silicon and biological adaptive neural circuits and...gert cauwenberghs silicon and biological...

65
Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits Silicon and Biological Adaptive Neural Circuits Gert Cauwenberghs Department of Bioengineering Institute for Neural Computation UC San Diego

Upload: others

Post on 09-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Silicon and Biological Adaptive Neural Circuits

Gert Cauwenberghs Department of Bioengineering

Institute for Neural Computation UC San Diego

Page 2: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Neuromorphic Engineering in silico neural systems design

VLSI Microchips

Neuromorphic Engineering

Neural Systems

Learning &

Adaptation

g 1 g 0

g 2 g 0

g 0

g 2 g 2

g 1

g 1

Page 3: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Today s Hottest Microchip Intel s Itanium 2

The numbers ! –! 0.5 billion transistors in

120nm CMOS –! 1.6GHz clock, 64-bit

instruction, 9MB L3 cache, 6.4GB/s I/O

–! 2553 SPECfp_base2000 (30% faster than 2.8GHz P4)

–! 130 Watts

Source: IEEE ISSCC 2002

! and what they mean Faster/cooler:

•! Scientific computing •! Database search •! Web surfing •! Video games

What about intelligence?

Page 4: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Chips and Brains

•! Itanium: –! 3 109 floating op/s

•! 5 108 transistors •! 2 109 Hz clock

–! 1010 Hz memory I/O •! 128-b data bus @ 400MHz

–! 130 Watts

•! Human brain: –! 1015 synaptic op/s

•! 1015 synapses •! 1 Hz average firing rate

–! 1010 Hz sensory/motor I/O •! 108 nerve fibers

–! 25 Watts

•! Silicon technology is approaching the raw computational power and bandwidth of the human brain.

•! However, to emulate brain intelligence with chips requires a radical paradigm shift in computation:

–! Distributed representation in massively parallel architecture •! Local adaptation and memory •! Sensor and motor interfaces

–! Physical foundations of computing

Page 5: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Physics of Computation CMOS Silicon Technology

Voltage-dependent n-channel –! Electron transport between source and drain –! Gate controls energy barrier for electrons

across the channel –! Boltzmann distribution of electron energy

produces exponential increase in channel conductance with gate voltage

p- Si substrate

n+ n+

poly Si Source

SiO2 Gate Drain

n-Channel

Cross-section of nMOS transistor in 0.18µm CMOS process (Intel, 2002)

poly

Si

Channel

Source Drain

Gate

Ene

rgy

Gat

e vo

ltage

Source

Gate

Drain

nMOS transistor circuit symbol

Page 6: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Physics of Computation CMOS Silicon Technology

Voltage-dependent p-channel –! Hole transport between source and drain –! Gate controls energy barrier for holes

across the channel –! Boltzmann distribution of hole energy

produces exponential decrease in channel conductance with gate voltage

poly Si Source

SiO2 Gate Drain

Ene

rgy

Gat

e vo

ltage

Source

Gate

Drain

pMOS transistor circuit symbol

p- Si substrate

p-Channel p+ p+ n- well

Page 7: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Physics of Neural Computation Silicon and Lipid Membranes

Mead, 1989

Voltage-dependent p-channel –! Hole transport between source and drain –! Gate controls energy barrier for holes

across the channel –! Boltzmann distribution of hole energy

produces exponential decrease in channel conductance with gate voltage

poly Si Source

SiO2 Gate Drain

Ene

rgy

Gat

e vo

ltage

p- Si substrate

p-Channel p+ p+ n- well

Squid giant axon (Hodgkin and Huxley, 1952)

Voltage-dependent conductance –! K+/Na+ transport across lipid bilayer –! Membrane voltage controls energy barrier

for opening of ion-selective channels –! Boltzmann distribution of channel energy

produces exponential increase in K+/Na+ conductance with membrane voltage

Page 8: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Physics of Neural Computation Silicon and Biochemical Synapses

Mead 1989

Voltage-dependent p-channel –! Hole transport between source and drain –! Gate controls energy barrier for holes

across the channel –! Boltzmann distribution of hole energy

produces exponential decrease in channel conductance with gate voltage

poly Si Source

SiO2 Gate Drain

Ene

rgy

Gat

e vo

ltage

p- Si substrate

p-Channel p+ p+ n- well

(from Shepherd 1979)

