simultaneous localization and mapping using zigbee protocol - project...

35
Simultaneous Localization and Mapping using ZigBee Protocol Project Proposal Kyle Hevrdejs Jacob Knoll Advisor: Dr. Suruz Miah Department of Electrical and Computer Engineering Bradley University 1501 W. Bradley Avenue Peoria, IL, 61625, USA Tuesday, November 29, 2016 K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 1 / 35

Upload: others

Post on 25-Jan-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Simultaneous Localization and Mapping using ZigBeeProtocol

    Project Proposal

    Kyle Hevrdejs Jacob KnollAdvisor: Dr. Suruz Miah

    Department of Electrical and Computer EngineeringBradley University

    1501 W. Bradley AvenuePeoria, IL, 61625, USA

    Tuesday, November 29, 2016

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 1 / 35

    http://www.bradley.edu

  • Outline

    1 Introduction

    2 Background Study

    3 Functional RequirementsSpecifications

    4 Preliminary ResultsSimulationDesignExperimental Activities

    5 Parts List

    6 Deliverables

    7 Timeline and Milestones

    8 Future Directions

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 2 / 35

    http://www.bradley.edu

  • IntroductionApplications

    Warehouses

    Cleaning systems

    Robotic concierge

    Large office mail systems

    Mining

    Research and education

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 3 / 35

    http://www.bradley.edu

  • Introduction

    Problem Statement

    Design and implementation of a low-cost localization and mapping systemusing off-the-shelf hardware components.

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 4 / 35

    http://www.bradley.edu

  • Background StudyLiterature

    Most systems in research environments utilize RFID

    Directional antennas with wireless sensor beacons

    Using a parabolic reflector to estimate angle-of-arrival

    Research literature showing proof of concept and not a real worldimplementation

    Implemented on custom, purpose-built mobile robots

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 5 / 35

    http://www.bradley.edu

  • Background StudyChallenges

    Accuracy of measurements, mapping, and localization

    Improve signal-to-noise ratio (SNR)

    Balancing cost and accuracy in the number of wireless beacons

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 6 / 35

    http://www.bradley.edu

  • Terminology

    Pose: q = [x , y , θ]T

    Root Mean Square Error: RMSE =√

    1tf

    ∫ tf0 [e(t)]

    2dt

    Robot error: eP(t) =√

    (x̂(t) − xd(t))2 + (ŷ(t) − yd(t))2

    eB(t) = Σni=1ei (t) where

    ei (t) =√

    (x̂i (t) − xdi (t))2 + (ŷi (t) − ydi (t))2

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 7 / 35

    http://www.bradley.edu

  • Functional RequirementsSystem Architecture

    Figure: System Architecture

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 8 / 35

    http://www.bradley.edu

  • Functional RequirementsSystem Architecture

    (a) (b) (c)

    Mobile robot (Pioneer 3-DX)

    Interfaced using BeagleBone Black running Robot Operating System(ROS indigo1)

    Ceiling mounted beacons (XBee modules)

    Predefined waypoints (implemented in algorithm)1www.ros.org

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 9 / 35

    http://www.bradley.eduwww.ros.org

  • Functional RequirementsSystem Block Diagram

    Localizationand Mapping

    Power (12 V)

    Pre-definedwaypoints

    Beacon's received signalstrength (RSS) and ID from beacon

    Robot's estimatedpose

    Beacons' estimatedposition

    Robot's pathfollowing waypoints

    Noise fromenvironment

    Input Output

    Figure: System block diagram

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 10 / 35

    http://www.bradley.edu

  • Functional RequirementsSubsystem Block Diagram

    Controller PreprocessorMobile

    Robot

    Estimation

    PredefinedWaypoints(desired)

    XBee

    Network

    ν (linear velocity)

    γ (steering angle)

    ν (linear velocity)

    ! (angular velocity)

    Noisy Robot Pose

    BeaconIDs

    Beacons' receivedsignal strength (RSS)

    Noise fromenvironment

    Robot's path

    following way-

    points

    Estimated Position of XBees

    Estimated Robot Pose

    Estimated Robot Pose

    Estimated Positionof XBees

    Figure: Subsystem block diagram

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 11 / 35

    http://www.bradley.edu

  • Functional RequirementsSubsystem Block Diagram

    Four subsystems

    ControllerPreprocessorMobile RobotEstimation

    Outputs are for debugging, used internally for implementingEKF-SLAM algorithm

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 12 / 35

    http://www.bradley.edu

  • Outline

    1 Introduction

    2 Background Study

    3 Functional RequirementsSpecifications

    4 Preliminary ResultsSimulationDesignExperimental Activities

    5 Parts List

    6 Deliverables

    7 Timeline and Milestones

    8 Future Directions

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 13 / 35

    http://www.bradley.edu

  • Functional RequirementsSpecifications

    Cost under $500

    Localize mobile robot with RMSE ≤ 30 cmEstimate beacon positions with RMSE ≤ 30 cmUse ROS

