simulating transport processes in pem fuel...

43
ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 1 Simulating Transport Processes in PEM Fuel Cells John Stockie http://www.math.sfu.ca/~stockie/ Department of Mathematics, Simon Fraser University Burnaby, British Columbia, Canada June 7, 2005

Upload: others

Post on 30-May-2020

15 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 1

Simulating Transport Processesin PEM Fuel Cells

John Stockiehttp://www.math.sfu.ca/~stockie/

Department of Mathematics, Simon Fraser University

Burnaby, British Columbia, Canada

June 7, 2005

Page 2: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

Catalyst Layer Model

Electrode Model

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 2

Acknowledgments

Joint work with:

■ Keith Promislow (Michigan State University)■ Akeel Shah (Simon Fraser University)■ Brian Wetton (University of British Columbia)

Funding was provided by:

Page 3: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 3

Background: Fuel cells

Page 4: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

● What is a PEM fuel cell?

● A “multi-physics” problem

● Fuel cell modelling

● Previous work

● Our approach

Catalyst Layer Model

Electrode Model

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 4

What is a PEM fuel cell?

■ Converts chemical energy of fuel (hydrogen and oxygen)directly into electricity

■ Governing reaction is “reverse electrolysis”:

Anode (−): 2H2

Pt−→ 4H+ + 4e−

Cathode (+): O2 + 4H+ + 4e−Pt−→ 2H2O

■ The proton exchange membrane (PEM) lies at the “heart”of the fuell cell:◆ consists of a thin (50–200 µm) polymer sheet – Nafion

◆ permits only protons and water to pass through◆ prevents reactants combining (potentially explosively) in

gaseous form

■ No pollution, produces only water as a by-product

■ Efficiency ≈ 50%: much higher than other energy sources

Page 5: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

● What is a PEM fuel cell?

● A “multi-physics” problem

● Fuel cell modelling

● Previous work

● Our approach

Catalyst Layer Model

Electrode Model

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 5

What is a PEM fuel cell? (2)

Source: Ballard Power Systems

Page 6: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

● What is a PEM fuel cell?

● A “multi-physics” problem

● Fuel cell modelling

● Previous work

● Our approach

Catalyst Layer Model

Electrode Model

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 6

A “multi-physics” problem

Fuel cells are incredibly complicated devices, involving:

■ transport of mass, momentum and heat

■ multiphase (gas / liquid) flow in porous media

■ phase change (condensation / evaporation)

■ conductive charge transport (electrons)

■ membranes transport (protons and water)

■ catalyzed reaction chemistry

■ interfacial phenomena

■ “nonstandard” materials (graphite, polymer membranes,Platinum, Teflon, etc.) with composite, anisotropic,multiscale structure

Page 7: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

● What is a PEM fuel cell?

● A “multi-physics” problem

● Fuel cell modelling

● Previous work

● Our approach

Catalyst Layer Model

Electrode Model

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 7

Fuel cell modelling

This talk is a survey of modelling and computational issuesarising in two components of the PEM fuel cell:

1. transport and reaction in catalyst layers

2. multiphase transport in porous electrodes

Page 8: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

● What is a PEM fuel cell?

● A “multi-physics” problem

● Fuel cell modelling

● Previous work

● Our approach

Catalyst Layer Model

Electrode Model

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 8

Previous work

The vast majority of previous work on simulating fuel cells:

■ uses “standard” fluid solvers (often commercial CFD codes)– Sivertsen & Djilali (2004) , Hu et al. (2004) , Femlab

■ 2D/3D geometry, restricted to very small regions of the cell

■ makes major, and sometimes questionable, simplifyingassumptions (isothermal, multiphase “mist”)– Um & Wang (2004) , Van Zee et al. (2001)

■ no in-depth analysis of the underlying equations, fewanalytical solutions

■ little attention paid to fast, robust numerical solvers, that aretailored specifically to fuel cells

■ unsuitable for stack level simulations

Page 9: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

● What is a PEM fuel cell?

