single dof flutter calculations

Upload: sean-corry-wright

Post on 04-Jun-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Single DOF Flutter Calculations

    1/29

    A

    s

    i

    J

    S i f t

    j jATIONALADVISORYCOMMITTEE ORAERONAUT ICS TECHN I CALNOTE2396 SINGLE -DEGREE -OF-FREEDOM-FLUTTER CALCULATIONSFOR

    AWINGIN SUBSONIC OTENTIALFLOW ANDCOMPARISON WITHANEXPERIMENT

    I yHarryL .Runyan LangleyAeronauticalLaboratoryLangleyField Va.

    N A C A WashingtonJuly1951

    3d 2 0 0 0 0 8 1 60 2 Reproduced From ncQUALITY ISSPBCISD4 BestAvailableCopy

    f lQtA6o-dS(rff

  • 8/13/2019 Single DOF Flutter Calculations

    2/29

    NATIONALADVISORYCOMMITTEEFORAERONAUTICS

    TECHNICALNOTE2396

    SINGLE-DEGREE-OF-FREEDOM-FLUTTERCALCULATIONSFORAWINGINSUBSONICPOTENTIALFLOWAND

    COMPARISONWITHANEXPERIMENTByHarryL .Runyan

    SUMMARY

    Astudy ofsingle-degree-of-freedompitchingoscillationsofawinghasbeen presented.hisstudyincludestheeffectsofMach numberandstructuraldampingandisprimarily anextensiono farecentpaperbySmilginwhichincompressible flowwasconsidered.heactualexistenceofsingle-degree-of-freedomflutterwasdemonstratedbysomelow-speed'testsofawing,pivotedashortdistanceahead oftheleadingedgewithageometricaspectratioof5.87.ngeneral,goodagreementwasfoundbetweenexperimentalandcalculatedresultsf o rhighvaluesofaninertiaparametercorrespondingtohighaltitudes,butdifferencesexistf o rlowvaluesoftheinertiaparameter.heeffectofaspectratio hasnotbeenconsideredinthecalculationsandcouldhavean appreciableinfluenceontheoscillation.

    INTRODUCTION

    Thepossibilityoftheexistenceofsingle-degree-of-freedomoscillatoryinstabilityorflutterinincompressibleflow,bothpotentialandseparated,hasbeenknown f o rsometime.searlyas1929Glauert(reference1)notedthepossiblelossofdampingofapitchingwinginincompressible flowwhich mightlead toanoscillatory instabilitythatmaybereferredtoassingle-degree-of-freedom flutter.n1937Possiomadesimilarobservationsf o rsupersonic flow(reference2)andin19U6thisstudywaselaboratedonbyGarrickandRubinow(reference3) ,whoobservedthat,undercertainconditions,asingle-degree-of-freedomoscillationispossibleinincompressible flow.ubsequently,Smilg(referencek)madecalculationsshowingtherangesofaxis-of-rotationlocationandaninertiaparameterwhichcouldleadtoanoscillatoryinstabilityin pitchoryawf o rtheincompressiblecase.

    Untilrecentlywhateverinterestwasshowninsingle-degree-of-freedomflutterwaslargelyacademicbecausetherangesofparameters

  • 8/13/2019 Single DOF Flutter Calculations

    3/29

    NACATN2396

    involveddidnotappearpractical. However,withcurrentairplanesandmissilesdesigned f o rhighspeedsandhighaltitudes,thesubjectbecomesa morepracticalone,f o rundertheseconditionsundampedoscillationsofevenverysmallamplitudemaybecomeimportant. Inaddition,calcu-lationsofsingle-degree-of-freedomflutter mayrepresentauseful,easilyobtainedlimitf o rcasesofcoupledflutterinvolvingotherdegreesoffreedom.

