simulation challenges for laser-cooled electron sources

27
www.pulsar .nl Simulation challenges for laser-cooled electron sources Bas van der Geer Marieke de Loos Pulsar Physics The Netherlands Jom Luiten Edgar Vredenbregt Eindhoven University of Technology The Netherlands There are two kinds of simulation codes: - Codes that everyone always complains about - Codes that nobody ever uses

Upload: etan

Post on 24-Feb-2016

25 views

Category:

Documents


0 download

DESCRIPTION

Simulation challenges for laser-cooled electron sources. Bas van der Geer Marieke de Loos Pulsar Physics The Netherlands Jom Luiten Edgar Vredenbregt Eindhoven University of Technology The Netherlands There are two kinds of simulation codes: - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Simulation challenges for laser-cooled electron  sources

www.pulsar.nl Simulation challenges forlaser-cooled electron sources

Bas van der GeerMarieke de LoosPulsar PhysicsThe Netherlands

Jom LuitenEdgar VredenbregtEindhoven University of TechnologyThe Netherlands

There are two kinds of simulation codes:- Codes that everyone always complains about- Codes that nobody ever uses

Page 2: Simulation challenges for laser-cooled electron  sources

www.pulsar.nlBrighter sources, better simulations

Photogun: for example DESY / LCLS:• Initial emittance ~ 1 μm (eV energy spread)• Emittance ~ preserved in entire device• Required simulation accuracy: <1 μm

Laser-cooled sources:• Initial emittance: < 1 nm (meV energy spread)• Emittance?• Desired simulation accuracy: <1 nm

Quantum degenerate sources• …

Page 3: Simulation challenges for laser-cooled electron  sources

www.pulsar.nl‘Typical’ simulation code: GPT

Tracks sample particles in time-domain• Equations of motion

pppr

BrEp

22cm

cdtd

dtdq

dtd

include all non-linear effects

• GPT solves with 5th order embedded Runge Kutta, adaptive stepsize• GPT can track ~106 particles on a PC with 1 GB memory

• Challenge: E(r,t), B(r,t), flexibility without compromising accuracy

-3 -2 -1 0 1 2 3x

-4

-2

0

2

4

y

-3 -2 -1 0 1 2 3x

-4

-2

0

2

4

Page 4: Simulation challenges for laser-cooled electron  sources

www.pulsar.nlField-maps

• 1D, 2D, 3D• Rely on external solvers• Fields are summed• 3D positioning, 3D orientation

0 20 40 60 80 100 120 140GPT z [mm]

0

10

20

30

40

R [m

m]

Only this part is needed for tracking

Cavity

-50 0 50 100 150 200GPT z [mm]

0

50

100

150

200

R [m

m]

Magnet

Mar

ieke

de

Loos

Pul

sar P

hysi

cs

Page 5: Simulation challenges for laser-cooled electron  sources

www.pulsar.nlCoulomb interactions

Macroscopic:• Space-charge• Average repulsion force• Bunch expands• Deformations in phase-space• Governed by Poisson’s equation

Microscopic:• Disorder induced heating• Neighbouring particles ‘see’ each other• Potential energy → momentum spread• Stochastic effect• Governed by point-to-point interactions

Nature PhotonicsVol 2, May 2008

M. Centurion et. al.

And many others…

PRL 93, 094802O.J. Luiten et. al.

GPT simulations

JAP 102, 093501T. van Oudheusden et. al.

PRST-AB 9, 044203S.B. van der Geer et. al.

PRL 102, 034802 M. P. Reijnders et. al.

JAP 102, 094312 S.B. van der Geer et. al.

Page 6: Simulation challenges for laser-cooled electron  sources

www.pulsar.nlParticle-Mesh (in-Cell)

• Mesh-based electrostatic solver in rest-frame

• Bunch is tracked in laboratory frame• Calculations in rest-frame

• Mesh– Density follows beam density– Trilinear interpolation to obtain charge density

• Solve Poisson equation

• 2nd order interpolation for the electrostatic field E’

• Transform E’ to E and B in laboratory frame

Bunch in laboratory frame

Bunch in rest frame

Charge density'

02 /'' V Poisson

equation

0''' BE V Interpolation

)'(},{ EBE L Lorentz transformation to laboratory frame

Meshlines

22 /11,' cvzz

Page 7: Simulation challenges for laser-cooled electron  sources

www.pulsar.nlMulti-grid Poisson solver

• Key feature:– Anisotropic meshing to reduce number of empty nodes

• Main challenge– Stability

• Multi-grid solver– Developed by Dr. G. Pöplau

Rostock University, Germany– Scales ~O(N1) in CPU time– Select stability vs. speed

Gisela Pöplau, Ursula van Rienen, Bas van der Geer, and Marieke de Loos, Multigrid algorithms for the fast calculation of space-charge effects in accelerator design, IEEE Transactions on magnetics, Vol 40, No. 2, (2004), p. 714.