● A “multi-physics” problem

● Fuel cell modelling

● Previous work

● Our approach

Catalyst Layer Model

Electrode Model

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 9

Our approach

As mathematicians and numerical analysts in this field, we’rebreaking new ground by focusing on:

■ deriving simpler models which take advantage of scaleseparation and dimensional reduction

■ using analytical solutions to justify simplifications andvalidate results

■ developing fast and robust solvers for component parts, andthen coupling them together in sensible ways

Our eventual aim is a comprehensive and efficient stack-levelmodel

[ See papers at http://www.math.ubc.ca/~wetton/mmsc ]

Page 10: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 10

Catalyst Layer Model

Page 11: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

Catalyst Layer Model

● Limiting currents

● Catalyst layer structure

● Model assumptions

● Geometry

● Governing equations

● Adsorption kinetics

● Solution algorithm

● Results

● Summary

● Future work

Electrode Model

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 11

Limiting currents

■ One indicator of PEMFC performance is the polarizationcurve – a plot of voltage (V ) vs. current density (I)

U

o Ohmic losses(membrane)

Activation losses

I

EMass transport losses

Limiting current

(electrode/catalyst)

Source: Williams et al. (2004)

Page 12: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

Catalyst Layer Model

● Limiting currents

● Catalyst layer structure

● Model assumptions

● Geometry

● Governing equations

● Adsorption kinetics

● Solution algorithm

● Results

● Summary

● Future work

Electrode Model

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 11

Limiting currents

■ One indicator of PEMFC performance is the polarizationcurve – a plot of voltage (V ) vs. current density (I)

U

o

I

E

Limiting current

Source: Williams et al. (2004)

■ Performance is improved by pushing the “knee” outwards

■ Limiting current is attributed to a variety of sources inelectrodes and catalyst – Cutlip (1975) , Springer et al. (1993) ,Kulikovsky (2004)

Page 13: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

Catalyst Layer Model

● Limiting currents

● Catalyst layer structure

● Model assumptions

● Geometry

● Governing equations

● Adsorption kinetics

● Solution algorithm

● Results

● Summary

● Future work

Electrode Model

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 12

Catalyst layer structure

Agglomerate structure:Nafion (ionomer), Carbon,and Platinum

TEM (18,400 ×)

Source: von Spakovsky (2003)

Page 14: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

Catalyst Layer Model

● Limiting currents

● Catalyst layer structure

● Model assumptions

● Geometry

● Governing equations

● Adsorption kinetics

● Solution algorithm

● Results

● Summary

● Future work

Electrode Model

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 12

Catalyst layer structure

Agglomerate structure:Nafion (ionomer), Carbon,and Platinum

Idealized view

particlesPt

ξ

carbongrains

Nafion ink

primary gas pore

polymer membrane

gas diffusion electrode (GDE)

y

Page 15: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

Catalyst Layer Model

● Limiting currents

● Catalyst layer structure

● Model assumptions

● Geometry

● Governing equations

● Adsorption kinetics

● Solution algorithm

● Results

● Summary

● Future work

Electrode Model

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 12

Catalyst layer structure

Agglomerate structure:Nafion (ionomer), Carbon,and Platinum

Reaction occurs only atlocations where the threemeet (a materials sciencechallenge!)

Idealized view

particlesPt

ξ

carbongrains

Nafion ink

primary gas pore

polymer membrane

gas diffusion electrode (GDE)

y

Page 16: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

Catalyst Layer Model

● Limiting currents

● Catalyst layer structure

● Model assumptions

● Geometry

● Governing equations

● Adsorption kinetics

● Solution algorithm

● Results

● Summary

● Future work

Electrode Model

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 12

Catalyst layer structure

Agglomerate structure:Nafion (ionomer), Carbon,and Platinum

Reaction occurs only atlocations where the threemeet (a materials sciencechallenge!)

Possible limiting mechanisms inthe cathode catalyst layer:

✔ diffusion in membrane phase✔ diffusion in macro-pores✖ diffusion in nano-pores

(not shown)✖ water flooding the catalyst

Idealized view

particlesPt

ξ

carbongrains

Nafion ink

primary gas pore

polymer membrane

gas diffusion electrode (GDE)

y

Page 17: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

Catalyst Layer Model

● Limiting currents

● Catalyst layer structure

● Model assumptions

● Geometry

● Governing equations

● Adsorption kinetics

● Solution algorithm

● Results

● Summary

● Future work

Electrode Model

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 13

Model assumptions

Mechanism: O2 diffuses through gas pores, dissolves inNafion phase, and diffuses to active catalyst sites

