sharif rahman the university of iowa iowa city, ia 52245

24
Sharif Rahman The University of Iowa Iowa City, IA 52245 January 2005 STOCHASTIC FRACTURE OF FUNCTIONALLY GRADED MATERIALS NSF Workshop on Probability & Materials: From Nano-to-Macro Scale

Upload: quilla

Post on 02-Feb-2016

47 views

Category:

Documents


0 download

DESCRIPTION

NSF Workshop on Probability & Materials: From Nano-to-Macro Scale. STOCHASTIC FRACTURE OF FUNCTIONALLY GRADED MATERIALS. Sharif Rahman The University of Iowa Iowa City, IA 52245. January 2005. OUTLINE. Introduction Fracture of FGM Shape Sensitivity Analysis Reliability Analysis - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Sharif Rahman The University of Iowa Iowa City, IA 52245

Sharif RahmanThe University of Iowa

Iowa City, IA 52245

January 2005

STOCHASTIC FRACTURE OF FUNCTIONALLY GRADED MATERIALS

NSF Workshop on Probability & Materials: From Nano-to-Macro Scale

Page 2: Sharif Rahman The University of Iowa Iowa City, IA 52245

OUTLINE

Introduction Fracture of FGM Shape Sensitivity

Analysis Reliability Analysis Ongoing Work Conclusions

Page 3: Sharif Rahman The University of Iowa Iowa City, IA 52245

INTRODUCTION

Fracture Toughness

Thermal Conductivity

Temperature Resistance

Compressive strength

Metal Rich

CrNi Alloy

Ceramic RichPSZ

The FGM Advantage

FGMs avoid stress concentrations at sharp material interfaces and can be utilized as multifunctional materials

Ilschner (1996)

Page 4: Sharif Rahman The University of Iowa Iowa City, IA 52245

INTRODUCTION

FGM Microstructure and Homogenization

Emetal

Eceramicceramic

metal

Elastic Modulus,Poisson’s Ratio,

etc.

Micro-Scale

Local Elastic Field

Averaged Elastic Field

Homogenization

Macro-Scale

EffectiveElasticity

Volume fraction,

Porosity, etc.

Ceramic matrix with metallic inclusions

Metallic matrix with ceramic inclusions

Transition zone

Gradation Direction

(0 m1)

Ceramic matrix with metallic inclusions

Metallic matrix with ceramic inclusions

Transition zone

Gradation Direction

(0 m1)

Page 5: Sharif Rahman The University of Iowa Iowa City, IA 52245

INTRODUCTION

Objective

Develop methods for stochastic fracture-mechanics analysis of functionally graded materials

Material

Resistance

CrackDrivingForce

>

Tensile Properties

Fracture

Toughness

Temperature

Radiation

Fatigue

Properties

Applied Stress

Crack Size and

ShapeGeometry of

Cracked Body

Loading Rate

Loading Cycles

Material Resistance Crack-Driving ForceSP P

Work supported by NSF (Grant Nos: CMS-0409463; DMI-0355487; CMS-9900196)

Page 6: Sharif Rahman The University of Iowa Iowa City, IA 52245

FRACTURE OF FGM

Crack-Tip Fields in Isotropic FGM

2a

crack

S1

S2

S3

r

E(x), (x)

x1x2

1 2,E E x x E x

1 2,x x x

tip11 11 11

1

2I II

I IIK f K fr

tip22 22 22

1

2I II

I IIK f K fr

tip12 12 12

1

2I II

I IIK f K fr

tip1 1 1

1

2I II

I IItip

rz K g K g

tip2 2 2

1

2I II

I IItip

rz K g K g

Page 7: Sharif Rahman The University of Iowa Iowa City, IA 52245

FRACTURE OF FGM

J-integral for FGM

1 11 1

i iij j ij j

j jA A

z zqJ W dA W qdA

x x x x

J-integral for Two Superimposed States 1 & 2

1 2 1 2

1 2 1 21 1

1 1

i i i iS S S

ij ij j ij ij jj j

A A

z z z zqJ W dA W qdA

x x x x

Superscript 1 Actual Mixed-Mode StateSuperscript 2 Auxiliary State with SIF = 1

( ) (1) (2) (1,2)SJ J J M

Page 8: Sharif Rahman The University of Iowa Iowa City, IA 52245

FRACTURE OF FGM

2 11 2(1,2) (1,2)

