   is the normalized eigenstate of   Lz   with eigenvalue   Lz  = −1, which is

    |ψ =00

    1

    .

    So (here P   stands for "probability of"):

    P (Lx = 1) =   |λ = 1|ψ|2

    =

    1

    2

    1 √ 2 10

    01

    2

    =

     1

    4 ,

    P (Lx = 0) =   |λ = 0|ψ|2 =

    1

    2

    1 0   −1

    00

    1

    2

    = 1

    2,

    P (Lx = −1) =   |λ = −1|ψ|2 =

    1

    2

    1   −√ 2 1

    00

    1

    2

    = 1

    4.

    (5)

    Solution:

    L2z  =

    1 0

    1

    ,   ⇒   the possible outcomes are   L2z  = {0, 1}.

    An eigenbasis of the   L2z  = 1   eigenspace is {|a, |b}   with

    |a =10

    0

    ,   |b =

    00

    1

    .

    Therefore, upon measuring   L2z  = 1, the state collapses to

    |ψ −→ |ψ =  (

    |a

    a|

    +|b

    b|)|ψ|(|aa| + |bb|)|ψ| .

    But

    [|aa| + |bb|] |ψ =10

    0

    1 0 0+

    00

    1

    0 0 1

    1

    2

    11√ 

    2

     =

    10

    0

    1

    2+

    00

    1

    1√ 

    2=

     1

    2

    10√ 

    2

    ,

    53

  • 8/18/2019 Shankar Quantum Mechanics Solution

    55/327

    has norm    12

    1 0

    √ 2 1

    2

    10√ 

    2

     =

    √ 3

    2  ,

    so

    |ψ =   1√ 3/2

    12 10√ 

    2

     =   1√ 3

    10√ 2

    .The probability of   L2z  = +1   is

    P (L2z  = 1) =   ψ| (|aa| + |bb|) |ψ = |a|ψ|2 + |b|ψ|2

    =

    1

    2

    1 0 0

    11√ 2

    2

    +

    1

    2

    0 0 1

    11√ 2

    2

    = 1

    4 +

     1

    2 =

     3

    4.

    If we measured   Lz   the posible outcomes are the eigenvalues   Lz, {0, ±1}, with probabilities

    P (Lz  = 1) = 1 0 0 |ψ

    2

    = 1

    √ 3 1 0 01

    0

    √ 22

    = 1

    3

    .

    P (Lz  = 0) =0 1 0 |ψ2 =

    1√ 

    3

    0 1 0

    10√ 2

    2

    = 0.

    P (Lz  = −1) =0 0 1 |ψ2 =

    1√ 

    3

    0 0 1

    10√ 2

    2

    = 2

    3.

    (6)

    Solution:   In the   Lz   eigenbasis

    |Lz  = 1 =10

    0

    ,   |Lz  = 0 = 010

    ,   |Lz  = −1 = 001

    ,write the unknown state as

    |ψ =ab

    c

    .

    Then

    P (Lz  = 1) = 14

      =   |Lz  = 1|ψ|2 =

    1 0 0

    abc

    2

    = |a|2,

    P (Lz  = 1) = 12

      =   |Lz  = 0|ψ|2 =

    0 1 0ab

    c

    2

    = |b|2,

    P (Lz  = 1) = 14

      =   |Lz  = −1|ψ|2 =

    0 0 1ab

    c

    2

    = |c|2.

    54

  • 8/18/2019 Shankar Quantum Mechanics Solution

    56/327

    The most general solution to these three equations is then

    a = 1

    2eiδ1 , b =

      1√ 2

    eiδ2 , c = 1

    2eiδ3 ,

    for some arbitrary phases   δ i, which gives the desired answer.

    The  δ i

      phase factors are   not   irrelevant. For example

    P (Lx = 0) =   |λ = 0|ψ|2 =

    1√ 2

    1 0   −1 1

    2

    eiδ1√ 2eiδ2

    eiδ3

    2

    =

    eiδ12√ 2 −   eiδ3

    2√ 

    2

    2

    =  1

    8

    eiδ1 − eiδ3 e−iδ1 − e−iδ3 =  1

    8

    1 − ei(δ3−δ1) − e−i(δ3−δ1) + 1

    =

      1

    4 (1 − cos(δ 3 − δ 1)) ,

    so something measurable (a probability) depends on the difference of the phases.

    Problem 2:   Do exercise 4.2.2 of the text.

    Solution:

    P    =   ψ|P |ψ =  ∞−∞

    dxψ|xx|P |ψ

    =

      ∞−∞

    dx ψ∗(x)

    −i  d

    dx

    ψ(x) = −i 

      ∞−∞

    dx ψ(x)dψ(x)

    dx

    =   − i 2

      ∞−∞

    dx  d

    dx

    ψ(x)2

     = −i 

    2  ψ2

    ∞−∞ = 0

    if   ψ → 0   as |x| → ∞.Alternatively, use the   k-basis:

    P  = ψ|P |ψ =   ∞

    −∞dkψ|kk|P |ψ =   ∞

    −∞dk  k ψ|kk|ψ =   ∞

    −∞dk  k ψ∗(k)ψ(k).

    But

    ψ(k) = k|ψ =  ∞−∞

    dx k|xx|ψ =   1√ 2π

      ∞−∞

    dx eikxψ(x),

    therefore

    ψ(−k) =   1√ 2π

      ∞−∞

    dx e−ikxψ(x) =  ψ∗(k)

    since   ψ(x)   is real. So

    P  =  ∞−∞

    dk  kψ∗(k)ψ(k) =

      ∞−∞

    dk  kψ(−k)ψ(k).

    and under the change of variables   k → −k, this becomes

    P  =  ∞−∞

    dk  (−k)ψ(k)ψ(−k) = −P ,

    and so P  = 0.

    55

  • 8/18/2019 Shankar Quantum Mechanics Solution

    57/327

    Problem 3:   Do exercise 2.4.3 of the text.Solution:

    eip0x/ψP eip0x/ψ   =   ∞

    −∞dx eip0x/ψ|xx|P 

    eip0x/ψ =   ∞−∞

    dx

    eip0x/ψ(x)∗

    (−i )  ddx

    eip0x/ψ(x)

    =   −i   ∞

    −∞dx ψ∗(x)e−ip0x/ ip0

       e

    ip0x/

    ψ(x) + e

    ip0x/dψ

    dx

    =

      ∞−∞

    dx ψ∗(x) p0 ψ(x) − i   ∞−∞

    dx ψ∗(x)dψ

    dx

    =   p0

      ∞−∞

    dx ψ|xx|ψ

    +

      ∞−∞

    dx ψ|xx|P |ψ

     =  p0ψ|ψ + ψ|P |ψ =  p0 + P .

    56

  • 8/18/2019 Shankar Quantum Mechanics Solution

    58/327

    57

  • 8/18/2019 Shankar Quantum Mechanics Solution

    59/327

    58

  • 8/18/2019 Shankar Quantum Mechanics Solution

    60/327

    59

  • 8/18/2019 Shankar Quantum Mechanics Solution

    61/327

    60

  • 8/18/2019 Shankar Quantum Mechanics Solution

    62/327

    61

  • 8/18/2019 Shankar Quantum Mechanics Solution

    63/327

    62

  • 8/18/2019 Shankar Quantum Mechanics Solution

    64/327

    63

  • 8/18/2019 Shankar Quantum Mechanics Solution

    65/327

    64

  • 8/18/2019 Shankar Quantum Mechanics Solution

    66/327

    65

  • 8/18/2019 Shankar Quantum Mechanics Solution

    67/327

  • 8/18/2019 Shankar Quantum Mechanics Solution

    68/327

    67

  • 8/18/2019 Shankar Quantum Mechanics Solution

    69/327

    68

  • 8/18/2019 Shankar Quantum Mechanics Solution

    70/327

    69

  • 8/18/2019 Shankar Quantum Mechanics Solution

    71/327

    70

  • 8/18/2019 Shankar Quantum Mechanics Solution

    72/327

    71

  • 8/18/2019 Shankar Quantum Mechanics Solution

    73/327

    72

  • 8/18/2019 Shankar Quantum Mechanics Solution

    74/327

    73

  • 8/18/2019 Shankar Quantum Mechanics Solution

    75/327

    74

  • 8/18/2019 Shankar Quantum Mechanics Solution

    76/327

    75

  • 8/18/2019 Shankar Quantum Mechanics Solution

    77/327

    76

  • 8/18/2019 Shankar Quantum Mechanics Solution

    78/327

    77

  • 8/18/2019 Shankar Quantum Mechanics Solution

    79/327

    78

  • 8/18/2019 Shankar Quantum Mechanics Solution

    80/327

    79

  • 8/18/2019 Shankar Quantum Mechanics Solution

    81/327

    80

  • 8/18/2019 Shankar Quantum Mechanics Solution

    82/327

    81

  • 8/18/2019 Shankar Quantum Mechanics Solution

    83/327

    Problem 2

    In[3]:=   Psi@x_, t_D  := HPi H∆ ^ 2 + hbar^ 2 t^ 2 ê H m ^ 2 ∆^ 2LLL ^H−1 ê 2LExp@H−Hx − H p0 ê m L tL ^ 2L ê H∆^ 2 + hbar^ 2 t^ 2 ê H m ^ 2 ∆^ 2LLD;

    PlotAEvaluate@Table@Psi@x, tD ê. 8 p0 →  1,  ∆ →  1, hbar →  1, m  →  1

  • 8/18/2019 Shankar Quantum Mechanics Solution

    84/327

    Physics 710-711-712 December 4, 2009Problem Set 7

    Problem 1:  Exercise 5.3.1

    The Hamiltonian isH  =

      12m

    P 2 + V r(X )− iV iwhere V r  is a real function and  V i  a real constant. Therefore

    H † =  1

    2m(P †)2 + V r(X 

    †)− (i)∗V i  =   12m

    P 2 + V r(X ) + iV i = H,

    so  H   is  not  Hermitian.Derivation of the continuity equation. Schrodinger’s equation and its complex con-

     jugate in this case read

    i ∂ψ∂t

      =   −  2

    2m∇2ψ + V rψ − iV iψ,

    −i ∂ψ∗

    ∂t  =   −  

    2

    2m∇2ψ∗ + V rψ∗ + iV iψ∗.

