simple mixtures thermodynamic description of mixtures aryo abyoga a (080358395) gerald mayo l...

48
SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Upload: hilary-bond

Post on 17-Dec-2015

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

SIMPLE MIXTURES

THERMODYNAMIC DESCRIPTION OF MIXTURES

ARYO ABYOGA A (080358395)

GERALD MAYO L (0806472212)

LEONARD AGUSTINUS J (0806472225)

Page 2: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Simple Mixtures Often in chemistry, we encounter mixtures

of substances that can react together. Chapter 7 deals with reactions, but let’s

first deal with properties of mixtures that don’t react.

We shall mainly consider binary mixtures – mixtures of two components.

xA xB 1

Page 3: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Dalton’s Law

The total pressure is the sum of all the partial pressure.

We already used mole fraction to descrice the partial pressure of mixtures of gases which refers to a total pressure

p j x j p

pA pB (xA xB )pp

Page 4: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

The partial molar volume is the contribution that one component in amixture makes to the total volume of a sample

H2O EtOHAdd 1.0 mol H2O Add 1.0 mol H2O

Volume increasesby 18 cm3 mol-1Volume increasesby 14 cm3 mol-1

Molar volume of H2O:18 cm3 mol-1

Partial molar volume ofH2O in EtOH: 14 cm3 mol-1

The different increase in total volume in the H2O/EtOH example dependson the identity of the molecules that surround the H2O. The EtOHmolecules pack around the water molecules, increasing the volume byonly 14 cm3 mol-1Partial molar volume of substance A in a mixture is the change in volumeper mole of A added to the large volume of the mixture

partial molar volume

Page 5: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Partial Molar Volumes Imagine a huge volume of pure water at

25 °C. If we add 1 mol H2O, the volume increases 18 cm3 (or 18 mL).

So, 18 cm3 mol-1 is the molar volume of pure water.

Page 6: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Partial Molar Volumes Now imagine a huge volume of pure

ethanol and add 1 mol of pure H2O it. How much does the total volume increase by?

Page 7: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Partial Molar Volumes When 1 mol H2O is added to a large

volume of pure ethanol, the total volume only increases by ~ 14 cm3.

The packing of water in pure water ethanol (i.e. the result of H-bonding interactions), results in only an increase of 14 cm3.

Page 8: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Partial Molar Volumes The quantity 14 cm3 mol-1 is the partial

molar volume of water in pure ethanol. The partial molar volumes of the

components of a mixture varies with composition as the molecular interactions varies as the composition changes from pure A to pure B.

Page 9: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

VJ VnJ

p,T ,n'

The partial molar volume of components of a mixture vary as themixture goes from pure A to pure B - that is because the molecularenvironments of each molecule change (i.e., packing, solvation, etc.)Partial molar volumes of a water-ethanolbinary mixture are shownat 25 oC across all possibleCompositions. The Partial molar volume, Vj, of a substance j define as :

Page 10: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

The partial molar volume is the slope of a plot of total volume as theamount of J in the sample is changed (volume vs. composition)Partial molar volumes vary

with composition (different slopes atcompositions a and b) - partial molar volume at b is negative (i.e., theoverall sample volume decreases as A is added)

Page 11: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

dV VnA

p,T ,nB

dnA VnB

p,T ,nA

dnB

When a mixture is changed by When a mixture is changed by dndnAA of of A and A and dndnBB of B, then the total volume of B, then the total volume changes by: changes by:

Partial Molar Volumes

If partial molar volumes are known for the twocomponents, then at some temperature T, thetotal volume V (state function, always positive)of the mixture is

Page 12: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

dV VnA

p,T ,nB

dnA VnB

p,T ,nA

dnB

dV VAdnA VBdnB

V VAdnA0

nA VBdnB0

nB

Partial Molar Volumes

Page 13: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

V VAdnA0

nA VBdnB0

nBV VA dnA0

nA VB dnB0

nBV VAnA VBnB

Partial Molar Volumes

Page 14: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

V (NaCl, aq) = volume of sodium chloride solution

V_

(NaCl, aq) = partial molar volume of sodium chloride

in water

Partial Molar Volumes

Page 15: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Partial Molar Volumes How to measure partial molar volumes? Measure dependence of the volume on

composition. Fit a function to data and determine the

slope by differentiation.

Page 16: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Partial Molar Volumes Ethanol is added to 1.000 kg of water. The total volume, as measured by

experiment, fits the following equation:

V 1002.93 54.6664x 0.36394x 2 0.028256x 3

x nE

Page 17: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Partial Molar Volumes

VE VnE

p,T ,nw

Vx

p,T ,nw

dV

dx54.6664 (2)0.36394x (3)0.028256x 2

Page 18: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)
Page 19: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Partial Molar Volumes Molar volumes are always positive, but

partial molar quantities need not be. The limiting partial molar volume of MgSO4 in water is -1.4 cm3mol-1, which means that the addition of 1 mol of MgSO4 to a large volume of water results in a decrease in volume of 1.4 cm3.

Page 20: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Partial Molar Gibbs energies

The concept of partial molar quantities can be extended to any extensive state function.

For a substance in a mixture, the chemical potential is defined as the partial molar Gibbs energy.

