shaping the outbursts of dwarf novae with matthew s. b...

1
Generating Lightcurves 500 520 540 560 580 600 Time (days) 8 9 10 11 12 13 14 M V DIMRItr-1.5e16, ˙ M tr =1.5 × 10 16 Overview Dwarf Novae: Accreting white dwarfs in binaries Outbursts typically last a few days and have recurrence time several weeks Outbursts triggered by hydrogen ionization instability in the accretion disk Abridged Reference Balbus, S. A., & Hawley, J. F. 1991, ApJ, 376, 214 Bodo, G., Cattaneo, F., Mignone, A., & Rossi, P. 2012, ApJ, 761, 116 Kotko, I., & Lasota, J.P. 2012, A&A, 545, A115 Kotko I., Lasota J.P., Dubus G., Hameury J.M., 2012, A&A, 544, A13 Lasota J.P., 2001, NewAR, 45, 449 Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337 Wheatley, P. J., Mauche, C. W., & Mattei, J.A. 2003, MNRAS, 345, 49 Acknowledgements This research was supported by the United States NSF grant AST1412417. We also acknowledge support from the UCSB Academic Senate, and the Center for Scientific Computing from the CNSI, MRL: an NSF MRSEC (DMR1121053) and NSF CNS0960316. Numerical calculation was partly carried out on the Cray XC30 at CfCA, National Astronomical Observatory of Japan, and on SR16000 at YITP in Kyoto University. Shaping the Outbursts of Dwarf Novae with Convection and Magnetorotational Turbulence Matthew S. B. Coleman [email protected] Department of Physics University of California, Santa Barbara Convection Modifies Magnetorotational Turbulence and Dynamos SS Cygni Lightcurve 100 200 300 400 500 600 700 800 900 8 10 12 Date [JD‑2450000] Visual Magnitude Fig 2: Visual lightcurve of the dwarf nova SS Cygni from Wheatley et al., 2003. Motivation: Properties of steady state disks are insensitive to the stress to pressure ratio/viscosity parameter α The mechanisms which determine α are not well understood Time variations of dwarf nova outbursts probe α The relative durations of quiescence and outburst implies that α is larger in outburst Values of α measured from magnetohydrodynamic (MHD) simulations tend to be inconsistent with the values inferred from observations Methods: 3D radiationMHD local disk simulations using Zeus Realistic opacities and equation of state Modified disk instability model incorporating simulation results White Dwarf 0.02 0.04 0.06 0.08 0.10 0.12 0.14 α A 0.02 0.04 0.06 0.08 0.10 0.12 0.14 α A 0.02 0.04 0.06 0.08 0.10 0.12 0.14 α A 0.02 0.04 0.06 0.08 0.10 0.12 0.14 α A 0.02 0.04 0.06 0.08 0.10 0.12 0.14 α A 0.02 0.04 0.06 0.08 0.10 0.12 0.14 α A 0.02 0.04 0.06 0.08 0.10 0.12 0.14 α A 0.02 0.04 0.06 0.08 0.10 0.12 0.14 α A 0.02 0.04 0.06 0.08 0.10 0.12 0.14 α A 0.02 0.04 0.06 0.08 0.10 0.12 0.14 α A 0.02 0.04 0.06 0.08 0.10 0.12 0.14 α A 0.02 0.04 0.06 0.08 0.10 0.12 0.14 α A 0.02 0.04 0.06 0.08 0.10 0.12 0.14 α A 0.02 0.04 0.06 0.08 0.10 0.12 0.14 α A 0.02 0.04 0.06 0.08 0.10 0.12 0.14 α A 0.02 0.04 0.06 0.08 0.10 0.12 0.14 α A 0.02 0.04 0.06 0.08 0.10 0.12 0.14 α A 0.02 0.04 0.06 0.08 0.10 0.12 0.14 α A 0.02 0.04 0.06 0.08 0.10 0.12 0.14 α A 0.02 0.04 0.06 0.08 0.10 0.12 0.14 α A 0.02 0.04 0.06 0.08 0.10 0.12 0.14 α A 0.02 0.04 0.06 0.08 0.10 0.12 0.14 α A 0.02 0.04 0.06 0.08 0.10 0.12 0.14 α A 0.02 0.04 0.06 0.08 0.10 0.12 0.14 α A 0.02 0.04 0.06 0.08 0.10 0.12 0.14 α A 100 1000 Surface density (g cm ) −2 0.0 0.2 0.4 0.6 Convective fraction B 0.8 0.0 0.2 0.4 0.6 Convective fraction B 0.8 0.0 0.2 0.4 0.6 Convective fraction B 0.8 0.0 0.2 0.4 0.6 Convective fraction B 0.8 0.0 0.2 0.4 0.6 Convective fraction B 0.8 0.0 0.2 0.4 0.6 Convective fraction B 0.8 0.0 0.2 0.4 0.6 Convective fraction B 0.8 0.0 0.2 0.4 0.6 Convective fraction B 0.8 0.0 0.2 0.4 0.6 Convective fraction B 0.8 0.0 0.2 0.4 0.6 Convective fraction B 0.8 0.0 0.2 0.4 0.6 Convective fraction B 0.8 0.0 0.2 0.4 0.6 Convective fraction B 0.8 0.0 0.2 0.4 0.6 Convective fraction B 0.8 0.0 0.2 0.4 0.6 Convective fraction B 0.8 0.0 0.2 0.4 0.6 Convective fraction B 0.8 0.0 0.2 0.4 0.6 Convective fraction B 0.8 0.0 0.2 0.4 0.6 Convective fraction B 0.8 0.0 0.2 0.4 0.6 Convective fraction B 0.8 0.0 0.2 0.4 0.6 Convective fraction B 0.8 0.0 