DESY TTF gun at z=0.25 m, 200k particles.

Page 8: Simulation challenges for laser-cooled electron  sources

www.pulsar.nl3D Space-charge simulations

Simulations codes seem to be up-to-the-job:• GPT http://www.pulsar.nl/gpt• Parmela3D LANL

Benchmarking of 3D space charge codes using direct phase space measurements from photoemission high voltage dc gun

Ivan V. Bazarov, et.al. PRST-AB 11, 100703 (2008).

Page 9: Simulation challenges for laser-cooled electron  sources

www.pulsar.nlLaser-cooled sources

Simple test case:• Uniformly filled sphere• Density 1018/m3

• No initial temperature• All pair-wise interactions

• Wait and see...

Page 10: Simulation challenges for laser-cooled electron  sources

www.pulsar.nlCoulomb interactions

x

px

Space charge

Disorder induced heating

-10 -8 -6 -4 -2 0 2 4 6 8 10GPT x [micron]

-100

-50

0

50

100

velo

city

[km

/s]

-10 -8 -6 -4 -2 0 2 4 6 8 10GPT x [micron]

-100

-50

0

50

100

velo

city

[km

/s]

-10 -8 -6 -4 -2 0 2 4 6 8 10GPT x [micron]

-100

-50

0

50

100

velo

city

[km

/s]

GPT simulations: n=1018 m–3

t=0

t=10 ps

t=20 ps

0 10 20 30 40 50 60 70 80 90 100GPT time [ps]

0

2

4

6

T [K

]

All interactions

Ideal particle-in-Cell

Page 11: Simulation challenges for laser-cooled electron  sources

www.pulsar.nlDisorder induced heating

Excess potentialenergy U

Momentumspread

Temperature ↑Brightness ↓

Randomprocesses

Coulombinteractions

High U Low U

x

px σpx

2

22

x

xx

x

x

xp

kmcT

mc

Tkmx

TkJB

Page 12: Simulation challenges for laser-cooled electron  sources

www.pulsar.nlParadigm shift

RF-photoguns

Space-charge• ‘Shaping’ the beam• Ellipsoidal bunches

Particle-in-Cell• Macro-particles• One species• Fluid assumption• Liouville holds• Convergent rms values

Laser cooled sources

Disorder induced heating• Fast acceleration• Breaking randomness

Tree-codes (B&H, FMM, P3M)• Every particle matters• Ions and electrons• Ab initio• No Liouville to the rescue• Divergent rms values

k Tphotogun >> 0.02 n1/3 q2 / ε0 >> k Tlaser-cooled

Page 13: Simulation challenges for laser-cooled electron  sources

www.pulsar.nlAlgorithms...

Imaga credit:Southern European observatory

N2 interactionsTough problem

Page 14: Simulation challenges for laser-cooled electron  sources

www.pulsar.nlAlgorithms…

Many to choose from: In theory, not in practice so it seems:

All interactions O(N2):• PP Particle-Particle

• P3M Particle-Particle Particle-Mesh

Accuracy traded for speed:• B&H Barnes&hut tree: O(N log N)• FMM Fast-Multipole-Method: O(N)

• …

Page 15: Simulation challenges for laser-cooled electron  sources

www.pulsar.nl

Er

r'

'

'j i

ji

ji

Q

4 0

3

ij

ijjji

ijjijj

j

jijji

c'

1'

EβB

βE'βEE

r r r

r r r

ji i j

ji jij

jji j j

'

