signal processing algorithms for wireless acoustic sensor networks alexander bertrand electrical...

60
Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit Leuven 06-07-2010, University of Oldenburg, MEDI-AKU-SIGNAL Kolloquium

Upload: sarah-watson

Post on 04-Jan-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

Signal Processing Algorithms for Wireless Acoustic Sensor Networks

Alexander Bertrand

Electrical Engineering Department (ESAT)Katholieke Universiteit Leuven

06-07-2010, University of Oldenburg, MEDI-AKU-SIGNAL Kolloquium

Page 2: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

Outline

1. Introduction

2. Multi-channel Wiener filter (MWF)

3. Example: distributed MWF in binaural hearing aids

4. DANSE in fully connected WASN

5. Tree-DANSE

6. Multi-speaker VAD

Tracking of speech powerNoise reduction

Page 3: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

Outline

1. Introduction

2. Multi-channel Wiener filter (MWF)

3. Example: distributed MWF in binaural hearing aids

4. DANSE in fully connected WASN

5. Tree-DANSE

6. Multi-speaker VAD

Page 4: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

4

Traditional sensor array DSP

centralized processing

known / fixed sensor positions

Sensor array DSP

Long distance (SNR drops 6dB for each doubling of distance)

Sharp angle

#microphones is limited

Page 5: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

5

Distributed sensor arrays

Wireless acoustic sensor network (WASN)

• More spatial information• More sensors• Subset: high SNR

recordings

Page 6: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

6

• Challenges

3) Distributed processing

1) Unknown/changing positions, link failure ADAPTIVE

2) Bandwidth efficiency

4) Subset selection

Distributed sensor arrays

Page 7: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

Outline

1. Introduction

2. Multi-channel Wiener filter (MWF)

3. Example: distributed MWF in binaural hearing aids

4. DANSE in fully connected WASN

5. Tree-DANSE

6. Multi-speaker VAD

Page 8: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

Multi-channel Wiener Filtering (MWF)

2

1min ( ) ( ) ( )HE d w

w y

1( )n

1( )d

- Goal: estimate speech component in 1 of the N microphones

- Output = sum of filtered microphone signals:

W1

W2

W3

W4

+ Clean speech

1( )y

( ) ( ) ( ) y d n

Page 9: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

Multi-channel Wiener Filtering (MWF)

1( ) ( ) ( )yy yd w R r

1( )n

1( )d

- Goal: estimate speech component in 1 of the N microphones

- Output = sum of filtered microphone signals:

W1

W2

W3

W4

+ Clean speech

1( )y

( ) ( ) ( )Hyy E R y y

* *1 1( ) ( ) ( ) ( ) ( ) ( ) 1 0 ... 0

T

yd ddE d E d r y d R

Page 10: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

Multi-channel Wiener Filtering (MWF)

- Goal: estimate speech component in 1 of the N microphones

- Output = sum of filtered microphone signals:

- Needs: - N x N noise+speech correlation matrix Ryy - N x 1 clean speech correlation (column of Rdd)

- Rdd can be estimated using Rdd= Ryy- Rnn using voice activity detection (VAD) mechanism

W1

W2

W3

W4

+ Clean speech

Page 11: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

Multi-channel Wiener Filtering (MWF)

RECAP

- Given: N microphone signals

- Choose one (arbitrary) reference microphone

- MWF computes optimal filters such that sum of outputs is as close as possible to speech component in target microphone

Page 12: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

Noise frame: destructive interference

Noise = electro music

F1

F2

F3

F4

+

Page 13: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

Noise = electro music

F1

F2

F3

F4

+

Speech frame: constructive interference

Page 14: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

Outline

1. Introduction

2. Multi-channel Wiener filter (MWF)

3. Example: distributed MWF in binaural hearing aids

4. DANSE in fully connected WASN

5. Tree-DANSE

6. Multi-speaker VAD

7. Subset selection

8. Conclusions

Page 15: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

15

Example: binaural hearing aids

MWF left MWF right

Binaural link

large bandwidth needed

full matrix inversion

= 2-node WASN

Page 16: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

16

Example: binaural hearing aids

w11

Binaural link

g12

+

g21 w22

+

Converges to optimum if single desired source

(Doclo et al., 2007)

Page 17: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

17

Motivation for DANSE

• > 2 nodes ?e.g. supporting external sensor nodes or multiple hearing aid users.