0.2 0.4 0.6 Convective fraction B 0.8 0.0 0.2 0.4 0.6 Convective fraction B 0.8 0.0 0.2 0.4 0.6 Convective fraction B 0.8 0.0 0.2 0.4 0.6 Convective fraction B 0.8 0.0 0.2 0.4 0.6 Convective fraction B 0.8 0.0 0.2 0.4 0.6 Convective fraction B 0.8 3.0 3.2 3.4 3.6 3.8 4.0 Log effective temperature (K) 3.0 3.2 3.4 3.6 3.8 4.0 Log effective temperature (K) 3.0 3.2 3.4 3.6 3.8 4.0 Log effective temperature (K) 3.0 3.2 3.4 3.6 3.8 4.0 Log effective temperature (K) 3.0 3.2 3.4 3.6 3.8 4.0 Log effective temperature (K) 3.0 3.2 3.4 3.6 3.8 4.0 Log effective temperature (K) 3.0 3.2 3.4 3.6 3.8 4.0 Log effective temperature (K) 3.0 3.2 3.4 3.6 3.8 4.0 Log effective temperature (K) 3.0 3.2 3.4 3.6 3.8 4.0 Log effective temperature (K) 3.0 3.2 3.4 3.6 3.8 4.0 Log effective temperature (K) 3.0 3.2 3.4 3.6 3.8 4.0 Log effective temperature (K) 3.0 3.2 3.4 3.6 3.8 4.0 Log effective temperature (K) 3.0 3.2 3.4 3.6 3.8 4.0 Log effective temperature (K) 3.0 3.2 3.4 3.6 3.8 4.0 Log effective temperature (K) 3.0 3.2 3.4 3.6 3.8 4.0 Log effective temperature (K) 3.0 3.2 3.4 3.6 3.8 4.0 Log effective temperature (K) 3.0 3.2 3.4 3.6 3.8 4.0 Log effective temperature (K) 3.0 3.2 3.4 3.6 3.8 4.0 Log effective temperature (K) 3.0 3.2 3.4 3.6 3.8 4.0 Log effective temperature (K) 3.0 3.2 3.4 3.6 3.8 4.0 Log effective temperature (K) 3.0 3.2 3.4 3.6 3.8 4.0 Log effective temperature (K) 3.0 3.2 3.4 3.6 3.8 4.0 Log effective temperature (K) 3.0 3.2 3.4 3.6 3.8 4.0 Log effective temperature (K) 3.0 3.2 3.4 3.6 3.8 4.0 Log effective temperature (K) 3.0 3.2 3.4 3.6 3.8 4.0 Log effective temperature (K) 100 1000 Surface density (g cm ) −2 ws0446 ws0429 ws0446 ws0429 0 50 100 150 Time (Orbits) -2 -1 0 1 2 Height / 1.41 × 10 9 cm ws0429 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 B y ×10 3 -0.3 -0.2 -0.1 0.0 0.1 0.2 δs/ hsi -0.5 0.0 0.5 1.0 B y ×10 3 Above Midplane -0.3 -0.2 -0.1 0.0 0.1 0.2 δs/ hsi -0.5 0.0 0.5 1.0 ×10 3 Below Midplane 10 -4 10 -3 10 -2 ws0446 Fig 1: Dwarf nova schematic. The jet emanating from the white dwarf is only observable in radio. 10 2 10 3 Σ ( g/cm 2 ) 10 3 10 4 T eff (K) Σ + crit ,T + eff ,crit Σ - crit ,T - eff ,crit DIM DIMa DIMRI MRI Sims 5 10 15 100 × α Upper Branch Lower Branch Fig 3: We use the local shearing box approximation in our MHD simulations. Convection Enhances α By including realistic opacities and equation of state appropriate for the hydrogen ionization regime, we found that convection occurs in the low temperature region of the outburst state (the upper branch of the scurve). This convection enhances the magnetorotational turbulence and α, resulting in values of α which are consistent with those recovered from observations. Fig 4: Timeaveraged stress to pressure ratio α (A) and convective fraction (B) as a function of surface mass density. Each point represents the time averaged quantities from one shearing box simulation. Colors represent the timeaveraged effective temperature of each simulation. The convective fraction is the pressure weighted fraction of energy transport done by the advection of gas internal energy. The simulations ws0429 and ws0446 have been labeled as they are examined in more detail below. Fig 6: 2D histograms of azimuthal magnetic field (B y , vertical axis) and deviations from the horizontal average of specific entropy (δs, horizontal axis). Each cell saved to file from ws0446 with 80≤t≤100 and 0≤z≤0.25 simulation units (left) and 0.25≤z≤0 simulation units (right) are used to create the respective histograms. It is important to note that for both panels there is a low entropy, high |B y | tail which corresponds to the sign of the respective wings of the butterfly diagram (see bottom panel of Fig. 5), indicating that convection is mixing regions of high magnetization from the wings into the midplane. Fig 5: Horizontallyaveraged (averaged in x and y) azimuthal magnetic field (B y ) as a function of time and height for a radiative simulation (ws0429, left) and a simulation which exhibits convective epochs (ws0446, right). The dashed black lines show