    Thispaperconsidersspecificallythetypeofsingle-degree-of-freedomflutterassociatedwiththepitchingofanairfoilaboutvariouslocationsoftheaxisofrotation. ItextendstheworkofreferencehtoincludetheeffectsofMachnumberupto =0.7nddiscussesth eeffectofstructuraldampingf o ronelocationoftheaxisofrotation.Theresultsofanexperimentalinvestigationwhichconfirmstheexistenceofsingle-degree-of-freedomflutterar ecomparedwithth etheoreticalvalues. Thecalculationswerebasedontwo-dimensionalaerodynamic-forcecoefficientsandinvolvedasingledegreeo ffreedom. Theeffectofaspectratioandthecoexistenceofotherdegreesoffreed omwouldmodifyth eresultstoalargeextent.

    SYMBOLS

    aondimensionaldistancef r o mmidchordtoaxiso frotation,basedonhalf-chord,positiverearward

    balf-chordcpringconstantCaoefficientoftorsionalrigidityperunitlengthdampingcoefficientFandGunctionsof o roscillatingplanefl owgatructuraldampingcoefficientIaomentofinertiaaboutaxisofrotationperunitlengthIaaut-of-phase(imaginary)componentofmomentonairfoilaboutaxisofrotationperunitlengthkeducedfrequency( b c / v )

  • 8/13/2019 Single DOF Flutter Calculations

    4/29

    N A C A N396m M MaMrMrM 1M2M3 M uZ M

    massMachnumberaerodynamicmomentperunitlengthrealparto faerodynamicmoment,forincompressibleandcompressibleflow,respectively

    aerodynamic fluttercoefficients( s e e reference )

    Haan-phase( r e a l )componento f momentonairfoilaboutaxiso f rotationperunitlength

    vluttervelocityxisplacementangulardisplacementaboutaxiso f rotation,positiveinstallingdirectionpluiddensity

    ircularfrequencyatflutterMaaturalcircularfrequency

    ANALYSISIntroductoryConsiderations

    Beforethespecificexampleo fsingle-degree-of-freedompitchingflutter i sdiscussed,i t maybeadvantageousfirst t oreviewtheconcepto f asingle-degree-of-freedom vibratingsystemandthen t oshowtherelation o fthisexample t o anaerodynamicsystem.helineardifferen-tialequationfor afreesystemconsisting o fa mass,aspringhavingaspringconstant,and a viscousdamperhavinga coefficient s

    mx dx cx=o 1 )

    Themotionrepresented bythisequationi s damped i f s apositivequantity,a si sordinarilythec a s e . I f houldbenegative,

  • 8/13/2019 Single DOF Flutter Calculations

    5/29

    NACATN2396

    themotionisundamped,aconditionofdynamicinstabilityexists,and,if szero,harmonicoscillationscorrespondingtoaborderlineconditionbetweendampedandundampedmotionmayexist.

    Fo rasystemsuchasanaircraftwingoscillatinginasteadyairstream,thesametypeofequationwouldapplyas f o rthemass-spring-dampersystempreviously mentioned.owever,thecoefficients,,and fequation( l )willnow haveaddedcomponentsassociatedwiththeaerodynamics.heequationf o rawingoscillatinginpitchinasteadytwo-dimensionalairstreamis

    Iaa + . (1+iga)Caa= Ma(a,d,,... ( 2 )

    whereaepresentsthecomplexaerodynamicmoment,whichisa functioninpartofamplitude,velocityc ,accelerationd reducedfrequencybak = , locationofaxisofrotation,Machnumber,andsweepangle.Equation( 2 )iscomplexandmaybeseparatedintotwocomponents,oneassociatedwiththedampingofthesystem(sometimescalledtheimaginarypart)andtheotherassociatedwiththeflutter f requencyandvelocity(sometimescalledtherealpart).