Page 18: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

18

Motivation for DANSE

• > 2 nodes ?e.g. supporting external sensor nodes or multiple hearing aid users.

Page 19: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

19

Motivation for DANSE

• > 2 nodes ?e.g. supporting external sensor nodes or multiple hearing aid users.

Page 20: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

20

Motivation for DANSE

• > 2 nodes ?e.g. supporting external sensor nodes or multiple hearing aid users.

Page 21: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

21

Motivation for DANSE

• > 2 nodes

• Multiple desired sources e.g. conversation monitoring.

Page 22: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

22

Motivation for DANSE

• > 2 nodes

• Multiple desired sources e.g. conversation monitoring.

Page 23: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

Outline

1. Introduction

2. Multi-channel Wiener filter (MWF)

3. Example: distributed MWF in binaural hearing aids

4. DANSE in fully connected WASN

5. Tree-DANSE

6. Multi-speaker VAD

Page 24: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

24

DANSE

• Previous requires more general framework:Distributed adaptive node-specific signal estimation (DANSE)

• Allows for multiple nodes (fully connected topology)

• Allows for multiple target sources: Estimating K sources requires communication of K-channel signals(DANSEK)

Page 25: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

DANSE

Considered here:

• Fully connected WSN

• Multi-channel sensor signal observations

• Goal: each node estimates node-specific signal, but common latent signal subspace (dimension= # targets)

Page 26: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

26

3 nodes, fully connected

Page 27: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

27

Binaural hearing aids (revisited)

w11

Binaural link

g12

+

g21 w22

+

Page 28: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

28

w11(2)

Binaural link

g12(2)

+ +

w11(1) g12(1)

w22(2)g21(2)

w22(1)g21(1)

Converges to optimum if #desired sources ≤ 2

J=2, DANSE2 (K=2)

auxiliary channels(capture signal

space)

Binaural hearing aids (revisited)

Page 29: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

29

Binaural link

+ +

J=2, DANSEK

1z

2z

1d 2d

11W 12G 21G 22W

Converges to optimum if K= # desired sources

KK

Binaural hearing aids (revisited)

Page 30: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

Sequential updating

Sequential round-robin update

Page 31: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

31

DANSE with simultaneous updating

- Simultaneous updating: parallel computing

- Sometimes convergence to optimal solution, but not always

- Solution: relaxation yields convergence and optimality:

newii WWW )1(1

Page 32: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

32

Without relaxation (S-DANSE)

4 nodes, 3-6 sensors/node

DANSE with simultaneous updating

Page 33: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

33

With relaxation (rS-DANSE)

4 nodes, 3-6 sensors/node

DANSE with simultaneous updating

Page 34: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

34

DANSE audio demo (tracking omitted)

Unfiltered

rS-DANSE

Centralized MWF

Page 35: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

35

Robust DANSE

- Theory: DANSE == centralized MWF, but…

Page 36: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

36

Robust DANSE

- Numerical errors due to:

- Estimation errors in Rdd (especially at low SNR nodes) ripple effect

- Reference microphones are close to each other ill-conditioned basis for signal subspace

- Solution: estimate speech component in communicated signals, preferably from high SNR nodes (= Robust DANSE or R-DANSE)

- Convergence is proven under certain dependency conditions

Page 37: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

Outline

1. Introduction

2. Multi-channel Wiener filter (MWF)

3. Example: distributed MWF in binaural hearing aids

4. DANSE in fully connected WASN

5. Tree-DANSE

6. Multi-speaker VAD

Page 38: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

What if not fully connected?