the timedependent heights of the photospheres in the horizontally averaged structures. For simulation ws0446, which exhibits convection, the convective fraction f conv ‑2 is plotted in magenta, and uses the same vertical scale as B y , i.e. when the magenta line is near 1 then f conv ≈ 1. Fig 7: Left: Loci of thermal equilibria in the effective temperature T eff vs. surface mass density Σ plane (the “Scurve”) at radius R=1.25×10 10 cm for the standard DIM, DIMa and DIMRI. The MRI simulation results are gray crosses (one point for each stable simulation). Additionally, the ends of the upper (Σ + crit , T + eff,crit ) and lower (Σ crit , T eff,crit ) branches are marked for DIM. Right: The MRIbased α(T eff ) fit to simulation plotted sideways in solid black (DIMa and DIMRI both use this fit) with the results from the same MRI simulations from the left plotted as gray crosses. The variation of α used by DIM is plotted as the dotted black line. Fig 8: Light curves calculated from DIMRI with inner disc radius truncated by the magnetic field with magnetic moment μ=8×10 30 G cm 3 and M tr =1.5×10 16 gs 1 . . My Related Publications: Convective Quenching of Field Reversals in Accretion Disc Dynamos Coleman, M. S. B., Yerger, E., Blaes, O., Salvesen, G., & Hirose, S., 2017, MNRAS, Submitted Dwarf nova outbursts with magnetorotational turbulence Coleman, M. S. B., Kotko, I., Blaes, O., Lasota, J.P., & Hirose, S., 2016, MNRAS, 462, 3710 Convection Causes Enhanced Magnetic Turbulence in Accretion Disks in Outburst Hirose, S., Blaes, O., Krolik, J. H., Coleman, M. S. B., & Sano, T., 2014, ApJ, 787, 1 My publications and posters Convection Quenches Magnetic Field Reversals We noticed that the dynamo behavior of our simulations is very different when convection is present (see Fig. 5). Typically, MHD shearing box simulations with low magnetization exhibit a socalled butterfly diagram of quasiperiodic azimuthal magnetic field (B y ) reversals. For our simulations which exhibit convection, the convection is intermittent and so are the disturbances of the dynamo. During convective epochs the azimuthal field no longer reverses. 0 20 40 60 80 100 120 140 160 Time (Orbits) -2 -1 0 1 2 Height / 9.51 × 10 8 cm ws0446 f conv -800 -600 -400 -200 0 200 400 600 800 B y The primary role of convection in disrupting the butterfly diagram, is to mix magnetic field from high altitude down into the midplane. This mixing was identified through correlations between entropy and B y (see Fig. 6). Due to the high opacity of the convective epochs, perturbed fluid parcels maintain their entropy for many dynamical times. Hence the observed lowentropy highlymagnetized fluid parcels found in the midplane must have been mixed in from the wings. The Disk Instability Model (DIM) has been successful in reproducing the observed light curves of dwarf nova outbursts by invoking an adhoc enhanced α parameter ~0.10.2 in outburst compared to a low value ~0.01 in quiescence. The convective enhancement of α in outburst we found only acts near the hydrogen ionization transition. To check if this enhancement is sufficient to reproduce observed light curves, we incorporate this MRIbased variation in α into the DIM, as well as modifications to the vertical structure, using simulationbased models of turbulent dissipation and convective transport. The Equilibrium Scurve The DIM uses a library of equilibrium vertical structures to determine how adjacent annuli in the accretion disk communicate. The equilibrium structures for a single annulus are typically plotted in the surface mass density, effective temperature plane, resulting in the standard Scurve. The mass transfer rate from the secondary tries to drive the accretion disk to the middle unstable branch, however due to its unstable nature, the disk instead switches between quiescence (lower branch) and outburst (upper branch). The edges of the branches of the scurve and the value of α, shape the outburst lightcurve. Classic DIM DIM with α(T eff ) DIM with α(T eff ) and vertical structure modifications