    Equationfor PitchingOscillations, =0Fromreference6 ,thevaluesofthedampingequationandthefrequencyequationf o rtwo-dimensionalincompressiblefloware:ampingequation:

    Laa ;-G -)f*-M H -*;& )'- 3 ) Frequencyequation:

    Rce - (WMMf - ( i\2G /l _\2F Jak2 npb1m = hEquation( 3 )isequivalenttothevanishingofthedampingcoefficientdfequation(1)andthusrepresentsaborderlineconditionbetweendampedandundampedoscillations. Th e flutterfrequencyandvelocitymaythenbedetermined fro mequation h)

  • 8/13/2019 Single DOF Flutter Calculations

    6/29

    NACATN2396

    Equation( 3 )cannotbesolvedexplicitly r incethefunctionsFnd retranscendental functionsof.hereareseveralmethodsofsolvingthisequation;aconvenientone,giveninreference7 ,istoassumevaluesof/kndsolvef o rthestructuraldampingcoefficient.Thetypeofstructuraldampingforcecommonlyusedin fluttercalculationisinphasewiththevelocitybutproportionaltotheamplitude.fthedampingcoefficientisplottedagainst/k,thevalueof/ko ranygivendampingcoefficientmaybedetermined.henthevalueof/kthatsatisfiestheimaginaryordampingpartofthemomentequationhasbeendetermined,,the frequencyofoscillationandthevelocitymaybedeterminedfr omtherealpartofthemomentequation,equation( I 4 ) .Equation( I 4 )maybeputindifferent f ormasfollows:

    5 )where

    s. 2 11 r I

    Ifthetorsionalrestraintoaszero,equation( 5 )reducestoI , - H r 6 )npb

    sothat,ifthevalueoftheinertiaparametero/npb^xceedsthevalueofro rthegivenaxis-of-rotationlocation,theoscillationcanexistatallairspeedsabovezerospeed.he frequencyisthenadirectfunctionofthevelocityasdefinedbythe followingequation:

    where/ksthevalueoftheflutter-speedparameterassociatedwithth eborderlineconditionbetweendampedandundampedoscillationf o rthegivenaxisofrotation.

    Equationf or PitchingOscillationIncludingMachNumberInordertoconsidertheeffectofMachnumber,theresultsof

    reference5maybeused.hemethodofcomputationisth esameas

  • 8/13/2019 Single DOF Flutter Calculations

    7/29

    NACATN2396

    describedintheprecedingsection;however,th eaerodynamicmomentahasbeenredefinedtoincludetheeffectofMachnumber.Thedamping(imaginary)component(seereferences5and6)is

    Laa= K\2 x a+ 2 l 2%-f f + aM 2 + z - Z 2andthefrequency(real)equationis

    + M2=0 ( 8 )

    Wwhere

    Mr k k 2LM3- Ml+Z3-2Z1Theaerodynamiccoefficients] _ 2,o,L,- J _ ,2, Z O,andKarefunctionsonlyofreducedf requency ndMachnumber(seereference5 > )

    ANALYTICALRESULTS

    Thepurposeofthissectionistoshowtheresultsofsomecalcu-lationsmadetodeterminetheeffectofsomeoftheindependentvariablesonthe flutterspeedandflutterfrequency.In figure1 ,theflutter-speed parameter/ b o oasplottedagainst

    theinertiaparametero/npbUo r threeMachnumbers, =0 , =0 . | p ,and =0.7.heregiontotherightandaboveagivencurveistheunstableregion,whiletheregiontotheleftandbelowisthestableregion. Increasingaltitudeisequivalenttoincreasingvaluesoftheinertiaparameter. (Notethelargechangeinscalebetweenfigs.1(a)to1(f).)

    Asanillustrationofthemeaning ofthecurvesoffigure1 ,theM =0aseoffigure1(a)( a=-1.0)isdiscussed. Ifthe valueoftheinertiaparameterisbelow5 > ? 1(theasymptote),theconfigurationwillbestable.sthealtitudeisincreased,theinertiaparameterwillincreaseand,ifitisequalto571,thevelocityatwhichanunstable

  • 8/13/2019 Single DOF Flutter Calculations

    8/29

    NACATN2396

    oscillationcouldoccurwouldbeinfinite. slightincreaseintheinertiaparameterwouldnowhaveaverygreateffectinreducingthecriticalvelocity.o rverylargevaluesoftheinertiaparameter,th ecurveisasymptotictoavalueof/ h o oahichisequaltothereducedvelocity/ b c a(thati s ,/k),whichf o rthiscaseis2^.72.