    Multiplying the first by ψ∗ and teh second by ψ  and taking the difference, then dividingby i  gives

    ∂P 

    ∂t  = − ∇·  j −  2

     V iP,

    where, as before,  P   = |ψ|2 and   j  =   (ψ∗ ∇ψ − ψ  ∇)/(2mi) are the probability densityand current, respectively. Integrating this over all space, the    

    ∇·  j  term vanishes (by

    the divergence theorem, since we assume    j → 0 at infinity), givingdP dt

      = −2 

    V iP ,

    where P  =   d3xP  is the total probability. (I can pull  V i  out of the integral since it isassumed constant in the problem.) Integrating this differential equation gives

    P (t) = P (0) e−2V it/.

    83

  • 8/18/2019 Shankar Quantum Mechanics Solution

    85/327

    Problem 2:  Exercise 5.3.4With primes denoting derivative with respect to  x,

     j   :=   

    2mi [ψ∗ψ − ψ(ψ∗)]

    =   

    2mi

    (A∗

    e−ixp/

    + B∗

    eixp/

    )(Aeixp/

    + Be−ixp/

    )

    − (Aeixp/ + Be−ixp/)(A∗e−ixp/ + B∗eixp/)=

      1

    2mi

    (A∗e−ixp/ + B∗eixp/)(ipAeixp/− ipBe−ixp/)− (Aeixp/ + Be−ixp/)(−ipA∗e−ixp/ + ipB∗eixp/)

    =  p

    2m

    |A|2 + AB∗e2ixp/−A∗Be−2ixp/− |B|2+ |A|2 + A∗Be−2ixp/−AB∗e2ixp/− |B|2

    =  p

    m|A|2 − |B|2

    .

    Problem 3:  Exercise 5.4.2

    (a)   For x  =  Ce

    ikx + De−ikx.Scattering boundary conditions means we set D  = 0 (no incoming particles fromx = +∞).

    Now we need to figure out the boundary conditions at   x   = 0. Look at thetime-independent Schrodinger equation,

    − 2

    2m

    ψ + V 0aδ (x)ψ =  Eψ.   (1)

    Since the potential has an infinite jump in it,  ψ  will be continuous, but  ψ mayhave a finite jump. To see how big the  ψ  jump is, integrate (1) from x = − tox = + to get

     2

    2m [ψ(−)− ψ()] + V 0aψ(0) = E 

       −

    dxψ.

    In the limit as    →  0, the right hand side vanishes since  ψ  is continuous, fromwhich we learn that

    ψ>(0)

    −ψgives the two conditions

    A + B   =   C 

    ikC − ikA + ikB   = (2maV 0/ 2)C.

    84

  • 8/18/2019 Shankar Quantum Mechanics Solution

    86/327

    Dividing through by A, and solving for B/A and C/A gives B/A =  maV 0/(ik 2−

    maV 0) and  C/A =  ik 2/(ik 2 − maV 0). Since R = |B/A|2 and  T   = |C/A|2, we

    get

    R =  m2a2V 20

    k2 4 + m2a2V 20, T   =

      k2 4

    k2 4 + m2a2V 20.

    (b)  Call x < −a region I, |x| < a region II, and x > a  region III. Then solving for theenergy eigenstates,   ψ = 2m(E − V (x))ψ, of energy 0 < E  ≤ V 0  in each regiongives   ψI   =   Ae

    ikx + Be−ikx,   ψII    =   Ce−κx + Deκx, and   ψII I   =   Ee

    ikx + F e−ikx,with    κ   =

     2m(V 0 −E ) and    k   =

    √ 2mE . Scattering boundary conditions

    means we set F  = 0 (no incoming particles from  x = +∞). The incoming wavehas amplitude  A, the reflected has amplitude  B, the transmitted amplitude  E .Therefore R  = |B/A|2 and  T   = |E/A|2, so we only need to solve for  B/A  andE/A.

    The boundary conditions at x = ±a are that ψ and  ψ are continuous, implying

    Ae

    −ika

    + Be

    ika

    =   Ce

    κa

    + De

    −κa

    ,ikAe−ika − ikBeika =   −κCeκa + κDe−κa,

    Eeika =   Ce−κa + Deκa,

    ikEeika =   −κCe−κa + κDeκa.

    Dividing by A and eliminating  C/A and D/A gives

    B

    A  =

      e−2iak(e4aκ − 1)(k2 + κ2)(e4aκ − 1)(k2 − κ2) + 2i(e4aκ + 1)kκ ,

    A

      =  4ie2a(κ−ik)kκ

    (e4aκ

    − 1)(k2

    − κ2

    ) + 2i(e4aκ

    + 1)kκ

    ,

    so

    R =  (e4aκ − 1)2(k2 + κ2)2

    (e4aκ − 1)2(k2 − κ2)2 + 4(e4aκ + 1)2k2κ2 ,

    and T   = 1−R.

    85

  • 8/18/2019 Shankar Quantum Mechanics Solution

    87/327

    Physics 711 January 15, 2010Problem Set 8

    Problem 1:  Exercise 7.3.1

    Plug the power series expansion ψ  = ∞

    n=0 cnyn

    into the equation ψ

    +(2ε−y2

    )ψ = 0to get∞n=0

    cnn(n− 1)yn−2 + (2ε− y2)yn = 0.

    Shift n → n + 2 in the first term, and  n → n− 2 in the third term to get∞n=0

    yn [(n + 2)(n + 1)cn+2 + 2εcn − cn−2] = 0

    with the convention that

    c−2 =  c−1 = 0.This implies

    cn+2 =  cn−2

    (n + 1)(n + 2) −   2εcn

    (n + 1)(n + 2)

    for all n ≥ 0.

    Problem 3:  Exercise 7.3.7In the momentum basis |ψ →   ψ( p),   P  →   p, and  X  →   i (d/dp), so the energy

    eigenvalue equation

      1

    2mP 2 +

     mω2

    2  X 2

    |E  = E |E 

    becomes1

    2m p2ψ( p) − mω

    2

    2   

    2ψ( p) = Eψ( p).

    Compare this to the position-basis equation

    mω2

    2  x2ψ(x) −   1

    2m 2ψ(x) = Eψ(x).

    These are the same equations with the substitutions  x ↔  p  and  m ↔ 1/(mω2

    ).

    86

  • 8/18/2019 Shankar Quantum Mechanics Solution

    88/327

    Problem 2:  Exercise 7.3.5

    n|X |n   =   ∞

    −∞

    dxψ∗n(x)·x·ψn(x) =   ∞

    −∞

    dx x·ψ2n(x) since ψn(x) is real

    = 0 since x is odd and  ψ2

    n(x) is even.

    n|P |n   =   ∞

    −∞

    dxψ∗n(x)(−i ) d

    dxψn(x) = (−i )

       ∞

    −∞

    dxψnψ

    n   =  −i 

    2

       ∞

    −∞

    dx (ψ2n)

    =   −i 2  ψ2n

    ∞−∞

    = 0 since ψn → 0 as |x| → ∞.

    1|X 2|1   =   ∞

    −∞

    dxψ∗1x2ψ1   =

    mω4π 

    1/2    ∞−∞

    dx x2

    2xmω

     

    1/22e−mωx

    2/

    =  2

    √ π mω

     3/2

       ∞

    −∞

    dxx4e−mωx2/ =

      2

    √ π mω

     3/2 3

    √ π

    4mω

     −5/2

    =  3 

    2mω.

    1|P 2|1   =   ∞

    −∞

    dxψ∗1(−i )2ψ1   =  − 2  2√ π

    mω 

    3/2    ∞−∞

    dxxe−mωx2/2

    xe−mωx

    2/2

    =   − 2   2√ π

    mω 

    3/2    ∞−∞

    dxx2mω

     

    mω 

    x2 − 3

    e−mωx

    2/

    =   − 2   2√ π

    mω 

    5/2·(−1) 3

    √ π

    4

    mω 

    −3/2

    =  3mω 

    2  .

    ∆X 2 =   0|X 2|0   = 

    π 

       ∞

    −∞

    dxx2e−mωx2/ =

    mω 

    1/2 √ π2

    mω 

    −3/2

    =   

    2mω.