Upload: others

Post on 15-Jan-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Shaping the Outbursts of Dwarf Novae with Matthew S. B ...web.physics.ucsb.edu/~mcoleman/publications/coleman_aas_229_poster.pdf · Shaping the Outbursts of Dwarf Novae with Convection

Generating Lightcurves

500 520 540 560 580 600

Time (days)

8

9

10

11

12

13

14

MV

DIMRItr-1.5e16, Mtr = 1.5×1016

OverviewDwarf Novae:• Accreting white

dwarfs in binaries• Outbursts typically

last a few days andhave recurrence timeseveral weeks

• Outbursts triggered byhydrogen ionizationinstability in theaccretion disk

Abridged ReferenceBalbus, S. A., & Hawley, J. F. 1991, ApJ, 376, 214Bodo, G., Cattaneo, F., Mignone, A., & Rossi, P. 2012, ApJ, 761, 116Kotko, I., & Lasota, J.­P. 2012, A&A, 545, A115Kotko I., Lasota J.­P., Dubus G., Hameury J.­M., 2012, A&A, 544, A13Lasota J.­P., 2001, NewAR, 45, 449Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337Wheatley, P. J., Mauche, C. W., & Mattei, J. A. 2003, MNRAS, 345, 49

AcknowledgementsThis research was supported by the United States NSF grant AST­1412417.We also acknowledge support from the UCSB Academic Senate, and theCenter for Scientific Computing from the CNSI, MRL: an NSF MRSEC(DMR­1121053) and NSF CNS­0960316. Numerical calculation was partlycarried out on the Cray XC30 at CfCA, National Astronomical Observatoryof Japan, and on SR16000 at YITP in Kyoto University.

Shaping the Outbursts of Dwarf Novae withConvection and Magnetorotational Turbulence

Matthew S. B. [email protected] of Physics

University of California, Santa Barbara

Convection Modifies MagnetorotationalTurbulence and Dynamos

SS Cygni Lightcurve

100 200 300 400 500 600 700 800 900

8

10

12

Date [JD‑2450000]

Vis

ual

Mag

nitu

de

Fig 2: Visual lightcurve of the dwarf nova SS Cygni from Wheatley et al., 2003.