Primary assumption: The reaction is locally self-limiting dueto O2 adsorption kinetics

■ No electron transport limitations or membrane potentiallosses

■ No convective gas transport (Fickian diffusion only)■ Membrane phase water content is constant■ All Pt surface area is available to react■ Steady state

Page 18: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

Catalyst Layer Model

● Limiting currents

● Catalyst layer structure

● Model assumptions

● Geometry

● Governing equations

● Adsorption kinetics

● Solution algorithm

● Results

● Summary

● Future work

Electrode Model

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 14

Geometry

A simplified, rectangular geometry:

■ y is the distance along a pore (y ∼ 10−5 m)

■ ξ is “burial depth” of reaction sites (ξ ∼ 10−8 m)

■ Scale separation with ξ ≪ y =⇒ a 1+1D model

O2

O2

O2

O2

O2

O2

O2H O3

+

H O3+

H O3+

εp

Nafion and Carbon

with distributed Pt

O2 H O3+

H O3+

O2

H O3+

O2O2

ξξ=0y=0

Air Porey=L

W

ε

O

a

2

O2

Page 19: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

Catalyst Layer Model

● Limiting currents

● Catalyst layer structure

● Model assumptions

● Geometry

● Governing equations

● Adsorption kinetics

● Solution algorithm

● Results

● Summary

● Future work

Electrode Model

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 15

Governing equations

The primary unknowns are:

Co,p(y) pore O2 concentration (mol/m3)

Co,a(y, ξ) dissolved O2 concentration in agglomerate (mol/m3)

(H = Henry’s constant)

η(y) cathode overpotential (V )

φ(y) membrane phase electric potential (V ),

U − φ(y) = Eo − η(y)

(potentials taken independent of ξ since ξ ≪ y)

i(y, ξ) local (volumetric) current density (A/m3)

Iavg(y) average current density (A/m2),

Iavg(y) =∫ εa

0i(y, ξ) dξ

Page 20: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

Catalyst Layer Model

● Limiting currents

● Catalyst layer structure

● Model assumptions

● Geometry

● Governing equations

● Adsorption kinetics

● Solution algorithm

● Results

● Summary

● Future work

Electrode Model

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 16

Governing equations (2)Three nonlinear DE’s in Co,p(y), Co,a(y, ξ) and η(y):

− ∂∂ξ

(HDm

∂Co,a

∂ξ

)= − i

4F(O2 in agglomerate)

−εpddy

(D

dCo,p

dy

)= −

Iavg

4F(O2 in pore)

− εaaFRT

ddy

(D+C+

dφdy

)= −

Iavg

F(electric potential)

Page 21: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

Catalyst Layer Model

● Limiting currents

● Catalyst layer structure

● Model assumptions

● Geometry

● Governing equations

● Adsorption kinetics

● Solution algorithm

● Results

● Summary

● Future work

Electrode Model

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 16

Governing equations (2)Three nonlinear DE’s in Co,p(y), Co,a(y, ξ) and η(y):

− ∂∂ξ

(HDm

∂Co,a

∂ξ

)= − i

4F(O2 in agglomerate)

−εpddy

(D

dCo,p

dy

)= −

Iavg

4F(O2 in pore)

− εaaFRT

ddy

(D+C+

dφdy

)= −

Iavg

F(electric potential)

Using relationships for φ(y) and Iavg(y):

φ(y) = η(y) + U − Eo

Iavg(y) =

∫ εa

0

i(y, ξ) dξ = · · · = −4FHDm

∂Co,a(y, 0)

∂ξ

the last two equations reduce to

d2Co,p

dy2= −σ1

∂Co,a(y, 0)

∂ξand

d2η

dy2= −σ2

∂Co,a(y, 0)

∂ξ

Page 22: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

Catalyst Layer Model

● Limiting currents

● Catalyst layer structure

● Model assumptions

● Geometry

● Governing equations

● Adsorption kinetics

● Solution algorithm

● Results

● Summary

● Future work

Electrode Model

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 17

Adsorption kinetics

Local current density i is determined by reaction kinetics . . .