    ∆P 2 =   0|P 2|0   =   − 2 

    π 

       ∞

    −∞

    dx e−mωx2/2

    e−mωx

    2/2

    =   −    2

    √ π

    mω 

    3/2    ∞−∞

    dxmω

       x2 − 1

    e−mωx

    2/

    =

      −

       2

    √ π mω

      3/2

    ·(

    −1)

    √ π

    2mω

      −1/2

    =  mω 

    2

      .

    ∴ ∆X  ∆P    =

        

    2mω· 

    mω 

    2  =

       

    2.

    87

  • 8/18/2019 Shankar Quantum Mechanics Solution

    89/327

    88

  • 8/18/2019 Shankar Quantum Mechanics Solution

    90/327

    89

  • 8/18/2019 Shankar Quantum Mechanics Solution

    91/327

    90

  • 8/18/2019 Shankar Quantum Mechanics Solution

    92/327

    91

  • 8/18/2019 Shankar Quantum Mechanics Solution

    93/327

    92

  • 8/18/2019 Shankar Quantum Mechanics Solution

    94/327

  • 8/18/2019 Shankar Quantum Mechanics Solution

    95/327

    94

  • 8/18/2019 Shankar Quantum Mechanics Solution

    96/327

  • 8/18/2019 Shankar Quantum Mechanics Solution

    97/327

    96

  • 8/18/2019 Shankar Quantum Mechanics Solution

    98/327

    97

  • 8/18/2019 Shankar Quantum Mechanics Solution

    99/327

    98

  • 8/18/2019 Shankar Quantum Mechanics Solution

    100/327

    99

  • 8/18/2019 Shankar Quantum Mechanics Solution

    101/327

    100

  • 8/18/2019 Shankar Quantum Mechanics Solution

    102/327

    101

  • 8/18/2019 Shankar Quantum Mechanics Solution

    103/327

    102

  • 8/18/2019 Shankar Quantum Mechanics Solution

    104/327

    103

  • 8/18/2019 Shankar Quantum Mechanics Solution

    105/327

    104

  • 8/18/2019 Shankar Quantum Mechanics Solution

    106/327

    105

  • 8/18/2019 Shankar Quantum Mechanics Solution

    107/327

  • 8/18/2019 Shankar Quantum Mechanics Solution

    108/327

    107

  • 8/18/2019 Shankar Quantum Mechanics Solution

    109/327

    108

  • 8/18/2019 Shankar Quantum Mechanics Solution

    110/327

    109

  • 8/18/2019 Shankar Quantum Mechanics Solution

    111/327

    110

  • 8/18/2019 Shankar Quantum Mechanics Solution

    112/327

    111

  • 8/18/2019 Shankar Quantum Mechanics Solution

    113/327

    112

  • 8/18/2019 Shankar Quantum Mechanics Solution

    114/327

  • 8/18/2019 Shankar Quantum Mechanics Solution

    115/327

  • 8/18/2019 Shankar Quantum Mechanics Solution

    116/327

    115

  • 8/18/2019 Shankar Quantum Mechanics Solution

    117/327

    116

  • 8/18/2019 Shankar Quantum Mechanics Solution

    118/327

    117

  • 8/18/2019 Shankar Quantum Mechanics Solution

    119/327

    118

  • 8/18/2019 Shankar Quantum Mechanics Solution

    120/327

    119

  • 8/18/2019 Shankar Quantum Mechanics Solution

    121/327

    120

  • 8/18/2019 Shankar Quantum Mechanics Solution

    122/327

    121

  • 8/18/2019 Shankar Quantum Mechanics Solution

    123/327

  • 8/18/2019 Shankar Quantum Mechanics Solution

    124/327

    123

  • 8/18/2019 Shankar Quantum Mechanics Solution

    125/327

    124

  • 8/18/2019 Shankar Quantum Mechanics Solution

    126/327

    125

  • 8/18/2019 Shankar Quantum Mechanics Solution

    127/327

    126

  • 8/18/2019 Shankar Quantum Mechanics Solution

    128/327

    127

  • 8/18/2019 Shankar Quantum Mechanics Solution

    129/327

    128

  • 8/18/2019 Shankar Quantum Mechanics Solution

    130/327

    129

  • 8/18/2019 Shankar Quantum Mechanics Solution

    131/327

    130

  • 8/18/2019 Shankar Quantum Mechanics Solution

    132/327

    131

  • 8/18/2019 Shankar Quantum Mechanics Solution

    133/327

    132

  • 8/18/2019 Shankar Quantum Mechanics Solution

    134/327

    133

  • 8/18/2019 Shankar Quantum Mechanics Solution

    135/327

    134

  • 8/18/2019 Shankar Quantum Mechanics Solution

    136/327

    135

  • 8/18/2019 Shankar Quantum Mechanics Solution

    137/327

    136

  • 8/18/2019 Shankar Quantum Mechanics Solution

    138/327

    137

  • 8/18/2019 Shankar Quantum Mechanics Solution

    139/327

    138

  • 8/18/2019 Shankar Quantum Mechanics Solution

    140/327

    139

  • 8/18/2019 Shankar Quantum Mechanics Solution

    141/327

    140

  • 8/18/2019 Shankar Quantum Mechanics Solution

    142/327

    141

  • 8/18/2019 Shankar Quantum Mechanics Solution

    143/327

    142

  • 8/18/2019 Shankar Quantum Mechanics Solution

    144/327

    143

  • 8/18/2019 Shankar Quantum Mechanics Solution

    145/327

    144

  • 8/18/2019 Shankar Quantum Mechanics Solution

    146/327

    145

  • 8/18/2019 Shankar Quantum Mechanics Solution

    147/327

  • 8/18/2019 Shankar Quantum Mechanics Solution

    148/327

    147

  • 8/18/2019 Shankar Quantum Mechanics Solution

    149/327

    148

  • 8/18/2019 Shankar Quantum Mechanics Solution

    150/327

  • 8/18/2019 Shankar Quantum Mechanics Solution

    151/327

    Physics 828: Homework Set No. 3

    Due date: Friday, January 27, 2011, 1:00pm

    in PRB M2043 (Biao Huang’s office)

    Total point value of set: 60 points + 10 bonus points

    Problem 1 (20 pts.):  Exercise 10.3.5 (Shankar, p. 278)

    Problem 2 (10 pts.):  Exercise 10.3.6 (Shankar, p. 278)

    Problem 3 (5 pts.):  Exercise 11.2.2 (Shankar, p. 283)

    Problem 4 (5 pts.):  Exercise 11.4.1 (Shankar, p. 300)

    Problem 5 (5 pts.):   Exercise 11.4.2 (Shankar, p. 300). If you correctly derive in closedform the explicit expression for [ P̂ ,  Ĥ ] you receive  10 bonus points.

    Problem 6 (10 pts.):  Exercise 11.4.3 (Shankar, p. 300)

    Problem 7 (5 pts.):  Exercise 11.4.4 (Shankar, p. 300)

    1

    150

  • 8/18/2019 Shankar Quantum Mechanics Solution

    152/327

    151

  • 8/18/2019 Shankar Quantum Mechanics Solution

    153/327

    152

  • 8/18/2019 Shankar Quantum Mechanics Solution

    154/327

    153

  • 8/18/2019 Shankar Quantum Mechanics Solution

    155/327

    154

  • 8/18/2019 Shankar Quantum Mechanics Solution

    156/327

    155

  • 8/18/2019 Shankar Quantum Mechanics Solution

    157/327

    156

  • 8/18/2019 Shankar Quantum Mechanics Solution

    158/327

    157

  • 8/18/2019 Shankar Quantum Mechanics Solution

    159/327

    158

  • 8/18/2019 Shankar Quantum Mechanics Solution

    160/327

  • 8/18/2019 Shankar Quantum Mechanics Solution

    161/327

    160

  • 8/18/2019 Shankar Quantum Mechanics Solution

    162/327

    161

  • 8/18/2019 Shankar Quantum Mechanics Solution

    163/327

    162

  • 8/18/2019 Shankar Quantum Mechanics Solution

    164/327

    163

  • 8/18/2019 Shankar Quantum Mechanics Solution

    165/327

    164

  • 8/18/2019 Shankar Quantum Mechanics Solution

    166/327

    165

  • 8/18/2019 Shankar Quantum Mechanics Solution

    167/327

    166

  • 8/18/2019 Shankar Quantum Mechanics Solution

    168/327

    167

  • 8/18/2019 Shankar Quantum Mechanics Solution

    169/327

  • 8/18/2019 Shankar Quantum Mechanics Solution

    170/327

    169

  • 8/18/2019 Shankar Quantum Mechanics Solution

    171/327

    170

  • 8/18/2019 Shankar Quantum Mechanics Solution

    172/327

    171

  • 8/18/2019 Shankar Quantum Mechanics Solution

    173/327

    172

  • 8/18/2019 Shankar Quantum Mechanics Solution

    174/327

  • 8/18/2019 Shankar Quantum Mechanics Solution

    175/327

    174

  • 8/18/2019 Shankar Quantum Mechanics Solution

    176/327

    175

  • 8/18/2019 Shankar Quantum Mechanics Solution

    177/327

    176

  • 8/18/2019 Shankar Quantum Mechanics Solution

    178/327

    177

  • 8/18/2019 Shankar Quantum Mechanics Solution

    179/327

    178

  • 8/18/2019 Shankar Quantum Mechanics Solution

    180/327

    179

  • 8/18/2019 Shankar Quantum Mechanics Solution

    181/327

    180

  • 8/18/2019 Shankar Quantum Mechanics Solution

    182/327

    181

  • 8/18/2019 Shankar Quantum Mechanics Solution

    183/327

    182

  • 8/18/2019 Shankar Quantum Mechanics Solution

    184/327

    183

  • 8/18/2019 Shankar Quantum Mechanics Solution

    185/327

    184

  • 8/18/2019 Shankar Quantum Mechanics Solution

    186/327

    Physics 828 Sketch of Solution to Set 2

    Shankar 12.3.7

    (1) The two-dimensional harmonic oscillator is obviously invariant under rotations

    about the  z -axis: the magnitude of the position and momenta are unaltered by rota-

    tions around the  z -axis. Therefore, the Hamiltonian commutes with the generator of 

    rotations about the  z -axis, Lz.