Motivation:• Properties of steady state disks are insensitive to the stress

to pressure ratio/viscosity parameter α• The mechanisms which determine α are not well

understood• Time variations of dwarf nova outbursts probe α

­ The relative durations of quiescence and outburstimplies that α is larger in outburst

• Values of α measured from magnetohydrodynamic(MHD) simulations tend to be inconsistent with the valuesinferred from observations

Methods:• 3D radiation­MHD local disk simulations using Zeus

­ Realistic opacities and equation of state• Modified disk instability model incorporating simulation

results

WhiteDwarf

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6C

onve

ctiv

e fr

actio

n B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6C

onve

ctiv

e fr

actio

n B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6C

onve

ctiv

e fr

actio

n B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6C

onve

ctiv

e fr

actio

n B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6C

onve

ctiv

e fr

actio

n B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6C

onve

ctiv

e fr

actio

n B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6C

onve

ctiv

e fr

actio

n B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6C

onve

ctiv

e fr

actio

n B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6C

onve

ctiv

e fr

actio

n B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6C

onve

ctiv

e fr

actio

n B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6C

onve

ctiv

e fr

actio

n B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6C

onve

ctiv

e fr

actio

n B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6C

onve

ctiv

e fr

actio

n B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6C

onve

ctiv

e fr

actio

n B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6C

onve

ctiv

e fr

actio

n B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6C

onve

ctiv

e fr

actio

n B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6C

onve

ctiv

e fr

actio

n B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6C

onve

ctiv

e fr

actio

n B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6C

onve

ctiv

e fr

actio

n B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6C

onve

ctiv

e fr

actio

n B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6C

onve

ctiv

e fr

actio

n B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6C

onve

ctiv

e fr

actio

n B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6C

onve

ctiv

e fr

actio

n B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6C

onve

ctiv

e fr

actio

n B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6C

onve

ctiv

e fr

actio

n B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

100 1000

Surface density (g cm )−2

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Con

vect

ive

frac

tion

B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Con

vect

ive

frac

tion

B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Con

vect

ive

frac

tion

B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Con

vect

ive

frac

tion

B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Con

vect

ive

frac

tion

B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Con

vect

ive

frac

tion

B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Con

vect

ive

frac

tion

B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Con

vect

ive

frac

tion

B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Con

vect

ive

frac

tion

B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Con

vect

ive

frac

tion

B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Con

vect

ive

frac

tion

B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Con

vect

ive

frac

tion

B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Con

vect

ive

frac

tion

B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Con

vect

ive

frac

tion

B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Con

vect

ive

frac

tion

B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Con

vect

ive

frac

tion

B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Con

vect

ive

frac

tion

B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Con

vect

ive

frac

tion

B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Con

vect

ive

frac

tion

B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Con

vect

ive

frac

tion

B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Con

vect

ive

frac

tion

B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Con

vect

ive

frac

tion

B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Con

vect

ive

frac

tion

B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Con

vect

ive

frac

tion

B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Con

vect

ive

frac

tion

B

0.4

0.5

0.6

0.7

0.8

Bz2 /Bx

2

vz2 /vx

2

C

100 1000Surface density (g cm−2)

10−1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz2 / Σ4/3

D

3.0 3.2 3.4 3.6 3.8 4.0

Log effective temperature (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Convective fraction

B

0.4

0.5

0.6

0.7

0.8

Bz 2 /B

x 2

vz 2 /v

x 2

C

1001000

Surface density (g cm

−2)

10−

1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz 2 / Σ

4/3

D

3.03.2

3.43.6

3.84.0

Log effective temperature (K

)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Convective fraction

B

0.4

0.5

0.6

0.7

0.8

Bz 2 /B

x 2

vz 2 /v

x 2

C

1001000

Surface density (g cm

−2)

10−

1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz 2 / Σ

4/3

D

3.03.2

3.43.6

3.84.0

Log effective temperature (K

)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Convective fraction

B

0.4

0.5

0.6

0.7

0.8

Bz 2 /B

x 2

vz 2 /v

x 2

C

1001000

Surface density (g cm

−2)

10−

1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz 2 / Σ

4/3

D

3.03.2

3.43.6

3.84.0

Log effective temperature (K

)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Convective fraction

B

0.4

0.5

0.6

0.7

0.8

Bz 2 /B

x 2

vz 2 /v

x 2

C

1001000

Surface density (g cm

−2)

10−

1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz 2 / Σ

4/3

D

3.03.2

3.43.6

3.84.0

Log effective temperature (K

)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Convective fraction

B

0.4

0.5

0.6

0.7

0.8

Bz 2 /B

x 2

vz 2 /v

x 2

C

1001000

Surface density (g cm

−2)

10−

1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz 2 / Σ

4/3

D

3.03.2

3.43.6

3.84.0

Log effective temperature (K

)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Convective fraction

B

0.4

0.5

0.6

0.7

0.8

Bz 2 /B

x 2

vz 2 /v

x 2

C

1001000

Surface density (g cm

−2)