Voltage-dependent quantal release –! K+/Na+ through postsynaptic membrane –! Presynaptic membrane voltage controls

energy barrier for neurotransmitter release –! Boltzmann distribution in quantal release

energy produces exponential dependence of postsynaptic K+/Na+ conductance

Presynaptic membrane potential

Mea

n po

stsy

napt

ic m

embr

ane

curr

ent

Presynaptic cell

Postsynaptic cell

Synaptic cleft

Page 9: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Why Develop Neural Silicon Chips? Biology Motives:

–! In silico emulation of neural and sensory-motor systems •! Real-time computational power •! Accounts for noise and imprecision in neural elements

–! Analysis by synthesis •! Emulating form and structure of neural systems provides better

understanding, accounting for physical and architectural constraints –! Interfacing silicon with neurons and synapses in vivo

•! Allows to observe and control neural and synaptic activity Engineering Motives:

–! Efficiency of implementation •! Lower power, smaller size

–! Real-world interface •! Integrated sensors and actuators •! Analog, continuous-time dynamics •! Intelligent brain-machine interfaces!

Page 10: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Neuromorphic Systems Design Flow

Neural Model

Microchip(s)

Neuromorphic System

Circuit Design and Simulation

Microfabrication

System Integration

Chip Layout

Chip Testing

http://www.mosis.org

Page 11: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Silicon Model of Visual Cortical Processing

g!1!g!0!

g!2!g!0!

g!0!

g!2!g!2!

g!1!

g!1!

C!0!

C!+z! C!+y!

C!+x!C!-x!

C!-y! C!-z!

I!0!

I!0!

I!0!I!0!I!0!

I!0!I!+y!I!+z!

I!-x!I!+x!

I!-y! I!-z!LGN

V2

6

4

3

2

6

V1

Optic Nerve

Single-chip focal-plane implementation (Cauwenberghs and Waskiewicz, 1999)

Bipole cells (diffusive network)

Complex and hypercomplex

cells (lateral

inhibition)

Neural model of boundary contour representation in V1, one orientation shown (Grossberg, Mingolla, and Williamson, 1997)

88 transistors/pixel (including

photodetector)

Page 12: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

NeuroDyn: Biophysical Neurodynamics in Analog VLSI Yu and Cauwenberghs 2009

The NeuroDyn Board consists of 4 neurons fully connected through 12 synapses. All parameters are individually programmable and have biophysically-based parameters governing the conductances, reversal potentials, and voltage-dependance of the channel kinetics.

Programmable Parameters: 384 total

V1 V2

V3 V4

s1,2

s2,1

s3,4

s4,3

s4,2 s2,4 s3,1 s1,3

s1,4

s3,2

s2,3

s4,1

Neurons Vi ! (V)

*All rates !, " are 7-point sigmoidal spline regression functions !. (Vk), ".(Vk), k = 1,!7

ni mi hi

! (Vpre) rij Synapses sij

" (Vpost) rij

" (V) ni mi hi

g synij

g Nai Ki Li

E synij

E Nai Ki Li 4x3x7* 4x3x7* 4x3 4x3

12x7* 12x7* 12 12

Recorded dynamics of action potential and channel kinetics for one HH neuron.

Vm

m

n h

Page 13: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

NeuroDyn Models and Architecture

The NeuroDyn chip emulates detailed neural and synaptic dynamics in silicon by implementing rate-based models of voltage-gated and ligand-gated channel kinetics. Each parameter is individually

addressable and programmable through 10-bit DACs.

rateopening

( ) nndtdn

nn !" ##= 1

rateclosing

( )Vn!

( )Vn!n!1 n

Fraction of gates closed

Fraction of gates open

3 ijsynijsyn Eg ,

( ) ( )kk VV! !,

ijr

im

ih

in

iNaiNa Eg ,

iKiK Eg ,

iLiL Eg ,

( ) ( )jijiij VV! !,

+

neurons

synapses

iNaI

iKI

iLI

ijSynI

dtdVC i

mem

( ) ( ) ( ) !"""""""=ij

ijSyniLiiLiKiiiKiNaiiiiNaexti

mem IEVgEVngEVhmgIdtdVC 43

Data

Address

10-bit DACs

revEg,

revEg,

( ) ( )iimiim VV! !,

( ) ( )kk VV! !,

( ) ( )iihiih VV! !,

( ) ( )iiniin VV! !,

Page 14: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

NeuroDyn Synaptic Coupling

Uncoupled Mutual inhibitory synaptic coupling

Page 15: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Generalized Map-Based Neural Dynamics Izhikevich 2003; Rulkov, Timofeev & Bazhenov 2004; Mihalas & Niebur 2009