    (2) So we write  ψ(ρ, φ) =   eimφ REm(ρ) where m  is an integer, positive or negative.

    In two dimensions since we know the Laplacian we have

    −h̄2

    REm   +

      1

    ρREm

     +

    h̄2m2

    2µρ2  +

      1

    2µω2ρ2

     REm(ρ) =   EREm .

    For small   ρ   assuming that   REm(ρ)   ∝   ρk (derivatives decrease the power by unity

    increasing its importance for small  ρ   etc.) we can neglect the potential energy term

    and the constant term on the right-hand side. Thus we have

    REm   +  REm

    ρ  ∝

      m2

    ρ2 REm   ⇒   [k(k − 1) + k] =   m

    2 ⇒   k2 =   m2 .

    For the wave function to be normalizable, for  ∞

    0   d ρ ρ R2Em(ρ) to be finite at the lower

    limit  k  ≥  0. Thus we have  REm(ρ)  ρ→0−→   ρ|m|.

    (3) For large  ρ, terms with inverse powers of  ρ   including the centrifugal term and

    also the constant term on the right-hand side can be neglected. So we have

    REm   =   µ2

    ω2

    ρ2

    h̄2  REm ;

    this is identical to the one-dimensional oscillator equation. See the careful analysis on

    page 191. Up to powers of  ρ  the solution is1

    REm(ρ)  ρ→∞−→   e−

    µω2h̄ ρ2 .

    So we write as instructed1

    REm   =  −µω

    h̄  ρ e−

    µω2h̄ρ2 and  R Em   =

      µω

    −1 +

      µω

    h̄  ρ2 e−

    µω

    2h̄ρ2 .

    Thus we can neglect the constant term in  R and recover the solution. One can use this to check

    that terms we have neglected are indeed small compared to the terms we have retained. When you

    neglect terms it is a good idea to substitute the solution you have obtained and check that the terms

    you have neglected are indeed smaller.

    1

  • 8/18/2019 Shankar Quantum Mechanics Solution

    187/327

    REm(ρ) =   U m(ρ) ρ|m| e−

    µω2h̄ ρ2 .

    (4) Use the dimensionless variable     =   E h̄ω

      and   y2 =   µωh̄

     ρ2. Dividing the radial

    equation by h̄ω  we have dropping the annoying subscripts

    1

    2

     d2

    dy2  +

      1

    y

    d

    dy  −

      m2

    y2

     +

      1

    2y2

     R(y) =   R(y) .

    (5) We do the substitution and do elementary calculus and obtain the result given:

    U  +

    2|m|+ 1

    y

     −  2y

     U  + (2 − 2|m| − 2) U   = 0 .

    (6) We substitute  U (y) = ∞

    r=0  C ryr and collect the coefficient of  yr. The second

    derivative reduces the power by two and so we use the  C r+2  term etc.

    (r + 2)(r + 1)C r+2   + (2|m|+ 1)(r + 2)C r+2 − 2rC r   + (2 − 2|m| − 2)C r   = 0

    yielding a two-term recursion relation.

    (7) We write this as

    C r+2C r

    =  −  (2( − |m| − r − 1)

    (r + 2)(2|m|+ r + 2) .

    First if  C 0  is given  C 2  and the other even terms can be computed. As  r →∞ we have

    C r+2C r

    →  2

    r .

    This implies that  U (y) grows as  ey2

    which overwhelms the  e−y2/2 in  R  pushing it out

    of the Hilbert space. So the series must terminate. Thus the boundary condition at

    infinity leads as usual to energy quantization.

    What about the odd terms? A series only with odd terms (set C 0  = 0 so that all even

    terms vanish) is inconsistent since then  U (y)  ∼   y  for small  y  and thus  R(ρ)  ∼   ρ|m|+1

    inconsistent with our earlier result in (2). This appears to be suggested as an argu-

    ment. What if one starts with C 0  and  C 1  non-zero? Substituting into the equation for

    U  we find that the (1/y)(dU/dy) leads to the term  C 1/y  and there is no other sourceof  y−1 terms. Thus  C 1  = 0 and therefore, all odd terms vanish.

    2

  • 8/18/2019 Shankar Quantum Mechanics Solution

    188/327

    Therefore, we have  r = 2k  and the termination of the series condition yields

      = 1 +   r   +   |m|   =   |m|  + 2k   + 1  ≡   (n + 1)

    with  k  = 0, 1, , 2, · · ·.

    (8) Since |m|   =   n  −  2k  for a given  n  (i.e., for a given energy) the maximum value

    of  m is  n  which occurs for  k  = 0, The azimuthal quantum number  m  decreases by stepsof 2 until  m reaches the value  −n. It is easy to se that there are  n + 1 allowed values

    of  m  yielding a degeneracy of  n + 1. In Cartesian coordinates the energy is  nx + ny + 1

    in units of h̄ω. So the degeneracy corresponds to the number of ways in which we can

    choose two non-negative integers to add up to  n. We can choose  nx  to be any integer

    from 0 to  n  and  ny  = n − nx. This yields the same degeneracy.

    Shankar 12.6.1

    (1) Since there is no angular dependence    = 0.

    (b) We have  R(r)  ∝   e−r/a0 and for large  r  (retaining only the dominant terms)

    −h̄2

    2mR =   ER(r) .

    Substituting the given form we obtain   E   =  −   h̄2

    2ma20

    .

    (c) Clearly the   R term and the energy term cancel for all   r. If the equation is

    valid for all  r  we must have

    −h̄2

    2m

    2

    r R +  V  (r) R(r) = 0 .

    Substituting  R(r) =   e−r/a0 we obtain

    h̄2

    ma0r  +  V  (r) = 0   ⇒   V  (r) =  −

      h̄2

    ma0r .

    Shankar 13.1.1 and 13.1.3 You should be able to fill in the steps. Here are some

    steps dropping some subscripts for notational simplicty.

    v   =∞k=0

    C k ρk++1 .

    3

  • 8/18/2019 Shankar Quantum Mechanics Solution

    189/327

    Substituting into

    v −  2v +

    e2λ

    ρ  −

      ( + 1)

    ρ2

     v   = 0 (1)

    we extract the coefficient of  ρk+l carefully. Since two derivatives reduce the power of 

    ρ  by two we should start from the term with  ρk++2 with coefficient  C k+1  for the first

    term and similarly for the last term. For the second and third terms which reduce the

    power of  ρ  by unity we can start with the  ρk++1 term with coefficient  C k. Thus we

    have

    (k +  + 2)(k +  + 1)C k+1  −  2(k +  + 1)C k   +  e2λC k  −  ( + 1)C k+1   = 0 (2)

    which yieldsC k+1

    C k=

      −q 2λ  + 2(k +  + 1)

    (k +  + 2)(k +  + 1)  −  ( + 1)  (3)

    Since  λ2 =   2mh̄2W 

      from 13.1.9. For the numerator to vanish we have

    e4λ2 =  −2me2

    h̄2E   = 4(k +  + 1)2 .

    This yields 13.1.14.

    Mathematical aside:  Here is a different representation using classical mathemat-

    ical physics. Note that the function  L(ρ)  ≡ ∞

    k=0  C k ρk obeys the equation

    ρL(ρ) + [ 2( + 1)  −  2ρ ]L(ρ) + (q 2λ  −  2(  + 1))L(ρ) = 0   .

    Substituting  q 2λ   = 2n (where  n  is an integer eventually) we have

    12

    ρL + [ ( + 1)  −  ρ ]L + (n  −   (  + 1))L   = 0   .

    Let  z  = 2ρ  we have

    z d2L

    dz 2  + [2( + 1)  −  z ]

    dL

    dz   −  ( + 1 − n)L   = 0 .

    We know (with a good mathematical methods course) that the general solution to

    zw + (c− z ) w −  aw   = 0

    is given by the confluent hypergeometric function  w   =   1F 1(a; c; z ). Thus we find that

    the solution L(ρ) is  1F 1(+1−n; 2+2; 2ρ) . The particular terminating (for integer n)

    4

  • 8/18/2019 Shankar Quantum Mechanics Solution

    190/327

    confluent hypergeometric function can be related to the  associated Laguerre polynomial.