10−

1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz 2 / Σ

4/3

D

3.03.2

3.43.6

3.84.0

Log effective temperature (K

)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Convective fraction

B

0.4

0.5

0.6

0.7

0.8

Bz 2 /B

x 2

vz 2 /v

x 2

C

1001000

Surface density (g cm

−2)

10−

1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz 2 / Σ

4/3

D

3.03.2

3.43.6

3.84.0

Log effective temperature (K

)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Convective fraction

B

0.4

0.5

0.6

0.7

0.8

Bz 2 /B

x 2

vz 2 /v

x 2

C

1001000

Surface density (g cm

−2)

10−

1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz 2 / Σ

4/3

D

3.03.2

3.43.6

3.84.0

Log effective temperature (K

)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Convective fraction

B

0.4

0.5

0.6

0.7

0.8

Bz 2 /B

x 2

vz 2 /v

x 2

C

1001000

Surface density (g cm

−2)

10−

1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz 2 / Σ

4/3

D

3.03.2

3.43.6

3.84.0

Log effective temperature (K

)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Convective fraction

B

0.4

0.5

0.6

0.7

0.8

Bz 2 /B

x 2

vz 2 /v

x 2

C

1001000

Surface density (g cm

−2)

10−

1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz 2 / Σ

4/3

D

3.03.2

3.43.6

3.84.0

Log effective temperature (K

)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Convective fraction

B

0.4

0.5

0.6

0.7

0.8

Bz 2 /B

x 2

vz 2 /v

x 2

C

1001000

Surface density (g cm

−2)

10−

1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz 2 / Σ

4/3

D

3.03.2

3.43.6

3.84.0

Log effective temperature (K

)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Convective fraction

B

0.4

0.5

0.6

0.7

0.8

Bz 2 /B

x 2

vz 2 /v

x 2

C

1001000

Surface density (g cm

−2)

10−

1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz 2 / Σ

4/3

D

3.03.2

3.43.6

3.84.0

Log effective temperature (K

)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Convective fraction

B

0.4

0.5

0.6

0.7

0.8

Bz 2 /B

x 2

vz 2 /v

x 2

C

1001000

Surface density (g cm

−2)

10−

1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz 2 / Σ

4/3

D

3.03.2

3.43.6

3.84.0

Log effective temperature (K

)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Convective fraction

B

0.4

0.5

0.6

0.7

0.8

Bz 2 /B

x 2

vz 2 /v

x 2

C

1001000

Surface density (g cm

−2)

10−

1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz 2 / Σ

4/3

D

3.03.2

3.43.6

3.84.0

Log effective temperature (K

)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Convective fraction

B

0.4

0.5

0.6

0.7

0.8

Bz 2 /B

x 2

vz 2 /v

x 2

C

1001000

Surface density (g cm

−2)

10−

1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz 2 / Σ

4/3

D

3.03.2

3.43.6

3.84.0

Log effective temperature (K

)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Convective fraction

B

0.4

0.5

0.6

0.7

0.8

Bz 2 /B

x 2

vz 2 /v

x 2

C

1001000

Surface density (g cm

−2)

10−

1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz 2 / Σ

4/3

D

3.03.2

3.43.6

3.84.0

Log effective temperature (K

)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Convective fraction

B

0.4

0.5

0.6

0.7

0.8

Bz 2 /B

x 2

vz 2 /v

x 2

C

1001000

Surface density (g cm

−2)

10−

1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz 2 / Σ

4/3

D

3.03.2

3.43.6

3.84.0

Log effective temperature (K

)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Convective fraction

B

0.4

0.5

0.6

0.7

0.8

Bz 2 /B

x 2

vz 2 /v

x 2

C

1001000

Surface density (g cm

−2)

10−

1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz 2 / Σ

4/3

D

3.03.2

3.43.6

3.84.0

Log effective temperature (K

)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Convective fraction

B

0.4

0.5

0.6

0.7

0.8

Bz 2 /B

x 2

vz 2 /v

x 2

C

1001000

Surface density (g cm

−2)

10−

1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz 2 / Σ

4/3

D

3.03.2

3.43.6

3.84.0

Log effective temperature (K

)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Convective fraction

B

0.4

0.5

0.6

0.7

0.8

Bz 2 /B

x 2

vz 2 /v

x 2

C

1001000

Surface density (g cm

−2)