Electronic version of the figure and reproduction permissions are freely available at www.izhikevich.com

Page 16: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Generalized HH/ML Neural Dynamics Yu, Sejnowski, and Cauwenberghs 2010

neuron

synapser

h

K

Nam

n

Vi

Vj

gatingvariables

channelcurrents

dynamics

Isyn

IK

INa

h

r

n4

m3

(a) Hodgkin Huxley

neuron

synapser

h

K

Vi

Vj

gatingvariables

channelcurrents

dynamics

w

Cam∞

w

m∞

rIsyn

IK

ICa

constant

(b) Morris Lecar

neuron

synapser

h

K

Vi

Vj

gatingvariables

channelcurrents

dynamics

w

Cam∞

Isyn

IK

ICa

w4

m3∞

h

r

(c) Extended Morris Lecar

Page 17: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

NeuroDyn Tonic Spiking

! !"# $ $"# % %"# & &"# '!#!

!

#!

$!!

$#!

Vm

! !"# $ $"# % %"# & &"# '!

!"#

$

w,m

ss,h

(

(

! !"# $ $"# % %"# & &"# '!$

!

$

%

Time (ms)

I ex

t

mss h w

0 50 1000

0.2

0.4

0.6

0.8

1

Vm (mV)

w,m

ss,h

0 50 1000

5

10

15

Vm (mV)

τ(m

s)

0 50 1000

0.2

0.4

0.6

0.8

1

Vm (mV)

w,m

ss,h

0 50 1000

5

10

15

Vm (mV)

τ(m

s)

(a) (b) (c) (d)

(e) (f)

Vm

h

mss

w

w,m

ss,h

Matlab digital simulation NeuroDyn analog emulation

Yu, Sejnowski, and Cauwenberghs 2011

Page 18: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

NeuroDyn Phasic Spiking

0 50 1000

0.2

0.4

0.6

0.8

1

Vm (mV)

n,m

,h

0 50 1000

2

4

6

8

10

Vm (mV)

τ(m

s)

! !"# $ $"# % %"# & &"# '!#!

!

#!

$!!

$#!

Vm

! !"# $ $"# % %"# & &"# '!

!"#

$

n,m

,h

(

(

m h n

! !"# $ $"# % %"# & &"# '!$

!

$

%

Time (ms)

I ex

t

0 50 1000

0.2

0.4

0.6

0.8

1

Vm (mV)

n,m

,h

0 50 1000

2

4

6

8

10

Vm (mV)

τ(m

s)

Vm

n

m

h

(a) (b) (c) (d)

(e) (f)

n,m

,h

Matlab digital simulation NeuroDyn analog emulation

Yu, Sejnowski, and Cauwenberghs 2011

Page 19: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

NeuroDyn Tonic Bursting

0 50 1000

0.2

0.4

0.6

0.8

1

Vm (mV)

w,m

ss,h

0 50 1000

5

10

15

Vm (mV)

τ(m

s)

! !"# $ $"# % %"# & &"# '!#!

!

#!

$!!

$#!

Vm

! !"# $ $"# % %"# & &"# '!

!"#

$

w,m

ss,h

(

(

! !"# $ $"# % %"# & &"# '!$

!

$

%

Time (ms)

I ex

t

mss h w

0 50 1000

0.2

0.4

0.6

0.8

1

Vm (mV)

w,m

ss,h

0 50 1000

5

10

15

Vm (mV)

τ(m

s)

Vm

h

mss

w

Vm

h

(a) (b) (c) (d)

(e) (f)

mss

w

w,m

ss,h

Matlab digital simulation NeuroDyn analog emulation

Yu, Sejnowski, and Cauwenberghs 2011

Page 20: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Change Threshold Detection APS CMOS Imager

–! Event-driven video compression •! Change detection and threshold encoding

on the focal plane –! 6T pixel combines APS and change event

coding –! 4.3mW power at 3V and 30fps

Chi, Mallik, Clapp, Choi, Cauwenberghs and Etienne-Cummings (2007)

90 x 90 TD-APS

Array

FIFO

DDS / Event Coding

Video Out Change Events Out

Fast Rotation Slow Rotation pos. neg.