    Shankar 13.3

    We are considering the case  n = 2 and   = 1 and thus  k = 0 in the notation of the

    text. So we have  W   =   me4

    8h̄2  from 13.1.4 and form 13.1.6

    ρ   =

     2mW 

    h̄2  r   =

      me2

    2h̄2  r   =

      r

    2a0

    using 13.1.24. From 13.1.10 since  k = 0 and   = 1 we have  v   =   C 0ρ2 and thus

    R(r) =  U (r)

    r  =   C e

    −   r2a0  r

    where C   is an overall constant. We know that  Y 10   = 

      34π

     cos θ   from 12.5.39 which is

    normalized. So all we need is that  Ce−r/(2a0)r  is notmalized when integrated over the

    radial coordinate. We have

    C 2  ∞0

    dr r2 r2 e−   r

    a0   =   C 2 24 a50 .

    Thus C   = 

      124a3

    0

    × 1/a0  and including the normalization from the spherical harmonic

    yields the quoted answer.

    Shankar 13.5

    Since we are asked to compute  Ω   for stationary states   |nm  its time derivativevanishes. Thus we have  [Ω, H ]   = 0 by Ehrenfests’ theorem. So we compute the

    commutator for Ω =    R ·  P  as ordered. We calculate (using the summation convention)

    R jP  j,

     P iP i2m

      =

    R j,

     P iP i2m

     P  j   = 2ih̄

     P   ·   P 

    2m  = 2ih̄ T .

    We have used

    [R j, P iP i] =   P i[R j, P i] + [R j, P i]P i   = 2ih̄ P  j .

    We consider the potential energy term next:

    [R jP  j , V  (R)] =   R j[P  j, V  (R)] =   R j

    −ih̄

      d

    dR jV  (R)

     .

    5

  • 8/18/2019 Shankar Quantum Mechanics Solution

    191/327

    Note that [P i, V  (R)] can be evaluated in the coordinate representation (in Cartesian

    coordinates) by acting on a function  f (r):

    [P i, V  (r)]f (r) =  −ih̄

      ∂ 

    ∂riV  (r)f (r)  −  V  (r)

      ∂ 

    ∂riV  (r)f (r)

      =  −ih̄

      ∂ 

    ∂riV  (r) =  −ih̄  R· ∇V.

    Thus we can write formally [P i, V  (R)] =   −ih̄∂V  (R)/∂Ri. So we need to evaluate R ·   ∇V  (R). In the coordinate representation using spherical coordinates for central

    potentials this is just rV (r). For the Coulomb potential we obtain −V  (r) and including

    the factor of  −ih̄  we obtain  ih̄ V  (r). Substituting into the basic relation we have

    2T   +  V    = 0

    as asserted. If  V  (R)  ∝   Rn,  rV (r) =   nV  and thus we obtain  T    =   n2V .

    6

  • 8/18/2019 Shankar Quantum Mechanics Solution

    192/327

    Physics 710 March 12, 2010Problem Set 15

    Problem 12.6.1:   ψE  = Ae−r/a0.

    (1) No (θ, φ)-dependence implies  ψE  ∝ Y 00 , so we must have    = 0 and m  = 0.(2) Therefore  ψE  = RE,=0 =

      1

    rU E,0  which satisfies eqn. (12.6.5) with   = 0:

    (rψE ) +

     2µ

     2 [E − V (r)](rψE ) = 0.   (1)

    As  r   → ∞,   V (r)  →  0, which implies in this limit (rψE ) =  A(1 −   ra0 )e

    −r/a0 ≈

    −(A/a0)re−r/a0 , so (rψE )

    ≈   (A/a20)re−r/a0. Therefore, eqn. (1) reads in this

    limitA

    a20re−r/a0 = −

    2µE 

     2  Are−r/a0,

    from which it follows thatE  = −

       2

    2µa20.

    (3) Now plug  E  into (1) and use (rψE ) = A(− 2a0 +

      ra20

    )e−r/a0 to get

    A

    2

    a0+

      r

    a20

    e−r/a0 +

     2µ

     2

       2

    2µa20− V (r)

    Are−r/a0 = 0,

    which gives

    V (r) = −   

    2

    µa0r.

    Problem 12.6.4:

    (1)  δ 3(r − r) is defined by the property that 

     d3rδ 3(r − r)f (r) =  f (r). So simplycheck:  

      r2dr sin θdθdφ  1

    r2 sin θδ (r − r)δ (θ − θ)δ (φ − φ)f (r,θ,φ)

    =

       drdθdφδ (r − r)δ (θ − θ)δ (φ − φ)f (r,θ,φ) = f (r, θ, φ).

    (2) If r = 0 then ∇2(1r ) =  1

    r2∂ ∂r

    (r2   ∂ ∂r (1

    r))+(angular parts) =   1

    r2∂ ∂r

    (r2(−1r2 )) =  1

    r2∂ ∂r

    (−1) =0. When   r   = 0 the above calculation breaks down since terms are singu-lar there. So consider an arbitrary continuous function   f (r) and the integral 

     d3x∇2(1r )f (r) = lim→0 0

     r2dr 

     dΩ∇2(1r )f (r), since   ∇2(1r ) = 0 for   r >   0.

    Then, integrating by parts we get   d3x∇2

    1

    r

    f (r) = lim

    →0

       0

    r2dr

       dΩ

     ∇·

    f (r) ∇

    1

    r

     ∇f (r)

    · ∇

    1

    r

    .

    191

  • 8/18/2019 Shankar Quantum Mechanics Solution

    193/327

    Now recall that in spherical coordinates    ∇   = r   ∂ ∂r

     + θ 1r

    ∂ ∂θ

     + φ   1r sin θ

    ∂ ∂φ

    , implying

    that    ∇(1/r) = r   ∂ ∂r

    (1/r) = − r/r2, so   d3x∇2

    1

    r

    f  = lim

    →0

       0

    r2dr

       dΩ

     ∇·

     r

     f 

    r2

    r· ∇f    1

    r2

    .

    The second term on the right side vanishes, because as → 0, r· ∇f  = (∂f/∂r)|r=0 =const., so:

    lim→0

       0

    r2dr

       dΩ

     r· ∇f    1r2

     = const.· lim→0

       0

    r2dr

       dΩ

     1

    r2 = const.· lim

    →04π  = 0.

    Therefore,   d3x∇2

    1

    r

    f    = lim

    →0

       0

    r2dr

       dΩ ∇·

     r

     f 

    r2

      = lim

    →0

       dΩr2

     r·

     r

     f 

    r2

    r=

    =   − lim→0

       dΩ f |r=   =   −f (0) lim→0

       dΩ   =   −f (0) lim→0

    =   −4πf (0).

    In the second step I used the divergence theorem which states R d

    3x ∇·g   = ∂R

    d2a n·g where R  is any region, ∂R is its boundary, n is the normal unit vectorto   ∂R   (pointing out of   R) and   d2a   is the surface area element. In our caseR  =  {r < },  d2a  =  dΩ, n  = r, and  g   =  − r(f /r2). Thus we have shown that∇2(1/r) = 0 for r = 0 and for any  f (r) that

      d3x∇2(1/r)f  = −4πf (0). This is

    the  definition  of the delta function, so

    ∇21r = −4πδ 3(r).

    Problem 12.6.9:   Since    = 0,   ψ   =   R(r)Y 00 (θ, φ) =   R(r). So the radial equationbecomes, with ψ(r) = (1/r)U (r),

     d2

    dr2 + k2

    U in  = 0   r ≤ r0, k ≡

     2µ(E  + V 0)

     2  ,

     d2

    dr2

     − κ2U out  = 0   r ≥ r0, κ ≡  −2µE 

     

    2  ,

    where k  and  κ  are defined to be the positive root. The solutions of these equations are

    U in   =   A sin kr + A cos kr,U out   =   Be

    −κr + Be+κr.

    192

  • 8/18/2019 Shankar Quantum Mechanics Solution

    194/327

  • 8/18/2019 Shankar Quantum Mechanics Solution

    195/327

    194

  • 8/18/2019 Shankar Quantum Mechanics Solution

    196/327

    195

  • 8/18/2019 Shankar Quantum Mechanics Solution

    197/327

    196

  • 8/18/2019 Shankar Quantum Mechanics Solution

    198/327

    197

  • 8/18/2019 Shankar Quantum Mechanics Solution

    199/327

    Physics 710-712 April 2, 2010Problem Set 16

    Problem 13.3.1:   To say the pion has a range of  λ 10−5 angstroms is to say that

    a single pion can be localized on this scale: ∆X  ∼  λ. From the uncertainty principle∆X  ∆P      , we then deduce ∆P      /λ. Since we assume  λ   is the smallest scaleon which we can localize the pion, it is plausible that the inequality is saturated, soP  ∼   ∆P  ∼    /λ. The relation between the energy and momentum is (from specialrelativity) E 2 =  m2c4 + c2P 2 ∼  m2c4 + c2 2/λ2. Now, for the notion of a “singlepion” to exist, we must have  E     2mc2. (See discussion in text on p. 363). So4m2c4 m2c4 + c2 2/λ2, or mc2 c /(

    √ 3λ). Again, since  λ  is the smallest scale, it is

    plausible that the inequality is saturated, giving

    mc2 ∼ c √ 3λ∼ 2000 eV

    A

    1.7× 10−5

    A

    ∼ 100 MeV.