11 1

2 2 1 11 1 2 2

1 1 1 1

1 +

2

i iij ij j

jA

ij ij ij ijij ij ij ij

A

z z qM W dA

x x x

qdAx x x x

2 11 2(1,2) (1,2)

11 1

2 21 1 2

1 1 1

+

i iij ij j

jA

ij ij ijklij ij kl

A

z z qM W dA

x x x

DqdA

x x x

New Interaction Integral Methods

Both isotropic (Rahman & Rao; EFM; 2003) and orthotropic (Rao & Rahman, CM; 2004) FGMs can be analyzed

K KE

MI II or 2

1 2( , )

Method I: Homogeneous Auxiliary Field

Method II: Non-

Homogeneous Auxiliary Field

Page 9: Sharif Rahman The University of Iowa Iowa City, IA 52245

FRACTURE OF FGM

1 0.522 1, 2 xx L Ee

-0.50-0.30-0.100.100.300.50-1.00

-0.60

-0.20

0.20

0.60

1.00

2b2b

a

W

x2

x1

= 450

L2

L2

-0.50-0.30-0.100.100.300.50-1.00

-0.60

-0.20

0.20

0.60

1.00

(N = 370)

0.4 2a W

L=2, W=1

=0.3

1 1

1exp

2E x E x

ProposedMethod-I

1,2M

ProposedMethod-II

1,2M

Kim andPaulino

*( )kJ

IK

E a IIK

E a IK

E a IIK

E a IK

E a IIK

E a

0 1.448 0.610 1.448 0.610 1.451 0.6040.1 1.392 0.585 1.391 0.585 1.396 0.5790.25 1.313 0.549 1.312 0.549 1.316 0.5440.5 1.193 0.495 1.190 0.495 1.196 0.4910.75 1.086 0.447 1.082 0.446 1.089 0.4431 0.990 0.405 0.986 0.404 0.993 0.402

Plane Stress Condition

Example 1 (Slanted Crack in a Plate)

Gradation Direction

Page 10: Sharif Rahman The University of Iowa Iowa City, IA 52245

SHAPE SENSITIVITY ANALYSIS

Velocity Field & Material Derivative

,, xTxTx,xV

d

d

d

d

Zzzzz, allfor ,ΩΩ a

Zzzzzzz VV ,,, aa

Need a numerical method (FEM) to solve these two

equations for

x

x

V(x)

z z and

Governing and Sensitivity Equations

, ;, ;, TTxTx

0

( ) ( )lim

z x V x z xz

Page 11: Sharif Rahman The University of Iowa Iowa City, IA 52245

SHAPE SENSITIVITY ANALYSIS

Performance Measure

Shape Sensitivity

( , )g d

z zÑ

, ,, , , , , , , div

i i i j i jz i z i j j z i j z i jk kg z g z V g z g z V g d

V

,, , , , ,/ ; / ; / ; /i i ji j i j i j i j z i z i jz z x z z x g g z g g z

Page 12: Sharif Rahman The University of Iowa Iowa City, IA 52245

SHAPE SENSITIVITY ANALYSIS

Sensitivity of Interaction Integral Method

Method I : Homogeneous Auxiliary Field

1 2

1 2

( ) ( )+i i

i i

pV pVP p

x x

26 26

(1,2)

1 1

div( )i i iA Ai i

M p p dA PdA

V

Method II : Non-Homogeneous Auxiliary Field

1 2

1 2

( ) ( )+i i

i i

sV sVS s

x x

14 14

(1,2)