    TheeffectofMachnumberisnowexamined.irst,andmostimportant,alargereductioninthestableregion istobenoted.o rexample,infigure1(a),theupperlimitofthestableregionf o r =0f o rth einertiaparametero/npb 1 ^s71andthislimitisreducedto137at =0.7.

    Anothereffectisthat,f o ragivenspeed,thefrequency ofoscillationwouldincrease f o ranincreaseinMachnumber.o rinstance,infigure1(a),thefrequencyofoscillationwouldbeincreasedbyafactorof2withanincreaseinMachnumber from 0to0.7.

    Infigure2 ,thefrequencyratio( a > / o o a)2isplottedagainsttheinertiaparametera/npbU.hiscurvehasthesameverticalasymptotef o rtheinertiaparameterasf o rthecorrespondingreduced-velocitycurve(fig.1)andtheunstableregionisagaintotherightand aboveth ecurve.heinertiaparameterincreasesasthealtitudeincreases.tlo wvaluesoftheinertiaparametertheconfigurationisstable. Thefrequencyofoscillationisinfiniteattheasymptoticvalueoftheinertiaparameteranddecreasesrapidlyastheinertiaparameterisincreasedfurther.o rverylargevaluesoftheinertiaparameter,thecurveisasymptotictothenaturalfrequencyoafthesystem.nfigure3, theminimumasymptoticvalueoftheinertiaparametero/npb^atwhichtheoscillationcouldbeginisplottedagainstMachnumberf o rvariouspositionsoftheaxisofrotation.nimportanteffecttobenotedisthat,asthedistanceoftheaxisofrotationfromtheliftingsurfaceisincreased,theeffectofMachnumberbecomesincreasinglygreater.

    Infigureh, thevalueo freducedvelocity/ks plottedagainstlocationofaxisofrotation o rthreeMach numbers.heareainsideth ecurvef oragiven Machnumberisth eunstableregion.helowerbranchofeachcurveisasymptoticto =-0.5 (quarterchord),buttheupperbranchhasa maximumdependingontheMachnumber.o r =0correspondingtotheresultsofreferenceh, andf o r =0.5hemaximumvalueof ppearstobeapproximately-5.5; f o r =0.7hemaximumvalueof sapproximately-7 .

    Itshouldbenotedthat,f o ranairplaneormissilehavingacomparativelyshorttaillength(correspondingtothevaluesof nthispaper),anoscillationinvolvinga yawingmotionoftheverticaltailorapitchingmotionofthehorizontaltailmay beaninstabilityofthetypeconsideredinthispaper.sapointofinterest,valuesofthe

  • 8/13/2019 Single DOF Flutter Calculations

    9/29

    NACATN2396

    inertiaparameter f o rusualaircraftconfigurationswhentheverticaltailisconsideredastheliftingsurfacevaryfrom2,000to20,000atsealevelandwould beincreasedbyafactorof10 f o r60,000feet.Sincetheinertiaofan aircraftisusuallylargerabouttheverticalaxisthanaboutthehorizontalaxis,it appearsthatthistypeofanalysismightbemoreapplicabletotheyawingmotion. Itshouldbenotedthatthecalculationsarebasedontwo-dimensionalaerodynamiccoefficientsandtheeffectofaspectratio,especiallyifatailsurfaceiscon-sidered,canbeappreciable.