    (In reality mπc2 = 140 MeV.)

    Problem 13.3.2:   Since the kinetic energy is T   = 200 eV   0.5 MeV   mc2, theelectron is non-relativistic, so we can use  T   = p2/(2m) = ( p2c2)/(2mc2) which implies pc =

    √ 2mc2T . Then

    λ = 2π 

     p  =

     2π c

     pc  =

      2π c√ 2mc2T 

    √ 

    2π(2000 eV◦

    A) (0.5× 106eV)(200 eV)

    =

    √ 2π

    10

    A 1◦

    A .

    Problem 13.3.3:   Recalling  E n = −Ry/n2 −13eV/n2, we have

    P (n = 2)

    P (n = 1) = 4e−(E 2−E 1)/kT  = 4e−[(−1/4)−(−1)]13 eV/(kBT ) 4e−105/(T/K )

    where I used (kB/eV) ∼  9 × 10−5K−1. So it is clear that we need T    105 K so thatthe exponent is not very small. For example, if  T  = 6000 K, then

    P (n = 2)

    P (n = 1)  4e−105/(6000) 4e−16 ∼ 2× 10−7 1.

    198

  • 8/18/2019 Shankar Quantum Mechanics Solution

    200/327

    199

  • 8/18/2019 Shankar Quantum Mechanics Solution

    201/327

    200

  • 8/18/2019 Shankar Quantum Mechanics Solution

    202/327

    201

  • 8/18/2019 Shankar Quantum Mechanics Solution

    203/327

    202

  • 8/18/2019 Shankar Quantum Mechanics Solution

    204/327

    203

  • 8/18/2019 Shankar Quantum Mechanics Solution

    205/327

    204

  • 8/18/2019 Shankar Quantum Mechanics Solution

    206/327

    205

  • 8/18/2019 Shankar Quantum Mechanics Solution

    207/327

    206

  • 8/18/2019 Shankar Quantum Mechanics Solution

    208/327

    207

  • 8/18/2019 Shankar Quantum Mechanics Solution

    209/327

  • 8/18/2019 Shankar Quantum Mechanics Solution

    210/327

    209

  • 8/18/2019 Shankar Quantum Mechanics Solution

    211/327

    210

  • 8/18/2019 Shankar Quantum Mechanics Solution

    212/327

    211

  • 8/18/2019 Shankar Quantum Mechanics Solution

    213/327

    212

  • 8/18/2019 Shankar Quantum Mechanics Solution

    214/327

    213

  • 8/18/2019 Shankar Quantum Mechanics Solution

    215/327

    214

  • 8/18/2019 Shankar Quantum Mechanics Solution

    216/327

    215

  • 8/18/2019 Shankar Quantum Mechanics Solution

    217/327

    216

  • 8/18/2019 Shankar Quantum Mechanics Solution

    218/327

    217

  • 8/18/2019 Shankar Quantum Mechanics Solution

    219/327

    218

  • 8/18/2019 Shankar Quantum Mechanics Solution

    220/327

  • 8/18/2019 Shankar Quantum Mechanics Solution

    221/327

    220

  • 8/18/2019 Shankar Quantum Mechanics Solution

    222/327

    221

  • 8/18/2019 Shankar Quantum Mechanics Solution

    223/327

  • 8/18/2019 Shankar Quantum Mechanics Solution

    224/327

    223

  • 8/18/2019 Shankar Quantum Mechanics Solution

    225/327

  • 8/18/2019 Shankar Quantum Mechanics Solution

    226/327

    225

  • 8/18/2019 Shankar Quantum Mechanics Solution

    227/327

    226

  • 8/18/2019 Shankar Quantum Mechanics Solution

    228/327

    227

  • 8/18/2019 Shankar Quantum Mechanics Solution

    229/327

    228

  • 8/18/2019 Shankar Quantum Mechanics Solution

    230/327

    229

  • 8/18/2019 Shankar Quantum Mechanics Solution

    231/327

    230

  • 8/18/2019 Shankar Quantum Mechanics Solution

    232/327

    231

  • 8/18/2019 Shankar Quantum Mechanics Solution

    233/327

    232

  • 8/18/2019 Shankar Quantum Mechanics Solution

    234/327

    233

  • 8/18/2019 Shankar Quantum Mechanics Solution

    235/327

    234

  • 8/18/2019 Shankar Quantum Mechanics Solution

    236/327

    235

  • 8/18/2019 Shankar Quantum Mechanics Solution

    237/327

    236

  • 8/18/2019 Shankar Quantum Mechanics Solution

    238/327

    237

  • 8/18/2019 Shankar Quantum Mechanics Solution

    239/327

  • 8/18/2019 Shankar Quantum Mechanics Solution

    240/327

    239

  • 8/18/2019 Shankar Quantum Mechanics Solution

    241/327

    240

  • 8/18/2019 Shankar Quantum Mechanics Solution

    242/327

    241

  • 8/18/2019 Shankar Quantum Mechanics Solution

    243/327

    242

  • 8/18/2019 Shankar Quantum Mechanics Solution

    244/327

    243

  • 8/18/2019 Shankar Quantum Mechanics Solution

    245/327

    244

  • 8/18/2019 Shankar Quantum Mechanics Solution

    246/327

    245

  • 8/18/2019 Shankar Quantum Mechanics Solution

    247/327

    246

  • 8/18/2019 Shankar Quantum Mechanics Solution

    248/327

    247

  • 8/18/2019 Shankar Quantum Mechanics Solution

    249/327

    248

  • 8/18/2019 Shankar Quantum Mechanics Solution

    250/327

    249

  • 8/18/2019 Shankar Quantum Mechanics Solution

    251/327

    250

  • 8/18/2019 Shankar Quantum Mechanics Solution

    252/327

    251

  • 8/18/2019 Shankar Quantum Mechanics Solution

    253/327

    252

  • 8/18/2019 Shankar Quantum Mechanics Solution

    254/327

    253

  • 8/18/2019 Shankar Quantum Mechanics Solution

    255/327

    254

  • 8/18/2019 Shankar Quantum Mechanics Solution

    256/327

    255

  • 8/18/2019 Shankar Quantum Mechanics Solution

    257/327

    256

  • 8/18/2019 Shankar Quantum Mechanics Solution

    258/327

    257

  • 8/18/2019 Shankar Quantum Mechanics Solution

    259/327

    258

  • 8/18/2019 Shankar Quantum Mechanics Solution

    260/327

    259

  • 8/18/2019 Shankar Quantum Mechanics Solution

    261/327

    260

  • 8/18/2019 Shankar Quantum Mechanics Solution

    262/327

    Physics 710-712 May 14, 2010Problem Set 21

    Problem 17.2.1:   With   H 0 =   12m

    P 2 +   12

    mω2X 2 and   H 1 =   λX 4, and using that

    X  =   /(2mω)(a + a†), we have:(1):

    E 1n   =   n|H 1|n   =  λ 2

    4m2ω2n|(a + a†)4|n

    =  λ 2

    4m2ω2n|(a2a†2 + aa†aa† + a†a2a† + aa†2a + a†aa†a + a†2a2)|n

    =  λ 2

    4m2ω2n|(6a2a†2 − 12aa† + 3)|n

    =  λ 2

    4m2ω2{6n + 2|(n + 1)(n + 2)|n + 2 − 12n + 1|(n + 1)|n + 1 + 3n|n}

    =   λ 2

    4m2ω2{6(n + 1)(n + 2) − 12(n + 1) + 3}   =   3 2λ

    4m2ω2(2n2 + 2n + 1),

    where in the first line we dropped the zero superscripts from the unperturbed eigen-states; in the second line we kept only terms with equal numbers of  a’s and a†’s; in thethird line we used [a, a†] = 1; and in the fourth line we used  a†|n = √ n + 1|n + 1.

    (2):  For any finite value of  λ, as n gets large

    E 1n∆E 

     ∼    2λn2/(m2ω2)

     ω  ∼ n2    λ

    m2ω3  1.

    Physically, at large x, no matter how small  λ  is,

    V (x) = mω2

    2  x2 + λx4 ∼ λx4

    for λ = 0.Problem 17.2.2:   H   = − µ·  B   = −γ  S ·  B   =   H 0 + H 1 with   H 0 = −γB0S z   andH 1 = −γBS x. The  H 0 eigenvalues are  E 0±  = ∓γB0 /2 with eigenstates |±0, the  S zeigenstates. Then

    E 1± = ±|0H 1|±0 = −γB±|0S x|±0 = −γB

    2 ±|0(S + + S −)|±0 = 0,

    and

    E 2±   =m

    |±|0H 1|m0|2E 0± − E 0m

    =  |±|0H 1|∓0|2

    E 0± − E 0∓=

      γ 2B2

    4

    |±|0(S + + S −)|∓0|2∓γB0 

    =   ∓ γB2

    4B0 |±|0S ±|∓0|2 =  ∓ γB

    2

    4B0 |±|0 

     (12 ∓ (∓ 1

    2))(3

    2 ± (∓ 1

    2))|∓0|2 =  ∓γ  B

    2

    4B0,

    261

  • 8/18/2019 Shankar Quantum Mechanics Solution

    263/327

  • 8/18/2019 Shankar Quantum Mechanics Solution

    264/327

    Problem 17.3.2:   H   =  AS 2z  + B(S 2x − S 2y) on the spin-1 Hilbert space. In the  S z

    basis, |m  (m = ±1, 0), we have

    S z  =   

    1 0 00 0 0

    0 0   −1

    , S x =   √ 

    2

    0 1 01 0 1

    0 1 0

    , S y  =  i √ 

    2

    0   −1 01 0   −1

    0 1 0

    (see p. 328 of the text). This implies

    H  =   2

    A   0   B0 0 0B   0   A

    .   (2)Clearly

    |m = |0 =

    010

    is the eigenvector with  E  = 0. So we only need to look at the |m  = |±1  subspacewhere H  = H 0 + H 1 with

    H 0 =   2A

    1 00 1

    , H 1 =   2B

    0 11 0

      on the |m = {|±1}  subspace.