2

1

3D point-to-point:• Uses macro-particles• 3D• Fully relativistic• N2 in CPU time

• Transform i to rest frame of j

• Summation to laboratory frame

• Electrostatic field of j

Particle-Particle

i

j

Page 16: Simulation challenges for laser-cooled electron  sources

www.pulsar.nlBarnes-Hut

Hierarchical tree algorithm:• Includes all Coulomb interactions• O(N log N) in CPU time• User-selectable accuracy

Division of space Tree data structure

J. Barnes and P. Hut, Nature 324, (1986) p. 446.

Page 17: Simulation challenges for laser-cooled electron  sources

www.pulsar.nlComparison with experiments

M. P. Reijnders, N. Debernardi, S. B. van der Geer, P.H.A. Mutsaers, E. J. D. Vredenbregt, and O. J. Luiten,Phase-Space Manipulation of Ultracold Ion Bunches with Time-Dependent Fields PRL 105, 034802 (2010).

Page 18: Simulation challenges for laser-cooled electron  sources

www.pulsar.nlLaser-cooled e– source

Fields:Cavity field 20 MV/m rf-cavityDC offset 3 MV/m

Particles:Charge 0.1 pC (625k e−)Initial density 1018 / m3

Ionization time 10 psInitial Temp 1 K

GPT tracking:All particlesRealistic fieldsAll interactions

Page 19: Simulation challenges for laser-cooled electron  sources

www.pulsar.nlLongitudinal emission dynamics

Longitudinal acceleration• rf field• Combined spacecharge

rf-field

electronsions

ions

electrons

Ez, color coded on r

Page 20: Simulation challenges for laser-cooled electron  sources

www.pulsar.nlTransverse emission dynamics

Transverse acceleration• While new ones are still being ionized• While ions keep them together

electronsions

Er, color coded on z

Page 21: Simulation challenges for laser-cooled electron  sources

www.pulsar.nlLaser cooled e– diffraction

GPT Simulations include:• Realistic external fields• Start as function of time and postion• Relativistic equations of motion• All pair-wise interactions included

Page 22: Simulation challenges for laser-cooled electron  sources

www.pulsar.nlLaser cooled e– diffraction

GPT results:εx 20 nm (rms)10% slice ~1 nm

Energy 120 keV Spread 1%εz 60 keV fs

Charge 0.1 pC(625,000 e–)

Ultracold Electron Source for Single-Shot, Ultrafast Electron DiffractionMicroscopy and Microanalysis 15, p. 282-289 (2009).S.B. van der Geer, M.J. de Loos, E.J.D. Vredenbregt, and O.J. Luiten

Page 23: Simulation challenges for laser-cooled electron  sources

www.pulsar.nlMiniaturized DESY/LCLS

RF-photogun GeV Accelerator Undulator

laser-cooled source TW laserTi:Saphire800 nm, TW

MeV accelerator

Page 24: Simulation challenges for laser-cooled electron  sources

www.pulsar.nlFEL equations

4radn

21

2

2

2

Kurad

g

uFEL L

34

1

rad

ug IeK

mcL

2

32

23 423

1

FELIemcP

2

emcFEL

W

2

2

Wz

QI /max

kp

kmc z

)(

Page 25: Simulation challenges for laser-cooled electron  sources

www.pulsar.nlFEL

Charge 1 pC 0.1 pCMaximum field 20 MV/m 20 MV/mSlice emittance 13 nm 1 nmLongitudinal emittance 1 keV ps0.1 keV psPeak current 100 A 1 mA

Energy 1.3 GeV 15 MeVUndulator strength 0.1 0.5λU 1.3 mm 800 nmρFEL 0.0002 0.00002ρQUANTUM 0.1Gain Length0.28 m 2 mm

Wavelength 0.1 nm 0.4 nmPower (1D) 25 MW 50 W, 60k photons

Page 26: Simulation challenges for laser-cooled electron  sources

www.pulsar.nlConclusion

Laser-cooled sources:• Require new simulation techniques

for the calculation of all pair-wise Coulomb interactions• Such as Barnes&Hut method (such as implemented in GPT)

• Produce phase-space distributions with divergent rms values

Current status:• We can track ~106 particles in 3D in realistic fields

Future developments:• Track more particles

Page 27: Simulation challenges for laser-cooled electron  sources

www.pulsar.nl

Globular cluster Messier 2 by Hubble Space Telescope.. Located in the constellation of Aquarius, also known as NGC 7089.M2 contains about a million stars and is located in the halo of our Milky Way galaxy.