Let θ(x, t) denote the local fraction of Pt surface covered by O2:

CP t

dt= k+HCo,a(1 − θ)︸ ︷︷ ︸

adsorption

− k−CP tθ︸ ︷︷ ︸

desorption

−i

4F︸︷︷︸reaction

Set dθdt

= 0 (steady state) and i = roθe−αcη (Butler-Volmer):

=⇒ i =k+HCo,aroe

−αcη

k+HCo,a + k−CP t+ (ro/4F )e−αcη

(∗)

So the limiting current density is ilim = limη→−∞

i = 4Fk+HCo,a

Page 23: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

Catalyst Layer Model

● Limiting currents

● Catalyst layer structure

● Model assumptions

● Geometry

● Governing equations

● Adsorption kinetics

● Solution algorithm

● Results

● Summary

● Future work

Electrode Model

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 17

Adsorption kinetics

Local current density i is determined by reaction kinetics . . .

Let θ(x, t) denote the local fraction of Pt surface covered by O2:

CP t

dt= k+HCo,a(1 − θ)︸ ︷︷ ︸

adsorption

− k−CP tθ︸ ︷︷ ︸

desorption

−i

4F︸︷︷︸reaction

Set dθdt

= 0 (steady state) and i = roθe−αcη (Butler-Volmer):

=⇒ i =k+HCo,aroe

−αcη

k+HCo,a + k−CP t+ (ro/4F )e−αcη

(∗)

So the limiting current density is ilim = limη→−∞

i = 4Fk+HCo,a

Note: With Butler-Volmer alone, ilim = ∞

Page 24: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

Catalyst Layer Model

● Limiting currents

● Catalyst layer structure

● Model assumptions

● Geometry

● Governing equations

● Adsorption kinetics

● Solution algorithm

● Results

● Summary

● Future work

Electrode Model

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 18

Solution algorithm

1. Given a target current density I∗, guess the cell voltage U .

2. Iterate on U :(a) Solve the following 1D BVP’s Co,p(y) and η(y):

d2Co,p

dy2= −σ1

∂Co,a(y, 0)

∂ξand

d2η

dy2= −σ2

∂Co,a(y, 0)

∂ξ

(b) Determine the agglomerate concentration Co,a(y, ξ):■ Solve a 1D BVP in ξ at each y-location:

∂2Co,a

∂ξ2=

i

4FHDm

■ Use the current iterate for Co,p(y) as the boundarycondition for Co,a(y, 0).

(c) Update i and Iavg.

(d) If |Iavg − I∗| > TOL, then update U & return to step 2a.

Page 25: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

Catalyst Layer Model

● Limiting currents

● Catalyst layer structure

● Model assumptions

● Geometry

● Governing equations

● Adsorption kinetics

● Solution algorithm

● Results

● Summary

● Future work

Electrode Model

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 19

Results: Base case

Computation time: 20 s for a 20 × 20 grid

U = 0.62 V U = 0.08 V

0.3

0.3

0.5

0.5

0.5

0.7

0.7

0.90.950.99

Burial depth, ξ

Thr

ough

pla

ne d

ista

nce,

y

Fraction of max. current (U=0.62)

0 2 4 6 8 10

x 10−8

0

2

4

6

8

10x 10

−6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.010.1

0.10.3

0.30.5

0.5

0.7

0.7

0.9

0.9

0.95

0.95

0.99

0.99

Burial depth, ξ

Thr

ough

pla

ne d

ista

nce,

y

Fraction of max. current (U=0.08)

0 2 4 6 8 10

x 10−8

0

2

4

6

8

10x 10

−6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

I (A/cm2)

U (

Vol

ts)

Polarization Curve

Base

Page 26: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

Catalyst Layer Model

● Limiting currents

● Catalyst layer structure

● Model assumptions

● Geometry

● Governing equations

● Adsorption kinetics

● Solution algorithm

● Results

● Summary

● Future work

Electrode Model

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 20

Results: Dry membrane

Reduce membrane diffusivity Dm by a factor of 10:

U = 0.62 V U = 0.42 V

0.01

0.01

0.10.1

0.3

0.3

0.5

0.5

0.7

0.7

0.9

0.9

0.950.99

Burial depth, ξ

Thr

ough

pla

ne d

ista

nce,

y

Fraction of max. current (U=0.62)

0 2 4 6 8 10

x 10−8

0

2

4

6

8

10x 10

−6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.010.01

0.10.1

0.30.3

0.5

0.5

0.7

0.7

0.9

0.9

0.95

0.95

0.99

0.99

Burial depth, ξ

Thr

ough

pla

ne d

ista

nce,

y

Fraction of max. current (U=0.42)