10−

1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz 2 / Σ

4/3

D

3.03.2

3.43.6

3.84.0

Log effective temperature (K

)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Convective fraction

B

0.4

0.5

0.6

0.7

0.8

Bz 2 /B

x 2

vz 2 /v

x 2

C

1001000

Surface density (g cm

−2)

10−

1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz 2 / Σ

4/3

D

3.03.2

3.43.6

3.84.0

Log effective temperature (K

)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Convective fraction

B

0.4

0.5

0.6

0.7

0.8

Bz 2 /B

x 2

vz 2 /v

x 2

C

1001000

Surface density (g cm

−2)

10−

1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz 2 / Σ

4/3

D

3.03.2

3.43.6

3.84.0

Log effective temperature (K

)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Convective fraction

B

0.4

0.5

0.6

0.7

0.8

Bz 2 /B

x 2

vz 2 /v

x 2

C

1001000

Surface density (g cm

−2)

10−

1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz 2 / Σ

4/3

D

3.03.2

3.43.6

3.84.0

Log effective temperature (K

)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Convective fraction

B

0.4

0.5

0.6

0.7

0.8

Bz 2 /B

x 2

vz 2 /v

x 2

C

1001000

Surface density (g cm

−2)

10−

1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz 2 / Σ

4/3

D

3.03.2

3.43.6

3.84.0

Log effective temperature (K

)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

α

A

0.0

0.2

0.4

0.6

Convective fraction

B

0.4

0.5

0.6

0.7

0.8

Bz 2 /B

x 2

vz 2 /v

x 2

C

1001000

Surface density (g cm

−2)

10−

1

100

101

102

103

pressure / Σ4/3

stress / Σ4/3

Bz 2 / Σ

4/3

D

3.03.2

3.43.6

3.84.0

Log effective temperature (K

)

100 1000

Surface density (g cm )−2

ws0446

ws0429

ws0446

ws0429

0 50 100 150

Time (Orbits)

−2

−1

0

1

2

Hei

ght

/1.

41×1

09cm

ws0429

0 20 40 60 80 100 120 140 160

Time (Orbits)

−2

−1

0

1

2

Hei

ght

/9.

51×1

08cm

ws0446

fconv

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

By

×103

−800

−600

−400

−200

0

200

400

600

800

By

−0.3 −0.2 −0.1 0.0 0.1 0.2

δs/ 〈s〉

−0.5

0.0

0.5

1.0

By

×103 Above Midplane

−0.3 −0.2 −0.1 0.0 0.1 0.2

δs/ 〈s〉

−0.5

0.0

0.5

1.0×103 Below Midplane

10−4

10−3

10−2

ws0446

Fig 1: Dwarf nova schematic. The jet emanatingfrom the white dwarf is only observable in radio.

102 103

Σ(g/cm2)

103

104

Teff

(K)

Σ+crit, T

+eff,crit

Σ−crit, T−eff,crit

DIM

DIMa

DIMRI

MRI Sims

5 10 15

100× α

Upper Branch

Lower Branch

Fig 3: We use the local shearing box approximation in our MHD simulations.

Convection Enhances α

By including realistic opacities and equation of state appropriate for the hydrogen ionization regime,we found that convection occurs in the low temperature region of the outburst state (the upper branchof the s­curve). This convection enhances the magnetorotational turbulence and α, resulting in valuesof α which are consistent with those recovered from observations.

Fig 4: Time­averaged stress to pressure ratio α (A) and convective fraction (B) as a function of surface mass density. Eachpoint represents the time averaged quantities from one shearing box simulation. Colors represent the time­averagedeffective temperature of each simulation. The convective fraction is the pressure weighted fraction of energy transport doneby the advection of gas internal energy. The simulations ws0429 and ws0446 have been labeled as they are examined inmore detail below.

Fig 6: 2D histograms of azimuthal magnetic field (By, vertical axis) and deviations from the horizontal average of specificentropy (δs, horizontal axis). Each cell saved to file from ws0446 with 80≤t≤100 and 0≤z≤0.25 simulation units (left) and­0.25≤z≤0 simulation units (right) are used to create the respective histograms. It is important to note that for both panelsthere is a low entropy, high |By| tail which corresponds to the sign of the respective wings of the butterfly diagram (seebottom panel of Fig. 5), indicating that convection is mixing regions of high magnetization from the wings into themidplane.