1 1

div( )i i iA Ai i

M s s dA S dA

V

Rahman & Rao; CM; 2004 and Rao & Rahman, CMAME; 2004

Page 13: Sharif Rahman The University of Iowa Iowa City, IA 52245

SHAPE SENSITIVITY ANALYSIS

W

L

2b

x1

2a

2b

L

W

x2

122 1,

xx L Ee 2L=2W=20, 2a=2, =0.3 Plane Stress Conditions

1 1expE x E x

Sensitivity of SIF Values /

( )IK a

a

( )IK a

a

( )IIK a

a

( )IIK a

a

0 1.5549 0.5018 0.0030 0.0033 0.1 1.3970 0.4599 0.3485 0.1739 0.2 0.9900 0.3471 0.5483 0.2992 0.3 0.5126 0.1870 0.5184 0.3304 0.4 0.1513 0.0407 0.2981 0.2288

Proposed Method-I

1,2M

0.5 0.0007 0.0008 0.0007 0.0007 0 1.5549 0.5018 0.0030 0.0033

0.1 1.3970 0.4599 0.3485 0.1739 0.2 0.9900 0.3471 0.5483 0.2992 0.3 0.5126 0.1870 0.5184 0.3304 0.4 0.1513 0.0407 0.2981 0.2288

Finite Difference

0.5 0.0007 0.0008 0.0007 0.0007

Sensitivity of SIF Values /

( )IK a

a

( )IK a

a

( )IIK a

a

( )IIK a

a

0 1.5549 0.5018 0.0030 0.0033 0.1 1.3970 0.4599 0.3485 0.1739 0.2 0.9900 0.3471 0.5483 0.2992 0.3 0.5126 0.1870 0.5184 0.3304 0.4 0.1513 0.0407 0.2981 0.2288

Proposed Method-I

1,2M

0.5 0.0007 0.0008 0.0007 0.0007 0 1.5549 0.5018 0.0030 0.0033

0.1 1.3970 0.4599 0.3485 0.1739 0.2 0.9900 0.3471 0.5483 0.2992 0.3 0.5126 0.1870 0.5184 0.3304 0.4 0.1513 0.0407 0.2981 0.2288

Finite Difference

0.5 0.0007 0.0008 0.0007 0.0007

Example 2 (Plate with an Internal Crack)

Gradation Direction

Page 14: Sharif Rahman The University of Iowa Iowa City, IA 52245

FRACTURE RELIABILITY

FGM System

;

;

EE E

x V

x V

{ : ( ) 0}; NF y v v v Failure Criterion

Stochastic Fracture Mechanics

2a

crack

S1

S2

S3

r

E(x), (x)

x1x2

Random Input

1

2

3

2

E

S

a

S

S

VV

V

Load

Material & gradation propertiesGeometry

Failure Probability

0FP P y V

Fracture initiation and propagation

Page 15: Sharif Rahman The University of Iowa Iowa City, IA 52245

FRACTURE RELIABILITY

Multivariate Function Decomposition

Univariate Approximation

1 1 11

ˆ ˆ( ) ( , , ) (0, ,0, ,0, ,0) ( 1) (0, ,0)N

N ii

y y v v y v N y

v

Bivariate Approximation

1 2

1 2

21

( 1)( 2)ˆ ( ) (0, ,0, ,0, ,0, ,0, ,0) ( 2) (0, ,0, ,0, ,0) ( )

2

N

i i ii i i

N Ny y v v N y v y

v 0

General S-Variate Approximation

0

1ˆ ( ) ( 1) ( )

Si

S S ii

N S iy y

i

v v

At most 1 variable in a term

At most 2 variables in a term

At most S variables in a

term

Page 16: Sharif Rahman The University of Iowa Iowa City, IA 52245

Reliability Analysis

FRACTURE RELIABILITY

Performance Function Approximations

( ) 0

0 ( )F yP P y f d

VvV v v

1 2

1 2

1 21 2

1 2 1 2 1 21 1 , 0 1 2

1 1( ) ( )

! ! !

j jjNj jj

i i ij jjj i j j i ii i i

y yy y v v v

j v j j v v

v 0 0 0

11 1

1ˆ ( ) ( )

!

jNj

ijj i i

yy y v

j v

v 0 0

Univariate

1 2ˆ( ) ( )y y v v R

Bivariate

2 3ˆ( ) ( )y y v v R

1 2

1 2

1 21 2

1 2 1 2 1 2

21 1

, 0 1 2

1ˆ ( ) ( )

!