Page 21: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Change Detection APS: Compression and Reconstruction

Frame 0

Frame 50

Change Events

Reconstructed

Uncompressed Low Threshold

High Threshold

Page 22: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Event-Coding Silicon Retina

–! Models coding and communication of visual events in the mammalian retina and optic nerve •! Integrated photosensors (rods) •! On and off transient and sustained ganglia cell outputs

–! Spatiotemporal compressed coding and communication in optic nerve –! Address-event coding of spikes

Zaghloul and Boahen, 2006

Page 23: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Reconfigurable Synaptic Connectivity and Plasticity From Microchips to Large-Scale Neural Systems

Multi-Chip Systems

Address-Event Representation

Neural Systems

Synaptic Plasticity &

Wiring

Page 24: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Address-Event Representation (AER) Lazzaro et al., 1993; Mahowald, 1994; Deiss 1994; Boahen 2000

–! AER emulates extensive connectivity between neurons by communicating spiking events time-multiplexed on a shared data bus.

–! Spikes are represented by two values: •! Cell location (address) •! Event time (implicit)

–! All events within !t are simultaneous

Page 25: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

–! Virtual synapses •! Dynamically reconfigurable •! Wide-ranging connectivity •! Rewiring and synaptic plasticity

–! Quantal release: R = n p q!•! n: multiplicity (repeat event) •! p: probability of release (toss a coin) •! q: quantity released (set amplitude)

Address-Event Synaptic Connectivity Goldberg, Cauwenberghs and Andreou, 2000

IFAT2 (2000)

transceiver (IFAT)

1

2

Sender

Receiver

(DRAM)

Page 26: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Silicon Membrane Array Transceiver Vogelstein, Mallik and Cauwenberghs, 2004

–! Voltage-controlled membrane ion conductance •! Event-driven activation •! Dynamically reconfigurable:

–! conductance g –! driving potential E

–! Address-event encoding of pre-and post-synaptic action potentials

60 x 40 IFAT Array

Event Arbitration

Eve

nt C

odin

g/D

ecod

ing

IFAT3 (2004)

Na+ K+ Na+ (strong)

AP

Page 27: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Silicon Membrane Circuit

gi(t) ion-specific membrane conductance

Ei ion-specific driving potential

Synapse subcircuit Action potential generation and AER handshaking

Page 28: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Reconfigurable Silicon Large-Scale Neural Emulator

•! 9,600 neurons –! 4 silicon membrane chips (IFAT)

•! 4 million, 8-bit virtual synapses –! 128MB (32bX4M) non-volatile RAM

•! 1 million synaptic updates per second –! 200MHz Spartan II Xilinx FPGA MCU

•! Dynamically reconfigurable –! Rewiring and synaptic plasticity (STDP etc.) –! Driving potential (DAC) and conductance (IFAT)

Sender

Receiver

IFAT3

Vogelstein, Mallik and Cauwenberghs, 2007

Page 29: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Hierarchical Vision and Saliency-Based Acuity Modulation Vogelstein, Mallik, Culurciello, Cauwenberghs, and Etienne-Cummings, NECO 2007

IFAT Cortical Model 4800 silicon neurons 4,194,304 synapses

Octopus Silicon Retina 80 x 60 pixels

AER spiking output

OR image Simple cell response Saliency map

Page 30: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Spike Timing-Dependent Plasticity

Bi and Poo, 1998

Page 31: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Spike Timing-Dependent Plasticity in the Address Domain

Causal Anti-Causal

Page 32: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Spike Timing-Dependent Plasticity on the IFAT Vogelstein et al, NIPS*2002

Page 33: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Scaling of Task and Machine Complexity

Achieving (or surpassing) human-level machine intelligence will require a convergence between: •! Advances in computing resources approaching connectivity and

energy efficiency levels of computing and communication in the brain; •! Advances in training methods, and supporting data, to adaptively

reduce algorithmic complexity.