    H 0 is degenerate:   H 0|m =   2A|m for m  = ±1. The basis stable under H 1 is the onewhich diagonalizes H 1. Since

    0 11 0

    11

    =

    11

      and

    0 11 0

     1−1

    = −

     1−1

    ,

    the eigenvectors of  H 

    1

    are1 ≡   1√ 2

    (|1 + |−1) and−1 ≡   1√ 

    2(|1− |−1) .

    To order O(B), the energy shifts of 1 and −1 are

    E 11

      =

    1H 11   =    2B   1√ 

    2

    1 1

    0 11 0

    11

      1√ 

    2=    2B,

    E 1−1

      =−1

    H 1−1   =    2B   1√ 

    2

    1   −10 1

    1 0

     1−1

      1√ 2

    =  − 2B.

    So, the eigenvalues, to O(B), areE 1 =   

    2(A + B), E −1 =   2(A − B), E 0 = 0.

    Compare this to the exact eigenvalues of (2) given by 0 = det(H −λ) = λ( 2(B−A) +λ)( 2(B + A)−λ), which implies λ  = {0,  2(A−B),  2(A + B)}. So, the O(B) resultsare exact.

    263

  • 8/18/2019 Shankar Quantum Mechanics Solution

    265/327

    264

  • 8/18/2019 Shankar Quantum Mechanics Solution

    266/327

    265

  • 8/18/2019 Shankar Quantum Mechanics Solution

    267/327

    266

  • 8/18/2019 Shankar Quantum Mechanics Solution

    268/327

    267

  • 8/18/2019 Shankar Quantum Mechanics Solution

    269/327

  • 8/18/2019 Shankar Quantum Mechanics Solution

    270/327

    269

  • 8/18/2019 Shankar Quantum Mechanics Solution

    271/327

    270

  • 8/18/2019 Shankar Quantum Mechanics Solution

    272/327

    271

  • 8/18/2019 Shankar Quantum Mechanics Solution

    273/327

    272

  • 8/18/2019 Shankar Quantum Mechanics Solution

    274/327

    273

  • 8/18/2019 Shankar Quantum Mechanics Solution

    275/327

    274

  • 8/18/2019 Shankar Quantum Mechanics Solution

    276/327

    275

  • 8/18/2019 Shankar Quantum Mechanics Solution

    277/327

    276

  • 8/18/2019 Shankar Quantum Mechanics Solution

    278/327

    277

  • 8/18/2019 Shankar Quantum Mechanics Solution

    279/327

    278

  • 8/18/2019 Shankar Quantum Mechanics Solution

    280/327

    Physics 710-712 May 26, 2010Problem Set 22

    Problem 18.2.2:   To first order, the amplitude d2m(∞) for the atom to be in the|n = 2, ,m  state is

    d2m(∞) = − i 

       ∞

    −∞

    2m|(eE Z )|100e−t2/τ 2eiω21tdt

    since the potential H 1(t) = − µ· E  = eZ E e−t2/τ 2. Here  ω21  = (E 2 − E 1)/ , which fromnow on we’ll just call  ω. So we need to evaluate 2m|Z |100.   Z   is a componentof a vector irreducible tensor operator,  Z   =  T 01 , so by angular momentum selectionrules, only the 210|Z |100   matrix element is non-vanishing. This matrix element iseasily evaluated using the wave functions for the the |210  and |100  states, and thatZ  = r cos θ:

    210|Z |100   =   ∞

    0

    r2dr

       dΩ

      1

    25πa30

    1/2 r

    a0e−r/2a0 cos θ

    (r cos θ)

      1

    πa30

    1/2

    e−r/a0

    = 2π

       1−1

    d(cos θ)cos2 θ

    · 

      ∞

    0

    dr r4e−3r/2a0·   125/2πa40

    = 2π·23·

    2a03

    5   ∞0

    dρ ρ4e−ρ·   125/2πa40

    = 215/2·3−5·a0.

    Therefore

    d2m(

    ∞) =   δ 1δ m0

    −i  eE·

    215/2

    ·3−5

    ·a0  

      ∞

    −∞

    e−t2/τ 2eiωtdt

    =   δ 1δ m0

    −ieE  

    215/2·3−5·a0

    √ πτ 2e−ω

    2τ 2/2,

    and so the probability for the transition is

    P (n=2) =,m

    |d2m|2 =eE  

    2215a20

    310

    πτ 2e−ω

    2τ 2/2.

    This answer does not depend on the electron spin: since  S z   is conserved by  H 0 and

    H 1, there is still only a single final state it can go into.

    Problem 18.2.4:   The kinetic energy of the emitted electron is 16 keV =   12mv2e   =

    12mc

    2(ve/c)2 =   12(511keV)(ve/c)

    2, which implies that  ve/c ∼ 1/4. Therefore the time,τ , for emission is   τ  ∼   a0/ve   = (a0/c)/(ve/c) ∼   4a0/c, since the typical size of the1s electron orbit is   r ∼  a0, the Bohr radius. In comparison, the characteristic timescale of the 1s electron,  T , is  T  ∼ a0/vs  = (a0/c)/(vs/c) = (a0/c)/α ∼ 140a0/c, since

    279

  • 8/18/2019 Shankar Quantum Mechanics Solution

    281/327

    the typical velocity of an electron bound in the hydrogen atom is  vs/c  =  α, the finestructure constant. Therefore, T   τ , and the sudden approximation is appropriate.

    In the sudden approximation, right after emission the 1s electron will be in the samestate, the |100(Z =1)  state of hydrogen. Therefore, the amplitude for the electron to bein the

     |100

    (Z =2)  state of (He

    3)+ is given by the overlap

    (Z =2)100|100(Z =1)   =   ∞

    0

    r2dr

       dΩ

     Z 3

    πa30

    1/2e−rZ/a0·

      1

    πa30

    1/2e−r/a0

    = 4π·23/2

    πa30

       ∞

    0

    r2dre−3r/a0 =  27/2

    a30

    a03

    3    ∞0

    ρ2dρe−ρ = 29/2·3−3,

    where in the first line  Z  = 2 and I used the fact that under changing the hydrogennucleus charge from 1 to  Z , all that changes is  a0 → a0/Z .

    Finally,   (Z =2)16, 3, 0|100(Z =1)  = 0 since    = 3 states are orthogonal to    = 0 ones(and the radial part, and therefore  Z , does not affect this).

    280

  • 8/18/2019 Shankar Quantum Mechanics Solution

    282/327

    281

  • 8/18/2019 Shankar Quantum Mechanics Solution

    283/327

    282

  • 8/18/2019 Shankar Quantum Mechanics Solution

    284/327

    283

  • 8/18/2019 Shankar Quantum Mechanics Solution

    285/327

    284

  • 8/18/2019 Shankar Quantum Mechanics Solution

    286/327

    Problem S18.4.3 (Shankar, page 494):

    (1)  Show that a gauge transformation on potentials 0φ   and 0 A using

    ( )0, ( , )

    r t c r t dt  φ −∞

    ′ ′Λ = −

    ∫  (1.1)

    gives ( )1 , 0r t φ    =  and 1 0 0( , ) A r t A= − ∇Λ  

    Solution:  This is problem 1 of HW8.

    (2)  Show that if we transform once more to 2φ   and 2 A  using

    311

    ( , )1

    4

     A r t d r 

    r r π 

    ′ ′∇′Λ = −

    ′−∫  i

      (1.2)

    then 2( , ) 0 A r t 

    ∇ =i .

    Solution:  Using equation (18.4.12) from Shankar ( A A′ = − ∇Λ ),we have

    312 1

    ( , )1( , ) ( , )

    4

     A r t  A r t A r t d r 

    r r π 

    ⎡ ⎤′ ′∇′= + ∇ ⎢ ⎥

    ′−⎣ ⎦∫

    i

      (1.3)

     Note that the integrand is the gradient of a scalar function, which produces a vector. If

    we now take the divergence of this, we get

    2 312 1

    ( , )1( , ) ( , )

    4

     A r t  A r t A r t d r 

    r r π 

    ⎡ ⎤′ ′∇′∇ = ∇ + ∇   ⎢ ⎥

    ′−⎣ ⎦∫

      i

    i i   (1.4)

    Since the only r-dependence in the integrand comes from the denominator, we can usethe identity

    ( )   ( )2 31/ 4r r r r  πδ ′ ′∇ − = − −   (1.5)

    Substituting this into (1.4) and doing the integrals over 3d r  gives

    [ ]2 1 1 1 11

    ( , ) ( , ) 4 ( , ) ( , ) ( , ) 04   r r 

     A r t A r t A r t A r t A r t π π    ′=

    ′ ′∇ = ∇ + − ∇ = ∇ − ∇ =i i i i i   (1.6)

    (3)  Verify that 2φ   is also zero using 0 0 E ∇ =i .