Page 39: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

What if not fully connected?

Nodes must pass on information from other nodes

1) Nodes act as relays (virtually fully connected): - huge increase in bandwidth if limited connections- routing problem

2) Nodes broadcast the sum of all filtered inputs:- no increase in bandwidth- no routing problem (?)

Page 40: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

40

What if not fully connected?

Page 41: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

FEEDBACK !!

What if not fully connected?

Page 42: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

What if not fully connected?

- Intuition

- Theoretical analysis

- Conclusion: feedback causes major problems

- Direct feedback (one edge) vs. indirect feedback (loops)

Page 43: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

Direct feedback cancellation

• Transmitter feedback cancellation

Page 44: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

• Receiver feedback cancellation

Direct feedback cancellation

Page 45: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

What if not fully connected?

- Intuition

- Theoretical analysis

- Conclusion: feedback causes major problems

- Direct feedback (one edge) vs. indirect feedback (loops)

- Prune to tree topology T-DANSE (= still optimal output!!)

Page 46: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

Outline

1. Introduction

2. Multi-channel Wiener filter (MWF)

3. Example: distributed MWF in binaural hearing aids

4. DANSE in fully connected WASN

5. Tree-DANSE

6. Multi-speaker VAD

Page 47: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

47

Multi-speaker VAD

- Goal: Track individual speech power of multiple simultaneous speakers or other non-stationary sources (VAD)

- Exploit spatial diversity from WASN

speaker

microphone

Page 48: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

48

Multi-speaker VAD

• Ad-hoc microphone array• Assumptions:

1. Speakers in near-field2. Speakers are independent3. Limited noise/reverberance4. Sources to track are well-grounded (= they attain zero-values)

• Advantages:

• Array geometry unknown

• Speaker positions unknown

• Energy-based low data rate synchronization not crucial

WASN’s !

Page 49: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

Data model

Page 50: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

Data model

Page 51: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

Non-negative blind source separation

- Theorem (Plumbley, 2002):

“An orthogonal mixture of non-negative, well-grounded source signals, that preserves non-negativity, is a permutation of the original signals.”

Page 52: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

Exploiting non-negativity and well-groundedness (J=N=2 example)

s1

s2

s1

s2

y=As

Page 53: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

Exploiting non-negativity and well-groundedness (J=N=2 example)

s1

s2

Orthogonal transformation preserves uncorrelatedness simple decorrelation (whitening) of measurements gives original up to a rotation

whiten

s1

s2

?

Page 54: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

Exploiting non-negativity and well-groundedness (J=N=2 example)

- Well-grounded source signals

y=As

s1

s2

s1

s2

Page 55: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

Exploiting non-negativity and well-groundedness (J=N=2 example)

- Well-grounded source signals

s1

s2

whiten

s1

s2

!

Page 56: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

Exploiting non-negativity and well-groundedness (J=N=2 example)

- Well-grounded source signals

s1

s2

s1

s2

Page 57: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

Non-negative blind source separation

- Theorem (Plumbley, 2002):

“An orthogonal mixture of non-negative, well-grounded source signals, that preserves non-negativity, is a permutation of the original signals.”

- Two different techniques:

1. - Whitening, ignoring non-negativity constraints (=easy)

- Search for rotation matrix that restores non-negativity (=hard)

2. Whitening with non-negativity constraints (=hard)

- 1st approach (Oja & Plumbley) = NPCA (Non-negative principal component analysis)

- 2nd approach (Bertrand & Moonen) = MNICA (Multiplicative non-negative independent component analysis)

Page 58: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

MNICA: results

Page 59: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

MNICA: results

Page 60: Signal Processing Algorithms for Wireless Acoustic Sensor Networks Alexander Bertrand Electrical Engineering Department (ESAT) Katholieke Universiteit

MNICA: results