Machine Complexity Throughput;

Memory; Power;

Size

Task Complexity Search tree depth*breadth

[log]

[log]

Human brain 1015 synOP/s; 15W

Brute force Digital computer

Humanoid Neuromorphic computer

Page 34: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Example: Board Games (Chess and Go)

–! Complexity of typical strategic board games precludes exact solution through complete tree search for all but the simplest games (smallest boards). •! Chess and Go are EXPTIME-complete: perfect strategy requires search time

exponential in board size. –! Humans handle game complexity by pattern recognition and sequence recall,

rather than tree search, acquired through extensive experience. •! Novices routinely defeat computer Go, which fails to see the board like humans. •! The need to see board patterns calls for adaptive neuromorphic approaches.

Machine Complexity Throughput;

Memory; Power;

Size

Game Complexity Game tree depth*breadth

[log]

[log] Brute force Digital computer

Humanoid Neuromorphic computer

Human brain 1015 synOP/s; 15W

Deep Blue/ Deep Fritz

10123 10360

Chess (8x8)

Go (19x19)

ELO " 2,800 (world champion)

Kasparov

The game of Go (19x19 version)

Page 35: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Scaling and Complexity Challenges

•! Scaling the event-based neural systems to performance and efficiency approaching that of the human brain will require: –! Scalable advances in silicon integration and architecture

•! Scalable, locally dense and globally sparse interconnectivity –! Hierarchical address-event routing

•! High density (1012 neurons, 1015 synapses within 5L volume) –! Silicon nanotechnology and 3-D integration

•! High energy efficiency (1015 synOPS/s at 15W power) –! Adiabatic switching in event routing and synaptic drivers

–! Scalable models of neural computation and synaptic plasticity •! Convergence between cognitive and neuroscience modeling •! Modular, neuromorphic design methodology •! Data-rich, environment driven evolution of machine complexity

EE NanoE Phys

Neuro CS

CogSci

Page 36: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

3-D Integrated Silicon Neuromorphic Processor

•! 65,000, two-compartment neurons –! Conductance-based integrate and fire

array transceiver (IFAT) •! 65 million, 32-bit virtual synapses

–! Conductance-based dynamical synapses –! Dynamic table-look in embedded

memory (2Gb DRAM) •! Locally dense, globally sparse synaptic

interconnectivity –! Hierarchical address-event routing

(HiAER) –! Dynamically reconfigurable –! Asynchronous spike event I/O interface

Sender

Receiver

Park, Joshi, Yu, Maier, and Cauwenberghs, 2010

5 m

m

5 mm

5 m

m

5 mm

DRAM HiAER (Digital CMOS) IFAT (Analog CMOS)

Top metal

TSV Top metal

I/O pad

HiAER IFAT 0.13µm CMOS 0.13µm CMOS

Hierarchical address-event routing (HiAER)

Page 37: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

(a) (b) (c)

(d) (e) (f)

Phase Change Memory (PCM) Nanotechnology

Intel/STmicroelectronics (Numonyx) 256Mb multi-level phase-change memory (PCM) [Bedeschi et al, 2008]. Die size is 36mm2 in 90nm CMOS/Ge2Sb2Te5, and cell size is 0.097µm2. (a) Basic storage element schematic, (b)

active region of cell showing crystalline and amorphous GST, (c) SEM photograph of array along the wordline direction after GST etch, (d) I-V characteristic of storage element, in set and reset states, (e) programming

characteristic, (f) I-V characteristic of pnp bipolar selector.

–! Scalable to high density and energy efficiency •! < 100nm cell size in 32nm CMOS •! < pJ energy per synapse operation

Page 38: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Large-Scale Mixed-Signal Sensory Computation

•! Massive Parallelism –! distributed representation –! local memory and adaptation –! analog sensory interface –! physical computation –! analog accumulation on

single wire •! Inherently Scalable

silicon area and power scale linearly with throughput

•! Highly Efficient factor 100 to 10,000 less

energy/operation than DSP •! Limited Precision

–! analog mismatch and nonlineary (WYDINWYG)

–! fix: adaptation in redundancy

Example: VLSI Analog-to-digital vector quantizer (Cauwenberghs and Pedroni, 1997)

Page 39: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Silicon Learning Machines for Embedded Sensor Adaptive Intelligence

ASP A/D Sensory Features

Digital Analog

Large-Margin Kernel Regression Class Identification

Kerneltron: massively parallel support vector machine (SVM) in

silicon (JSSC 2007)

MAP Forward Decoding Sequence Identification

Sub-microwatt speaker verification and phoneme recognition (NIPS 2004)