J GnJ

p,T ,n'

Page 21: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)
Page 22: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Partial Molar Gibbs energies

For a pure substance:

GnJGJ ,m

J GnJ

p,T ,n'

nJGJ ,m

nJ

p,T ,n '

GJ ,m

Page 23: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Partial Molar Gibbs energies Using the same arguments for the derivation of partial molar volumes,

Assumption: Constant pressure and temperature

GnAA nBB

Page 24: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Partial Molar Gibbs energies

Fundamental equation of chemical thermodynamics

dGVdp SdT AdnA BdnB

dGAdnA BdnB (at constant p and T)

dwadd,max AdnA BdnB (at constant p and T)

Page 25: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Chemical Potential

GH TS U pV TSU pV TS GdU pdV Vdp SdT TdS dGdU pdV Vdp SdT TdS (Vdp SdT AdnA BdnB )

dU pdV TdS (AdnA BdnB )

dU AdnA BdnB (at constant S and V)

J UnJ

S,V ,n '

Page 26: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Chemical Potential

J HnJ

S,p,n'

J AnJ

V ,T ,n'

Page 27: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Gibbs-Duhem equation

GnAA nBBdGnAdA nBdB AdnA BdnB

dGAdnA BdnB (at constant p and T)

nAdA nBdB 0

nJdJ 0J

Page 28: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Gibbs-Duhem equation

nAdA nBdB 0

dB nAnBdA

Page 29: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Molarity and Molality

Molarity, c, is the amount of solute divided by the volume of solution. Units of mol dm-3 or mol L-1.

Molality, b, is the amount of solute divided by the mass of solvent. Units of mol kg-1.

Page 30: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Using Gibbs-Duhem

The experimental values of partial molar volume of K2SO4(aq) at 298 K are found to fit the expression:

B 32.280 18.216x1 2

B VK 2SO4

x molality of K2SO4

Page 31: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Using Gibbs-Duhem

nAdVA nBdVB 0

dA nBnAdB

dA A*

A nBnAdB

A A* nB

nAdB

A A*

nBnAdB

Page 32: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Using Gibbs-Duhem

A A*

nBnAdB

B 32.280 18.216x1 2

dB

dx9.108x 1 2

dB 9.108x 1 2dx

Page 33: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Using Gibbs-Duhem

A A*

nBnAdB

dB 9.108x 1 2dx

A A* nB

nA9.108x 1 2dx A

* 9.108nBnAx 1 2dx

Page 34: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Using Gibbs-Duhem

A A*

nBnA

9.108x 1 2dx A* 9.108

nBnAx 1 2dx

nBnA

nB1 kg MA

nBMA

1 kgxMA

A A* 9.108 xMA x

1 2dx A* 9.108MA x1 2dx

A A* 9.108MA x1 2dx

0

bBA A

* 2 3 9.108MAbB3 2

Page 35: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Using Gibbs-Duhem

A A* 2 3 9.108MAbB

3 2

A* 18.079 cm3 mol 1

MA 0.01802 kg mol-1

A 18.079 0.1094bB3 2

Page 36: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)
Page 37: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Thermodynamics of mixing

So we’ve seen how Gibbs energy of a mixture depends on composition.

We know at constant temperature and pressure systems tend towards lower Gibbs energy.

When we combine two ideal gases they mix spontaneously, so it must correspond to a decrease in G.

Page 38: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Thermodynamics of mixing

Page 39: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Thermodynamics of mixing

Gm Gm RT ln

p

p

RT lnp

p

RT ln p

Page 40: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Thermodynamics of mixing

RT ln p

Gi nA A RT ln p nB B

RT ln p G f nA A

RT ln pA nB B RT ln pB

mixGnART lnpAp

nBRT lnpBp

Page 41: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Thermodynamics of mixing

mixGnART lnpAp

nBRT lnpBp

pAp

xApAp

xB

mixGnART ln xA nBRT ln xBxAn nA xBn nBmixGnRT(xA ln xA xB ln xB )

mixG 0

Page 42: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Thermodynamics of mixing

Page 43: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Gibbs energy of mixing

A container is divided into two equal compartments. One contains 3.0 mol H2(g) at 25 °C; the other contains 1.0 mol N2(g) at 25 °C. Calculate the Gibbs energy of mixing when the partition is removed.

Page 44: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Gibbs energy of mixing

Two processes: 1) Mixing2) Changing pressures of the gases.

Gi 3.0 H2

RT ln 3p 1.0 N2

RT ln p G f 3.0 H2

RT ln 3 2 p 1.0 N2

RT ln1 2 p mixG3.0(RT ln

32 p

3p) 1.0(RT ln

12 p

p)

mixG3.0(RT ln 12) 1.0(RT ln 1

2)

mixG 6.9 kJ

Page 45: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Gibbs energy of mixing

mixGnRT(xA ln xA xB ln xB )

mixG3.0(RT ln34

) 1.0(RT ln14

)

mixG 2.14 kJ 3.43 kJ

mixG 5.6 kJ

p

p

Page 46: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Other mixing functions

GT

p,n

S

mixS mixG

T

T

nRT(xA ln xA xB ln xB ) nR(xA ln xA xB ln xB )

mixS nR(xA ln xA xB ln xB )

Page 47: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)
Page 48: SIMPLE MIXTURES THERMODYNAMIC DESCRIPTION OF MIXTURES ARYO ABYOGA A (080358395) GERALD MAYO L (0806472212) LEONARD AGUSTINUS J (0806472225)

Other mixing functions

mixGnRT(xA ln xA xB ln xB )

mixS nR(xA ln xA xB ln xB )

GH TSnRT(xA ln xA xB ln xB ) H T( nR(xA ln xA xB ln xB )

nRT(xA ln xA xB ln xB ) H nRT(xA ln xA xB ln xB )

H 0 (constant p and T)