0 2 4 6 8 10

x 10−8

0

2

4

6

8

10x 10

−6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

I (A/cm2)

U (

Vol

ts)

Polarization Curve

BaseDry membrane

Page 27: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

Catalyst Layer Model

● Limiting currents

● Catalyst layer structure

● Model assumptions

● Geometry

● Governing equations

● Adsorption kinetics

● Solution algorithm

● Results

● Summary

● Future work

Electrode Model

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 21

Results: Narrow pore

Reduce pore size εp by a factor of 2:

U = 0.62 V U = 0.42 V

0.5

0.7

0.7

0.7

0.9

0.9

0.9

0.95

0.95

0.95

0.99

0.99

Burial depth, ξ

Thr

ough

pla

ne d

ista

nce,

y

Fraction of max. current (U=0.62)

0 2 4 6 8 10

x 10−8

0

2

4

6

8

10x 10

−6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.99

0.99

Burial depth, ξ

Thr

ough

pla

ne d

ista

nce,

y

Fraction of max. current (U=0.42)

0 2 4 6 8 10

x 10−8

0

2

4

6

8

10x 10

−6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

I (A/cm2)

U (

Vol

ts)

Polarization Curve

BaseDry membraneNarrow pore

Page 28: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

Catalyst Layer Model

● Limiting currents

● Catalyst layer structure

● Model assumptions

● Geometry

● Governing equations

● Adsorption kinetics

● Solution algorithm

● Results

● Summary

● Future work

Electrode Model

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 22

Summary

■ Developed a 1+1D two-scale model for the cathode catalystlayer, incorporating a self-limiting reaction rate

■ Dead core region observed under a variety of operatingconditions

■ Study catalyst utilization and optimize microstructuralproperties

Page 29: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

Catalyst Layer Model

● Limiting currents

● Catalyst layer structure

● Model assumptions

● Geometry

● Governing equations

● Adsorption kinetics

● Solution algorithm

● Results

● Summary

● Future work

Electrode Model

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 23

Future work

■ Investigate other limiting mechanisms:

◆ liquid water◆ diffusion in nanopores (multiscale pore structure)

■ Develop a faster iterative algorithm

■ Incorporate a detailed catalyst model into our unit cell modelfor use in stack simulations

■ Include more aspects of microstructure into a continuum(macro-scale) model =⇒ multiscale methods

Page 30: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 24

Electrode Model

Page 31: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

Catalyst Layer Model

Electrode Model

● Gas diffusion electrode

● Water management

● Geometry

● Governing equations

● Liquid transport

● Comparison: Groundwater

● Numerical method

● Results

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 25

Gas diffusion electrode

The gas diffusion electrode (GDE) consists of carbon fibrepaper, sandwiched between catalyst / PEM and flow channels:

■ anisotropic, fibrous porous medium

■ approximately 200–300 µm thick

■ treated with Teflon to improve water transport

�������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������

PEM

catalyst 20

200

100

µ

µµ

1−2 mm

air

GDE

plate

air

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Source: C. Y. Wang (2003)

Page 32: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

Catalyst Layer Model

Electrode Model

● Gas diffusion electrode

● Water management

● Geometry

● Governing equations

● Liquid transport

● Comparison: Groundwater

● Numerical method

● Results

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 26

Water management

Water management is a key and complex issue, with directimpact on performance:

■ membrane protonic conductivity is a strong function of watercontent

■ liquid water in the flow channels or porous electrodeshinders reactant transport

■ high temperature prevents water from condensing BUTdamages certain components (e.g., PEM)

■ “electro-osmotic drag”: water is dragged along with protons,from anode to cathode

■ both inlet gas streams are humidified

■ Teflon is applied in electrode and catalyst to improve wettingbehaviour

Page 33: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

Catalyst Layer Model

Electrode Model

● Gas diffusion electrode

● Water management

● Geometry

● Governing equations

● Liquid transport

● Comparison: Groundwater

● Numerical method

● Results

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 27

Geometry

Two 2Dcross-sectionsH < W ≪ L

������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

H

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

22

graphite plate

W

L

PEMcatalyst

graphite plate

O O

H H

2 2

cathode GDE

anode GDE

1) Cross-channel 2) Down-the-channel

������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Detailed local geometry for flow

channel optimization

Averaged cross-channel, ideal

for stack simulations(scale separation)