GiniSVM

Page 40: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Trainable Modular Vision Systems: The SVM Approach

–! Support vector machine (SVM) with mathematical foundations in Statistical Learning Theory (Vapnik, 1995)

–! The training process selects a small fraction of prototype support vectors from the data set, located at the margin on both sides of the classification boundary (e.g., barely faces vs. barely non-faces)

Support vector machine (SVM) classification for pedestrian and face object detection

Papageorgiou, Oren, Osuna and Poggio, 1998

Page 41: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Trainable Modular Vision Systems: The SVM Approach

–! The number of support vectors, in relation to the number of training samples and the vector dimension, determine the generalization performance

–! Both training and run-time performance are severely limited by the computational complexity of evaluating kernel functions

ROC curve for various image representations and dimensions

Papageorgiou, Oren, Osuna and Poggio, 1998

Page 42: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

•! 1.2 TMACS / mW –! adiabatic resonant clocking

conserves charge energy –! energy efficiency on par with

human brain (1015 SynOP/S at 15W)

Kerneltron: Adiabatic Support Vector Machine Karakiewicz, Genov and Cauwenberghs , 2007

Karakiewicz, Genov, and Cauwenberghs, VLSI 2006; CICC 2007

x i

x SIGN

# i MVM

SUPPORT VECTORS

INPUT y

KE

RN

EL K

(x ,x i )

)),((sign bKyySi

iii += !"

xx#

Classification results on MIT CBCL face detection data

resonance

capacitive load

Page 43: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Resonant Charge Energy Recovery

resonance

capacitive load

CID array

reso

nanc

e

(capacitive load)

Page 44: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Silicon support vector machine (SVM) and forward decoding kernel machine (FDKM)

x s

x NORMALIZATION

# i1 s

14 24x24

30x24 30x24

1 2 24

! j[n-1] ! i[n] 24

MVM MVM

SUPPORT VECTORS

INPUT f i1 (x)

24 FORWARD DECODING

P i1 P i2 4 K

ER

NE

L K(x,x s )

24x24

Forward decoding MAP sequence estimation Biometric verification

840 nW power

Sub-Micropower Analog VLSI Adaptive Sequence Decoding Chakrabartty and Cauwenberghs , 2004

GiniSVM

X[n] X[n-1] X[n+1]

j!

i!

Page 45: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Adaptive Machine Intelligence Training Machines towards Human Performance through Games

Intelligent Machines

Competitive Games

Human Brain Human and

Machine Learning

keyboard mouse joystick

Internet game moves

game moves

events

Event Codec video audio

VR

Page 46: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Competitive Games: Humans and Machines

–! Learning through experience in two-player zero-sum games: •! Humans to humans: Novices learn from experts to become experts. •! Humans to machines: Towards human-level machine performance. •! Machines to machines: Beyond human-level machine performance.

–! Heterogeneous competitive ranking: •! ELO score ranks humans and machines alike. •! Turing test.

H - H M - M H - M

Page 47: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Web-Based Competitive Games Human Players

–! Existing, extensively developed game infrastructure –! Readily available, large pool of human subjects

Human Player #1

video audio

VR

keyboard mouse joystick

Java Kernel

Internet

game moves

Human Player #2

keyboard mouse joystick

Java Kernel

game moves

Game Server

video audio

VR

Page 48: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Web-Based Competitive Games Humans and Machines

–! Event codec adapter and machine interface –! Central logging, ranking, and matchmaking at external game

server

Human Player

keyboard mouse joystick

Java Kernel

Internet

game moves

Java Kernel

game moves

Game Server

Machine

events

Event Codec video audio

VR

Page 49: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Web-Based Competitive Games Humans Tutoring Machines

–! Machine learns by observing actions and internal representation (EEG brain activity) of human expert.

–! Neuromorphic: trained machine approaches human brain function and form.