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 14 / 35

    http://www.bradley.edu

  • Outline

    1 Introduction

    2 Background Study

    3 Functional RequirementsSpecifications

    4 Preliminary ResultsSimulationDesignExperimental Activities

    5 Parts List

    6 Deliverables

    7 Timeline and Milestones

    8 Future Directions

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 15 / 35

    http://www.bradley.edu

  • Preliminary ResultsV-REP

    Real-time robot simulator

    Advantages

    Simulates all dynamics of the robot (driving kinematics, object physics,sensors)Easy to use through a variety of programming languagesProvides real-time simulation data for use in algorithm

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 16 / 35

    http://www.bradley.edu

  • Preliminary ResultsSimulation Setup

    Time step, T = 0.25 s

    Linear velocity standard deviation, σν = 8.8858 × 10−4

    Angular velocity standard deviation, σω = 0.0012

    Observation range standard deviation, σR = 1

    Observation bearing standard deviation, σB = 5◦

    Maximum Pioneer linear velocity is 1.2 m s−1

    Maximum Pioneer angular velocity is 300 ◦ s−1

    Other parameters: 9 beacons, 2000 iterations, observations every 8iterations

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 17 / 35

    http://www.bradley.edu

  • Preliminary ResultsSimulation

    Figure: Starting configuration of the V-REP simulation

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 18 / 35

    http://www.bradley.edu

  • Preliminary ResultsSimulation

    0 200 400 600 800 1000 1200 1400 1600 1800 2000

    Iteration

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    eP(t

    ) [m

    ]

    Robot Error

    Figure: Robot error from simulation over 2000 iterations with an RMSE of 0.0928

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 19 / 35

    http://www.bradley.edu

  • Preliminary ResultsSimulation

    0 50 100 150 200 250

    Observation

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    eB(t

    ) [m

    ]

    Total Beacon Position error

    Figure: Total beacon error from simulation over 250 observations with an RMSEof 1.7254

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 20 / 35

    http://www.bradley.edu

  • Outline

    1 Introduction

    2 Background Study

    3 Functional RequirementsSpecifications

    4 Preliminary ResultsSimulationDesignExperimental Activities

    5 Parts List

    6 Deliverables

    7 Timeline and Milestones

    8 Future Directions

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 21 / 35

    http://www.bradley.edu

  • Preliminary ResultsDesign

    Pioneer 3-DXBeagleBone

    BlackUART UARTXBee

    Coordinator

    XBee

    End-Devices

    ZigBee

    Wireless

    Network

    Figure: System interfaces

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 22 / 35

    http://www.bradley.edu

  • Preliminary ResultsDesign

    Basic wireless communication between two XBees in X-CTU, XBeeconfiguration software, running on a PC.

    C program running on BeagleBone Black which interfaces with XBeevia UART for basic communication between two XBees.

    Expanded C program with the help of open source library libxbee2 topacket-based communication.

    Current functionality to obtain RSSI from beacons:

    Robot mounted XBee (Coordinator) transmits ping signal to beacons.Beacons will register the RSSI.Coordinator then requests beacons (End-Devices) to return individualIDs and registered RSSI.

    2https://github.com/attie/libxbee3K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 23 / 35

    http://www.bradley.eduhttps://github.com/attie/libxbee3

  • Outline

    1 Introduction

    2 Background Study

    3 Functional RequirementsSpecifications

    4 Preliminary ResultsSimulationDesignExperimental Activities

    5 Parts List

    6 Deliverables

    7 Timeline and Milestones

    8 Future Directions

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 24 / 35

    http://www.bradley.edu

  • Preliminary ResultsExperimental Activities

    Figure: Lab set up for experiments

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 25 / 35

    http://www.bradley.edu

  • Preliminary ResultsExperimental Activities

    0.5 1 1.5 2 2.5 3 3.5 4

    Actual Distance [m]

    -80

    -75

    -70

    -65

    -60

    -55

    -50

    -45

    -40

    RS

    SI [d

    Bm

    ]

    XBee RSSI Measurements

    PL = 1

    PL = 2

    PL = 3

    Figure: RSSI vs. Actual Distance

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 26 / 35

    http://www.bradley.edu

  • Preliminary ResultsExperimental Activities

    d = f (RSSI)

    d = 10−RSSI−Pref

    10η

    where d is the calculated distance, RSSI is the measured RSSI, Pref is thepower level at a reference distance of 1 m, and η is the propagationconstant