Page 34: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 28

Governing equations

The primary unknowns are:

C gas mixture concentration (ρ = MC)Co, Cv oxygen and vapour concentrations

T phase-averaged temperatures liquid saturation

The following conservation laws govern multiphase flow in cathode GDE:

((1 − s)ρ)t + ∇ ·(ρ~Ug

)= −MΓ (gas mixture, ρ = MC)

((1 − s)Co)t + ∇ ·(Co

~Ug + ~Jo

)= 0 (oxygen)

((1 − s)Cv)t + ∇ ·(Cv

~Ug + ~Jv

)= −Γ (water vapour)

(ρcT )t + ∇ ·(ρcUT − κ∇T

)=

I2

σ+ hΓ (energy)

st + ∇ · (s~Uℓ) = Γ/Cℓ (liquid water)

Page 35: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

Catalyst Layer Model

Electrode Model

● Gas diffusion electrode

● Water management

● Geometry

● Governing equations

● Liquid transport

● Comparison: Groundwater

● Numerical method

● Results

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 29

Governing equations (2)

Constitutive equations:

~Ji = −CDi∇

(Ci

C

)(Fick’s law, i = o, v)

~Ui = −K krel,i(s)

εµi

∇Pi (Darcy’s law, i = g, ℓ)

Pg = CRT (ideal gas law)

Pℓ = Pg + Pc(s) (capillary pressure)

Condensation / evaporation rate:

Γ =

{γ+(1 − s)(Cv − Csat

v (T )), if Cv ≥ Csatv (T )

γ−s(Cv − Csatv (T )), if Cv < Csat

v (T )

Boundary conditions.

Page 36: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

Catalyst Layer Model

Electrode Model

● Gas diffusion electrode

● Water management

● Geometry

● Governing equations

● Liquid transport

● Comparison: Groundwater

● Numerical method

● Results

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 30

Liquid transport

■ Porous media exhibit an immobile saturation, s∗

■ Define a reduced saturation, s̃ = s−s∗1−s∗

■ Two key constitutive relations for GDE:

Capillary pressure Relative permeability(van Genuchten)

Pc(s) = Ac J (s) krel,ℓ(s) = es1/2

= Ac [(1 − es)−2− 1]1/2

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

2.5

3

3.5

s

J(s)

s*=

GDETypical

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

s

k rel

s*=

GDETypical

Page 37: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

Catalyst Layer Model

Electrode Model

● Gas diffusion electrode

● Water management

● Geometry

● Governing equations

● Liquid transport

● Comparison: Groundwater

● Numerical method

● Results

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 31

Comparison: Groundwater flow

■ Advanced methods have been developed for multiphasetransport in groundwater flow and oil reservoir simulation

■ These methods are not generally applicable to fuel cells

Groundwater Fuel cell GDE

time scales: hrs to yrs µs to ms

length scales: m to km µm to mm

anisotropy: low high

wettability: hydrophilic hydrophobic

dominant mechanism: convection diffusion(and convection)

■ Experiments are much harder to undertake on fuel cells, andso many material properties are not known

Page 38: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

Catalyst Layer Model

Electrode Model

● Gas diffusion electrode

● Water management

● Geometry

● Governing equations

● Liquid transport

● Comparison: Groundwater

● Numerical method

● Results

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 32

Numerical method

■ Conservative finite volume discretization

■ Stiff system with time scales ranging from 10−7 s to 102 s

=⇒ use stiff solver ode15s in Matlab

■ Saturation equation is a degenerate diffusion equation:

st + f(s)∇s + ∇ · (g(s)∇s) = h(s) + Γ/Cℓ

with g(s) = Askrel,ℓ(s)J′(s)

=⇒ regularize krel,ℓ and J KEY!