Human Trainer (Expert)

keyboard mouse joystick

Internet

game moves

Game Server

Machine

sensory/motor events

Event Codec

EEG array

Tutor

Game (active)

Pupil

Game (passive)

game moves (copy)

actions brain activity

feedback/reward events activity map

video audio

VR

Page 50: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Inferface and Benchmark Infrastructure

Extensions of Interface and Benchmark Infrastructure General Game Environments

Machine

sensory/motor events

Event Codec

sensory input

motor output

synaptic events

Game Environment

•! Game boxes –! Specialized computers with

advanced graphics for games •! Virtual game environments •! Multi-player capable through

internet –! Examples:

•! Sony Playstation II •! Microsoft Xbox 360 •! Nintendo Wii

•! Robots –! Physical interface to sensory input

and motor output •! Real-world game environments

–! Examples: •! NSI Darwin •! K-Team Khepera III •! WowWee Robosapien

http://www.wowwee.com

Sensory/Motor Interface

http://www.gearsofwar.com

Page 51: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Closing the Loop: Interactive Neural/Artificial Intelligence

MicropowerMixed-Signal

VLSI Neuro

Bio

Neurosystems Engineering

Biosensors,

Neural Prostheses and Brain Interfaces

Adaptive Sensory Feature

Extraction and Pattern Recognition

Neuromorphic Engineering

Learning &

Adaptation

Page 52: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

METRIC fitness function Q

MIMO parameters !"

thalamocortical/BG model

EE

G

EM

G, k

inet

ics,

gaz

e

force

PD markers

MoBI

MoCap

synaptic plasticity

CyberGlove

PNS

PNS

PNS PNS

CNS

CNS

CNS

adaptive control

MoCap

Computational modeling

G. Cauwenberghs, K. Kreutz-Delgado, T.P. Jung, S. Makeig, H. Poizner, T. Sejnowski, F. Broccard, D. Peterson, M. Arnold, A. Akinin, C. Stevenson, J. Menon

Distributed Brain Dynamics of Human Motor Control NSF EFRI 2012 – Mind, Machines and Motor Control (M3C)

IFAT

IFAT IFAT

IFAT

SRT

SRT

SRT

SRT SRT

SRT

SRT

SRT

SRT SRT

Level 1 HiAER

Level 1 HiAER

Level 1 HiAER

Level 1 HiAER

Level 2 HiAER

Connector

JTAG JTAG

JTAG

JTAG

EEG brain dynamics and Parkinson s

Force feedback

Neuromorphic emulation of brain dynamics in motor control

MoBI

Page 53: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Brain Computer Interfaces and Motor Control

•! The brain s motor commands ! –! Parietal/frontal cortex

•! Implanted electrodes •! Electroencephalogram (EEG)

–! Cortical signals, noninvasive –! Low bandwidth (seconds)

–! Nerve signals •! Spinal cord electrodes •! Electromyogram (EMG)

–! Muscle signals, noninvasive –! Higher bandwidth (milliseconds)

! translated into motor actions –! Machine learning/signal processing –! Neuromorphic approaches

•! Central pattern generators (CPGs)

Nicolelis, Nature Rev. Neuroscience 4, 417, 2003

Page 54: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Wireless Non-Invasive, Orthotic Brain Machine Interfaces

–! Mind-machine interfaces for augmented human-computer interaction

–! Body sensor networks for mobile health monitoring and augmented situation awareness

Calit2 StarCAVE immersive 3-D virtual reality environment Yu Mike Chi, 2010 TATRC Grand Challenge

Page 55: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

10Hz alpha

Eye blinks Eyes Closed

Wireless EEG/ICA Neurotechnology

RF Wireless Link

EEG/ICA Silicon Die

Dry Electrode

Flex Printed Circuit

with Tom Sullivan, Steve Deiss, Tzyy-Ping Jung and Scott Makeig

•! Integrated EEG/ICA wireless EEG recording system –! Scalable towards 1000+ channels –! Dry contact electrodes –! Wireless, lightweight –! Integrated, distributed independent component analysis (ICA)

Page 56: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Wireless Non-Contact Biopotential Sensors Mike Yu Chi and Gert Cauwenberghs, 2010

EEG alpha and eye blink activity recorded on the occipital lobe over

haired skull

Page 57: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Non-Contact EEG Recording over Haired Scalp

•! Easy access to hair-covered areas of the head without gels or slap-contact

•! EEG data available only from the posterior –! P300 (Brain-computer control, memory

recognition) –! SSVP (Brain-computer control)

Y. M. Chi, E. Kang, J. Kang, J. Fang and G. Cauwenberghs, 2010

Page 58: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Subject s eyes closed showing alpha wave activity!Full bandwidth, unfiltered, signal show (.5-100Hz)!