Fig 5: Horizontally­averaged (averaged in x and y) azimuthal magnetic field (By) as a function of time and height for aradiative simulation (ws0429, left) and a simulation which exhibits convective epochs (ws0446, right). The dashed blacklines show the time­dependent heights of the photospheres in the horizontally averaged structures. For simulation ws0446,which exhibits convection, the convective fraction fconv‑2 is plotted in magenta, and uses the same vertical scale as By, i.e.when the magenta line is near ­1 then fconv ≈ 1.

Fig 7: Left: Loci of thermal equilibria in the effective temperature Teff vs. surface mass density Σ plane (the “S­curve”) atradius R=1.25×1010 cm for the standard DIM, DIMa and DIMRI. The MRI simulation results are gray crosses (one pointfor each stable simulation). Additionally, the ends of the upper (Σ+

crit, T+eff,crit) and lower (Σ­

crit, T­eff,crit) branches are

marked for DIM. Right: The MRI­based α(Teff) fit to simulation plotted sideways in solid black (DIMa and DIMRI bothuse this fit) with the results from the same MRI simulations from the left plotted as gray crosses. The variation of α used byDIM is plotted as the dotted black line.

Fig 8: Light curves calculated from DIMRI with inner disc radius truncated by the magnetic field with magnetic momentμ=8×1030 G cm3 and Mtr=1.5×1016 g s­1.

.

My Related Publications:Convective Quenching of Field Reversals in Accretion Disc Dynamos

Coleman, M. S. B., Yerger, E., Blaes, O., Salvesen, G., & Hirose, S., 2017, MNRAS, SubmittedDwarf nova outbursts with magnetorotational turbulence

Coleman, M. S. B., Kotko, I., Blaes, O., Lasota, J.­P., & Hirose, S., 2016, MNRAS, 462, 3710Convection Causes Enhanced Magnetic Turbulence in Accretion Disks in Outburst

Hirose, S., Blaes, O., Krolik, J. H., Coleman, M. S. B., & Sano, T., 2014, ApJ, 787, 1

My publicationsand posters

Convection Quenches Magnetic Field Reversals

We noticed that the dynamo behavior of our simulations is very different when convection is present(see Fig. 5). Typically, MHD shearing box simulations with low magnetization exhibit a so­calledbutterfly diagram of quasi­periodic azimuthal magnetic field (By) reversals. For our simulations whichexhibit convection, the convection is intermittent and so are the disturbances of the dynamo. Duringconvective epochs the azimuthal field no longer reverses.0 50 100 150

Time (Orbits)

−2

−1

0

1

2

Hei

ght

/1.

41×1

09cm

ws0429

0 20 40 60 80 100 120 140 160

Time (Orbits)

−2

−1

0

1

2

Hei

ght

/9.

51×1

08cm

ws0446

fconv

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

By

×103

−800

−600

−400

−200

0

200

400

600

800

By

The primary role of convection in disrupting the butterfly diagram, is to mix magnetic field from highaltitude down into the midplane. This mixing was identified through correlations between entropy andBy (see Fig. 6). Due to the high opacity of the convective epochs, perturbed fluid parcels maintaintheir entropy for many dynamical times. Hence the observed low­entropy highly­magnetized fluidparcels found in the midplane must have been mixed in from the wings.

The Disk Instability Model (DIM) has been successful in reproducing the observed light curves ofdwarf nova outbursts by invoking an ad­hoc enhanced α parameter ~0.1­0.2 in outburst compared to alow value ~0.01 in quiescence. The convective enhancement of α in outburst we found only acts nearthe hydrogen ionization transition. To check if this enhancement is sufficient to reproduce observedlight curves, we incorporate this MRI­based variation in α into the DIM, as well as modifications tothe vertical structure, using simulation­based models of turbulent dissipation and convective transport.

The Equilibrium S­curve

The DIM uses a library of equilibrium vertical structures to determine how adjacent annuli in theaccretion disk communicate. The equilibrium structures for a single annulus are typically plotted in thesurface mass density, effective temperature plane, resulting in the standard S­curve. The mass transferrate from the secondary tries to drive the accretion disk to the middle unstable branch, however due toits unstable nature, the disk instead switches between quiescence (lower branch) and outburst (upperbranch). The edges of the branches of the s­curve and the value of α, shape the outburst lightcurve.

Classic DIM

DIM with α(Teff)

DIM with α(Teff) andvertical structure

modifications