1

! !

jNj

ijj i i

j jj j

i ij jj j i i i i

yy y v

j v

yv v

j j v v

v 0 0

0

Terms with dimensions 2 & higher

Terms with dimensions 3 & higher

Page 17: Sharif Rahman The University of Iowa Iowa City, IA 52245

Lagrange Interpolation

FRACTURE RELIABILITY

1 2

1 2 1 2 1 1 2 2 1 2 1 2

2 1

( )

1

1 1

( ) ( )

( , ) ( ) ( ) ,

nj

i i j i i ij

n nj j

i i i i j i j i i i i ij j

y v v y v

y v v v v y v v

Monte Carlo Simulation

Lagrange shape

functions

( ),1 1

1

1ˆ 0

SNi

FiS

P yN

vI

( ),2 2

1

1ˆ 0

SNi

FiS

P yN

vI

UnivariateApproximatio

n

Bivariate Approximati

on

Page 18: Sharif Rahman The University of Iowa Iowa City, IA 52245

FRACTURE RELIABILITY Example 3 (Probability of Fracture Initiation)

(a)

W

åì

a

L/2

L/2

Crack2b2

2b1

Integral Domain

çì

1

2

Random Variable

Mean

Standard Deviation

Probability Distribution

a 3.5 0.404 Uniform

W 7.5 0.289 Uniform

1 0.1 Gaussian

1 0.1 Gaussian

0 0.3 Gaussian

E1 1 0.1 Lognormal

E2 3 0.3 Lognormal

5 0.5 Lognormal

1 2 1 21 2 1 2( , ) tanh ( cos sin )

2 2

E E E EE

2 ( ) 3 ( )( ) ( )cos ( )sin ( ) cos

2 2 2Ic I IIy K K K V V

V V V V

Performance Function (Maximum Hoop Stress Criterion)

Gra

dation

Direc

tion

Page 19: Sharif Rahman The University of Iowa Iowa City, IA 52245

FRACTURE RELIABILITY

Example 3 (Results)

40 52 64 76 88 100

Fracture Toughness ( KIc)

10 -4

10 -3

10 -2

10 -1

10 0

Pro

babi

lty o

f F

ract

ure

Initi

atio

n

Monte Carlo Simulation(105 samples)

Univariate Approximation

(25 FEA)

BivariateApproximation

(277 FEA)

FORM(50-100 FEA)

Page 20: Sharif Rahman The University of Iowa Iowa City, IA 52245

ONGOING WORK

Stochastic Micromechanics

Nonhomogeneous Random Field

Volume FractionPorosity

Micromechanics

Rule of MixturesMori-Tanaka Theory

Self-Consistent TheoryEshelby’s Inclusion Theory

Particle InteractionGradients of Volume Fraction

Stochastic Material Properties

Elastic ModulusPoisson’s RatioYield Strength

etc.

Nonhomogeneous Random Field

Spatially-varying FGMMicrostructure

Page 21: Sharif Rahman The University of Iowa Iowa City, IA 52245

ONGOING WORK Level-Cut Random Field for FGM Microstructure

Phase 1 { : ( ) 1}

Phase 2 { : ( ) 0}

n

n

Y

Y

x x

x x

Translation Random Field

1,( ) ( ( )); ( )

0,

z aY I Z I z

z a

x x

Second-Moment Properties

1

1 2 1 2 11 1 2

( ) ( ) ( )

( ) ( ) ( ) ( ) ( , )

Y P Z a p

Y Y P Z a Z a p

x x x

x x x x x x

E

E

Filtered Non-Homogeneous Poisson Field

Find probability law of Z(x) to match target statistics p1 and p11

Grigoriu (2003)Homogeneous microstructure

( )