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 27 / 35

    http://www.bradley.edu

  • Preliminary ResultsExperimental Activities

    0.5 1 1.5 2 2.5 3 3.5 4

    Actual Distance [m]

    0

    0.5

    1

    1.5

    2

    2.5

    3

    Calc

    ula

    ted D

    ista

    nce [m

    ]

    XBee Ranging Data

    PL = 1

    PL = 2

    PL = 3

    Figure: Calculated Distance vs. Actual Distance

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 28 / 35

    http://www.bradley.edu

  • Parts List

    This list does not include parts already in the lab such as the Pioneer3-DX, wire, capacitors, or resistors. We were also fortunate enough tohave access to a BeagleBone Black and some XBee modules forexperimentation without having to place a parts request.

    Part Price Quantity

    XBee S2C w/ whip antenna $18.19 6

    XBee Interface Board $5.31 6

    Perforated Circuit Board $2.84 4

    Stepper Motor $14.95 1

    Motor Controller $19.95 1

    3.3 V Regulator $0.79 10

    9 V Battery Clip $0.39 10

    Table: List of ordered parts

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 29 / 35

    http://www.bradley.edu

  • Deliverables

    Experimental results

    Report

    Complete Documentation

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 30 / 35

    http://www.bradley.edu

  • Timeline and MilestonesFall Semester

    2016

    Sep Oct Nov Dec

    100%Research100%Research XBee functionality

    100%Research EKF-SLAM

    100%Simulation100%Simulate using MATLAB

    100%Simulate using V-REP

    100%XBee Communication100%Communication with X-CTU

    100%AT Commands

    100%Remote AT Commands

    100%XBee Library

    100%Get XBee RSSI data from multiple beacons

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 31 / 35

    http://www.bradley.edu

  • Timeline and MilestonesSpring Semester

    2017

    Jan Feb Mar Apr May

    100%XBee Communication100%Get XBee RSSI data from multiple beacons

    0%Angle Estimation0%Build Reflector

    0%Testing and Debugging

    0%Subsystem Preparation0%Install ROS for Control of Pioneer 3-DX

    0%Create ROS Node for Estimator Subsytem

    0%Integration and Test0%Integrate subsystems

    0%Test and Debug System

    0%Project Completion Work

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 32 / 35

    http://www.bradley.edu

  • Future Directions

    Estimate angle-of-arrival from wireless beacons

    Complete subsystems

    Integrate subsystems

    Demonstrate completed system

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 33 / 35

    http://www.bradley.edu

  • References I

    F. Martinelli, “A robot localization system combining rssi and phaseshift in uhf-rfid signals,” IEEE Transactions on Control SystemsTechnology, vol. 23, no. 5, pp. 1782–1796, Sept 2015.

    E. DiGiampaolo and F. Martinelli, “Mobile robot localization using thephase of passive uhf rfid signals,” IEEE Transactions on IndustrialElectronics, vol. 61, no. 1, pp. 365–376, Jan 2014.

    D. Song, C. Y. Kim, and J. Yi, “Simultaneous localization of multipleunknown and transient radio sources using a mobile robot,” IEEETransactions on Robotics, vol. 28, no. 3, pp. 668–680, June 2012.

    D. Hahnel, W. Burgard, D. Fox, K. Fishkin, and M. Philipose,“Mapping and localization with rfid technology,” in Robotics andAutomation, 2004. Proceedings. ICRA ’04. 2004 IEEE InternationalConference on, vol. 1, April 2004, pp. 1015–1020 Vol.1.

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 34 / 35

    http://www.bradley.edu

  • References II

    B. N. Hood and P. Barooah, “Estimating doa from radio-frequencyrssi measurements using an actuated reflector,” IEEE Sensors Journal,vol. 11, no. 2, pp. 413–417, Feb 2011.

    V. Malyavej, W. Kumkeaw, and M. Aorpimai, “Indoor robotlocalization by rssi/imu sensor fusion,” in 2013 10th InternationalConference on Electrical Engineering/Electronics, Computer,Telecommunications and Information Technology, May 2013, pp. 1–6.

    K. Hevrdejs,J. Knoll (Bradley University) SLAM using ZigBee Protocol (Proposal) November 29, 2016 35 / 35

    http://www.bradley.edu

    IntroductionBackground StudyFunctional RequirementsSpecifications

    Preliminary ResultsSimulationDesignExperimental Activities

    Parts ListDeliverablesTimeline and MilestonesFuture DirectionsAppendix