    Solution:

    312 1 1

    ( , )1 1( , )

    4

     A r t r t d r  

    c t c t r r  φ φ φ 

    π 

    ⎧ ⎫′ ′∇∂Λ ∂ ⎪ ⎪′= + = −   ⎨ ⎬′∂ ∂ −⎪ ⎪⎩ ⎭

    ∫  i

      (1.7)

    Incorporating the results of part (1), this becomes

    285

  • 8/18/2019 Shankar Quantum Mechanics Solution

    287/327

  • 8/18/2019 Shankar Quantum Mechanics Solution

    288/327

    287

  • 8/18/2019 Shankar Quantum Mechanics Solution

    289/327

    288

  • 8/18/2019 Shankar Quantum Mechanics Solution

    290/327

    289

  • 8/18/2019 Shankar Quantum Mechanics Solution

    291/327

    290

  • 8/18/2019 Shankar Quantum Mechanics Solution

    292/327

    291

  • 8/18/2019 Shankar Quantum Mechanics Solution

    293/327

    292

  • 8/18/2019 Shankar Quantum Mechanics Solution

    294/327

    293

  • 8/18/2019 Shankar Quantum Mechanics Solution

    295/327

    294

  • 8/18/2019 Shankar Quantum Mechanics Solution

    296/327

    295

  • 8/18/2019 Shankar Quantum Mechanics Solution

    297/327

    296

  • 8/18/2019 Shankar Quantum Mechanics Solution

    298/327

    297

  • 8/18/2019 Shankar Quantum Mechanics Solution

    299/327

    298

  • 8/18/2019 Shankar Quantum Mechanics Solution

    300/327

    299

  • 8/18/2019 Shankar Quantum Mechanics Solution

    301/327

    300

  • 8/18/2019 Shankar Quantum Mechanics Solution

    302/327

    301

  • 8/18/2019 Shankar Quantum Mechanics Solution

    303/327

    302

  • 8/18/2019 Shankar Quantum Mechanics Solution

    304/327

    303

  • 8/18/2019 Shankar Quantum Mechanics Solution

    305/327

    304

  • 8/18/2019 Shankar Quantum Mechanics Solution

    306/327

    305

  • 8/18/2019 Shankar Quantum Mechanics Solution

    307/327

  • 8/18/2019 Shankar Quantum Mechanics Solution

    308/327

    307

  • 8/18/2019 Shankar Quantum Mechanics Solution

    309/327

    308

  • 8/18/2019 Shankar Quantum Mechanics Solution

    310/327

    309

  • 8/18/2019 Shankar Quantum Mechanics Solution

    311/327

    310

  • 8/18/2019 Shankar Quantum Mechanics Solution

    312/327

    311

  • 8/18/2019 Shankar Quantum Mechanics Solution

    313/327

    312

  • 8/18/2019 Shankar Quantum Mechanics Solution

    314/327

    313

  • 8/18/2019 Shankar Quantum Mechanics Solution

    315/327

    314

  • 8/18/2019 Shankar Quantum Mechanics Solution

    316/327

    315

  • 8/18/2019 Shankar Quantum Mechanics Solution

    317/327

    316

  • 8/18/2019 Shankar Quantum Mechanics Solution

    318/327

    Physics 215C Homework #1 Solutions

    Richard Eager

    Department of Physics

    University of California; Santa Barbara, CA 93106

    Shankar 20.1.1

    Derive the continuity equation

    ∂P 

    ∂t  + ∇ · j  = 0

    where P  = ψ†ψ  and j  =  cψ†αψ

    The Dirac equation takes the equivalent forms

    i ∂ |ψ

    ∂t  =

    cα · P  + βmc2

    ∂ψ

    ∂t  =

    −cα · ∇ −

      i

     βmc2

    ψ

    The conjugate equation is

    ∂ψ†

    ∂t  = −cα · ∇ +   i

     

    βmc2ψ†

    ∂P 

    ∂t  = ψ†

    ∂ψ

    ∂t  +

     ∂ ψ†

    ∂t  ψ

    = −c

    ψ†α · ∇ψ + (α · ∇ψ†)ψ

    ∇ · j  =  c∇ψ†αψ + ψ†α · ∇ψ

    Adding both equations together yields the desired result

    ∂P 

    ∂t  + ∇ · j  = 0

    Both terms in the Hamiltonian,  cα · P   and  βmc2

    are Hermitian, so where didthe relative minus sign come from? To show that P  is a Hermitian operator youneed to integrate by parts. If you are working with the L2 inner product youcan drop boundary terms, but when working locally to derive the continuityequation we don’t integrate by parts and get a relative minus sign.

    1

    317

  • 8/18/2019 Shankar Quantum Mechanics Solution

    319/327

    2

    Show that the probability current  j  of the previous exercise reduces in the non-relativistic limit to Eq.(5.3.8) [which is the same as Sakurai Eq.(2.4.16)].

    The probability current   j   =  cψ†αψ   and  α  =

    0   σσ   0

     We can write the wave

    function ψ  =

    χΦ

      in terms of its relativistic and non-relativistic components,

    Φ and  χ   respectively.

     j  =  c

    χ† Φ†0   σ

    σ   0

    χΦ

      (0.1)

    = c

    χ†σΦ + Φ†σχ

      (0.2)

    In the non-relativistic limit (20.2.13)

    Φ ≈ σ · π

    2mc

     j  =  χ†  ˆ p

    2mχ + (

      ˆ p

    2mχ†)χ

    which is the non-relativistic current (5.3.8)

     j  =   

    2mi (ψ∗∇ψ − ψ∇ψ∗)

    from the identification ˆ p = −i ∇.

    Shankar 20.2.1

    Show that

    π × π =   iq  

    c   B

    where π  =  P  −   qAc

      .

    π × π =  P  × P  − qA

    c  × P  − P  ×

     qA

    c  +

     qA

    c  ×

     qA

    c

    = −q 

    c (A × P  + P  × A)

    =  iq  

    c  (A ×∇ + ∇× A)

    The simplest way to manipulate operators is to act on a test function  ψ

    iq  

    c

      (A ×∇ + ∇× A) ψ =  iq  

    c

      (A ×∇ψ + ∇× (ψA))

    =  iq  

    c  (A ×∇ψ + (∇ψ)A + (∇× A)ψ)

    =  iq  

    c  (∇× A) ψ

    =  iq  

    c  Bψ

    Therefore

    π × π =  iq  

    c  B

    2

    318

  • 8/18/2019 Shankar Quantum Mechanics Solution

    320/327

    Shankar 20.1.1

    Solve for the 4 spinors w that satisfy Shankar Eq. 20.3.3. You may assume thatthe 3- momentum   p is along the z-axis. Normalize them to unity, and show that

    they are mutually orthogonal.

    Equation (20.3.3) isEw  = (α · p + βm)w

    In terms of the relativistic and non-relativistic components,

    E − m   −σ · p−σ · p E  + m

    χΦ

    =

    00

    The solutions are given in equations (20.3.7) and (20.3.8). Choosing the basis10

    and

    01

    for Φ and letting  p  be in the  z  direction,

    w1,3  =

     p/(±E − m)010

    w2,4  =

    0

     p/(±E − m)

    01

    Orthogonality of the spinors is easy to see using  E 2 = p2 + m2.

    5

    The five terms in 20.2.28 are

    P 2

    2m  Hermitian

    V    Hermitian

    −  P 4

    8m3c2  Hermitian

    iσ · P  × [P, V ]

    4m2c2  Hermitian

    P   · [P, V ]

    4m2c2  anti-Hermitian

    Recall that  P̂   is a Hermitian operator, the potential   V   is assumed to beHermitian (for conservation of probability) and the Pauli matrices  σ  are Her-mitian. The commutator [X, Y ] of two Hermitian operators is anti-Hermitiansince [X, Y ]† = (XY )† − (Y X )† =   Y †X † − X †Y † =   Y X  − XY   =  −[X, Y ].The cross product of two Hermitian (vector) operators is again Hermitian since(X × Y )† = X † × Y † = X × Y.

    3

    319

  • 8/18/2019 Shankar Quantum Mechanics Solution

    321/327

    320

  • 8/18/2019 Shankar Quantum Mechanics Solution

    322/327

    321

  • 8/18/2019 Shankar Quantum Mechanics Solution

    323/327

    322

  • 8/18/2019 Shankar Quantum Mechanics Solution

    324/327

    323

  • 8/18/2019 Shankar Quantum Mechanics Solution

    325/327

    324

  • 8/18/2019 Shankar Quantum Mechanics Solution

    326/327

    325

  • 8/18/2019 Shankar Quantum Mechanics Solution

    327/327

    326