1

( ) ( ) , D

ni i i

i

Z Z h D D

x x x N

Φ Γ

( ) = Non-homogeneous Poisson field with intensity measure ( )D DD d x xN

volume fraction

two-point correlation function

Page 22: Sharif Rahman The University of Iowa Iowa City, IA 52245

ONGOING WORK

Multi-Scale Model of FGM Fracture

Force fieldof particle

(CrNi)

Force fieldof inter-

layer

Force fieldof matrix

(PSZ)

MDsimulation (particle)

MDsimulation (interlayer)

MDsimulation

(matrix)

Stochasticnano-

structure

Nano-mechanics of cluster

Homo-genization

Stochasticmicro-

structure

Micro-mechanics

of FGM

Homo-genization

Fracture of FGM

Sensitivityanalysis

Reliabilityof FGM

Interatomicpotential

Constituentproperties

Clusterproperties

FGMproperties

Molecular-scale Nano-scale Micro-scale Macro-scale

QuantumMechanics

MolecularMechanics

ContinuumMechanics

Force fieldof particle

(CrNi)

Force fieldof inter-

layer

Force fieldof matrix

(PSZ)

MDsimulation (particle)

MDsimulation (interlayer)

MDsimulation

(matrix)

Stochasticnano-

structure

Nano-mechanics of cluster

Homo-genization

Stochasticmicro-

structure

Micro-mechanics

of FGM

Homo-genization

Fracture of FGM

Sensitivityanalysis

Reliabilityof FGM

Interatomicpotential

Constituentproperties

Clusterproperties

FGMproperties

Molecular-scale Nano-scale Micro-scale Macro-scale

QuantumMechanics

MolecularMechanics

ContinuumMechanics

Page 23: Sharif Rahman The University of Iowa Iowa City, IA 52245

CONCLUSIONS

New interaction integral methods for linear-elastic fracture under mixed-mode loading conditions

Continuum shape sensitivity analysis for first-order gradient of crack-driving force with respect to crack geometry

Novel decomposition methods for accurate and computationally efficient reliability analysis

Ongoing work involves stochastic, multi-scale fracture of FGMs

Page 24: Sharif Rahman The University of Iowa Iowa City, IA 52245

REFERENCES

• Rao, B. N. and Rahman, S., “A Mode-Decoupling Continuum Shape Sensitivity Method for Fracture Analysis of Functionally Graded Materials,” submitted to International Journal for Numerical Methods in Engineering, 2004.

• Rahman, S., “Stochastic Fracture of Functionally Graded Materials,” submitted to Engineering Fracture Mechanics, 2004.

• Xu, H. and Rahman, S., “Dimension-Reduction Methods for Structural Reliability Analysis,” submitted to Probabilistic Engineering Mechanics, 2004.

• Rahman, S. and Rao, B. N., “A Continuum Shape Sensitivity Method for Fracture Analysis of Isotropic Functionally Graded Materials,” submitted to Computational Mechanics, 2004.

• Rao, B. N. and Rahman, S., “A Continuum Shape Sensitivity Method for Fracture Analysis of Orthotropic Functionally Graded Materials,” accepted in Mechanics and Materials, (In Press).

• Rahman, S. and Rao, B. N., “Continuum Shape Sensitivity Analysis of a Mode-I Fracture in Functionally Graded Materials,” accepted in Computational Mechanics, 2004 (In Press).

• Rao, B. N. and Rahman, S., “Continuum Shape Sensitivity Analysis of a Mixed-Mode Fracture in Functionally Graded Materials,” accepted in Computer Methods in Applied Mechanics and Engineering, 2004 (In Press).

• Rao, B. N. and Rahman, S., “An Interaction Integral Method for Analysis of Cracks in Orthotropic Functionally Graded Materials,” Computational Mechanics, Vol. 32, No. 1-2, 2003, pp. 40-51.

• Rao, B. N. and Rahman, S., “Meshfree Analysis of Cracks in Isotropic Functionally Graded Materials,” Engineering Fracture Mechanics, Vol. 70, No. 1, 2003, pp. 1-27.