Non-Contact vs. Ag/AgCl Comparison Y. M. Chi, E. Kang, J. Kang, J. Fang and G. Cauwenberghs, 2010

Page 59: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

EEG/ECoG/EMG Amplification, Filtering and Quantization Mollazadeh, Murari, Cauwenberghs and Thakor (2009)

–! Low noise •! 21nV/!Hz input-referred noise •! 2.0µVrms over 0.2Hz-8.2kHz

–! Low power •! 100µW per channel at 3.3V

–! Reconfigurable •! 0.2-94Hz highpass, analog adjustable •! 140Hz-8.2kHz lowpass, analog

adjustable •! 34dB-94dB gain, digitally selectable

–! High density •! 16 channels •! 3.3mm X 3.3mm in 0.5µm 2P3M CMOS •! 0.33 sq. mm per channel

Page 60: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Distributed Sensing of Dopamine Activity Murari, Stanacevic, Cauwenberghs, and Thakor (2005)

Electrochemical detection Carbon-probe redox current

In vitro Dopamine monitoring by the chip using micro-fabricated electrode array as working electrode.

Carbon electrodes for Dopamine sensing (Murari, Rege, Paul, and Thakor, 2002)

Cur

rent

-Mod

e $$%%&&

VLSI potentiostat array for distributed electrochemical sensing

(Murari, Stanacevic, Cauwenberghs, and Thakor, 2004)

Page 61: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Integrated Microfluidics Electrochemical Sensing Naware, Rege, Genov, Stanacevic, Cauwenberghs and Thakor (ISCAS 2004)

In vitro nitric oxide (NO) sensing –! emulation of the shear stress regulated NO release pathway observed in

endothelial cells –! current observed by multi-channel VLSI potentiostat

PDMS microfluidics channel

Page 62: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Sensor Interface Conditioning Telemetry Chip Sauer, Stanacevic, Cauwenberghs, and Thakor (2005)

Regulation

Modulation Data Encoding

Clock Extraction CLK

VDD

GND

Data

Data

Power

Data Receiver

Rectification Power Transmitter

Potentiostat

Telemetry

Inductor Coil

Electrodes

SoS released probe body

Implantable probe with electrochemical sensors, VLSI potentiostat and power harvesting telemetry chip.

Power delivery and data transmission over the same inductive link

Telemetry chip (1.5mm X 1.5mm)

Page 63: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Cortical Surface Microvascular and Functional Imaging with K. Murari, N. Thakor, J. Driscoll, D. Kleinfeld and T. Sejnowski

Laser source

Sample

Speckle backscatter

Laser speckle functional imaging of microvascular neural activity on cortical surface, through thinned skull.

!

MCA

500 !m

b

10 mm

R

M

c

d

0

5

10

15

-30 -20 -10 0 10 20 30

y profilez profile

RBC

spe

ed (m

m/s

)

Position relative to centerof vessel (!m)

f

5 ms

0

5

10

15

0 0.5 1 1.5 2

RBC

spe

ed (m

m/s

)

Time (s)

e

25 !m

25 !m

xyflowdirection

laminarflow profile

Tim

e, t

Position along centerof vessel, x

CW laser532 nm

fs laser800 nm

PMT

scan mirrors

dichroic 2

dichroic 1ND

filtersobjective z

shutter

polarizer

translation stage

head frame

x y

tube lens

scan lens

Laser speckle sub-wavelength imaging for non-invasive target/

sample surface reconstruction and identification

Two-photon imaging of blood flow in cortical surface

microvessels

Page 64: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

180 "m

Minute 0 Minute 12 Minute 30 Minute 60

CMOS Imaging in Awake Behaving Rats Murari, Etienne-Cummings, Cauwenberghs, and Thakor (2010)

–! First simultaneous behavioral and cortical imaging from untethered, freely-moving rats.

Page 65: Silicon and Biological Adaptive Neural Circuits and...Gert Cauwenberghs Silicon and Biological Adaptive Neural Circuits gert@ucsd.edu Today s Hottest Microchip Intel s Itanium 2 The

Gert Cauwenberghs [email protected] Silicon and Biological Adaptive Neural Circuits

Integrated Systems Neuroengineering

Silicon Microchips

Neural Systems

Neuromorphic/ Neurosystems

Engineering

Learning &

Adaptation

Environment Human/Bio Interaction

Sensors and Actuators