■ Γ source terms are typically very large

Computation time: 15 mins for a 20 × 20 grid(compare to days for a straightforward discretization)

Page 39: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

Catalyst Layer Model

Electrode Model

● Gas diffusion electrode

● Water management

● Geometry

● Governing equations

● Liquid transport

● Comparison: Groundwater

● Numerical method

● Results

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 33

Results

Cathode fed with humidified air at 70oC:

Temperature contours Saturation

0.05 0.1 0.15 0.2 0.25 0.3 0.35

0.01

0.02

0.03

0.04

0.05

x (cm)

y (c

m)

71.35 71.35 71.3571.4

71.4

71.4

71.4571.45

71.4571.5

71.5

71.5

71.55 71.55

71.6 71.6

0.10.2

0.3

0

0.02

0.04

0

0.1

0.2

0.3

0.4

x (cm)

y (cm)

s

0.05 0.1 0.15 0.2 0.25 0.3 0.351.4

1.6

1.8

2

2.2

x 10−6

x (cm)

Rea

ctan

t flu

x

Dry Wet

Page 40: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

Catalyst Layer Model

Electrode Model

● Gas diffusion electrode

● Water management

● Geometry

● Governing equations

● Liquid transport

● Comparison: Groundwater

● Numerical method

● Results

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 34

Results: Wettability comparison

Hydrophilic Hydrophobic

0.10.2

0.3

0

0.02

0.04

0

0.1

0.2

0.3

0.4

x (cm)

y (cm)

s

0.10.2

0.3

0

0.02

0.04

0

0.1

0.2

0.3

0.4

x (cm)

y (cm)

s

■ Hydrophobic nature of GDE leads to sharp wetting fronts

Page 41: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

Catalyst Layer Model

Electrode Model

● Gas diffusion electrode

● Water management

● Geometry

● Governing equations

● Liquid transport

● Comparison: Groundwater

● Numerical method

● Results

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 35

Future work

■ Explain severe stiffness observed in computations (alsopresent in 1D through-plane GDE model)

■ Develop more efficient methods based on splitting (liquidtime scale is much slower)

■ Investigate multi-scale approaches for catalyst and PEM.

■ Derive reduced 1D (semi-analytical) models – ideal for 1+1Dstack-level simulations

���������������

���������������

���������������

���������������

��������������������������������������������������

��������������������������������������������������

a−GDE

a−cat

PEM

c−cat

c−GDE

1D MEA model

��������������������������������������������������

��������������������������������������������������

Page 42: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

Catalyst Layer Model

Electrode Model

● Gas diffusion electrode

● Water management

● Geometry

● Governing equations

● Liquid transport

● Comparison: Groundwater

● Numerical method

● Results

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 35

Future work

■ Explain severe stiffness observed in computations (alsopresent in 1D through-plane GDE model)

■ Develop more efficient methods based on splitting (liquidtime scale is much slower)

■ Investigate multi-scale approaches for catalyst and PEM.

■ Derive reduced 1D (semi-analytical) models – ideal for 1+1Dstack-level simulations

���������������

���������������

���������������

���������������

��������������������������������������������������

��������������������������������������������������

a−GDE

a−cat

PEM

c−cat

c−GDE

1D MEA model

��������������������������������������������������

��������������������������������������������������

in

2H

1+1D unit cell model

. . . .

1D anode channel

1D cathode channel

2Hout

2O 2outO

in

1D M

EA

mod

el

Page 43: Simulating Transport Processes in PEM Fuel Cellspeople.math.sfu.ca/~stockie/papers/Talks/icsc05.pdf · ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel

Background: Fuel cells

Catalyst Layer Model

Electrode Model

● Gas diffusion electrode

● Water management

● Geometry

● Governing equations

● Liquid transport

● Comparison: Groundwater

● Numerical method

● Results

ICSC – Nanjing, June 4–8, 2005 Simulating Transport Processes in PEM Fuel Cells - p. 35

Future work

■ Explain severe stiffness observed in computations (alsopresent in 1D through-plane GDE model)

■ Develop more efficient methods based on splitting (liquidtime scale is much slower)

■ Investigate multi-scale approaches for catalyst and PEM.

■ Derive reduced 1D (semi-analytical) models – ideal for 1+1Dstack-level simulations

���������������

���������������

���������������

���������������

��������������������������������������������������

��������������������������������������������������

a−GDE

a−cat

PEM

c−cat

c−GDE

1D MEA model

��������������������������������������������������

��������������������������������������������������

in

2H

1+1D unit cell model

. . . .

1D anode channel

1D cathode channel

2Hout

2O 2outO

in

1D M

EA

mod

el

Stack model

. . . .

(100+ cells)

1+1D unit cell model

Gas

hea

der

Gas

hea

der