    Infigure5 ,theeffectofstructuraldampingisshownf o ranaxis-of-rotationlocation =- 1 . 2 1 ;nd =0 .heflutter-speedparameterv / b j oasplottedagainsttheinertiaparameterf o rseveralvaluesofstructuraldampingcoefficienta. Itisapparentthatasmallamountofstructuraldampinghasaverygreateffectontheflutterspeed,especiallyatthelow-densityorhigh-altitudeportionofthefigure.IForinstance,atavalueo f =18,000,avalueofa=0.01raisesnpb^thefluttervelocity byafactorof3abovethezero-dampingcurve,andavalueo fa =0.02raisesthe fluttervelocitybyafactorof .However,structuraldampingdidnotinfluenceth eminimum(asymptotic)valueoftheinertiaparameterat whichtheoscillationcouldbegin.

    APPARATUSANDTESTPROCEDURE

    ThetestswereconductedintheLangley U.^-footflutterresearchtunnelatlo wspeeds(0.O6

  • 8/13/2019 Single DOF Flutter Calculations

    10/29

    NACATN2396

    high-amplitudeoscillations.hisvariationofdampingwithamplitudecanaccountf o rthefactpreviouslymentionedthatthemodel wouldstartoscillatingatslightlylowerairspeedifthemodel weredisturbedwiththeleverthanifitwerelefttotheinherentairturbulenceofthetunnel.

    EXPERIMENTALRESULTS

    Theexperimentalresultsareplottedin figurewheretheordinateistheflutter-speedcoefficient/ b c oaandtheabscissaistheinertiaparameterg/npb^.heoreticalcurvesf o r fourdifferentvaluesofdampingaregiven,andtheexperimentalcurveisshown.

    Thevaluesoftheexperimentalcurveatthehigh-altitude(low-density)rangeareincloseagreementwiththetheoreticalcurve f o rga =0.008.ro manexaminationoftherecords,itappearsthatadampingcoefficientof.015>ga>0.008asobtained;amoreexactdeterminationwasno tpossiblebecauseofthedependenceofthedampingontheamplitudeofoscillation.

    Theimportant factstobenotedare,first,thatasingle-degree-of-freedomoscillationwasobtainedand,second,thatthetrendinthelower-densityregionwasofthesameorderofmagnitudeasthatofthetheoreticalcurveswithdamping.hereasonf o rth ediscrepancyatthehigher-density partoftheplotisnotknown;asimilarphenomenon hasbeenfo undinothercasesf o rthemoreconventionaltypeofflutterinvolvingmorethanonedegreeoffreedom.

    Fromobservationsofth etests,itappearsthatthesingle-degree-of-freedom oscillationdiscussedinthispaper isamildtypeo fflutter,ascontrastedtothemoredestructivetypeofflutterusuallyassociatedwithcoupledflutter. Thistypeo finstability mightbecomeofimportanceinairplanestabilityconsiderations,andthepossibleapplicationtophenomenasuchassnakingshouldnotbeoverlooked. It mustberealizedthatthree-dimensionaleffectsmayexercisesomemodificationoftheseresults.

    CONCLUSIONS

    Astudyofsingle-degree-of-freedompitchingoscillationso fawinghasbeen presented.hisstudyincludestheeffectsofMachnumberandstructuraldampingandisprimarilyanextensionofarecentpaper bySmilg,inwhichincompressibleflowwasconsidered.heactualexistenceofsingle-degree-of-freedomflutterwasdemonstratedbysomelow-speed

  • 8/13/2019 Single DOF Flutter Calculations

    11/29

    10 ACATN2396

    testsofawing,pivotedashortdistanceaheadoftheleadingedgewithageometricaspectratioof5.87.

    Thefollowingconclusionsmaybedrawn:1 .Theexistenceofsingle-degree-of-freedompitchingoscillations

    hasbeenexperimentallydemonstrated.2 .Theexperimentaldataareincloseagreementwiththetheoretical

    valuesf o rhighvaluesoftheinertiaparameter.tlowvaluesoftheinertiaparameter,theexperimentaldataareinpoor'agreementwiththetheory.

    3 .Structuraldampingaasanappreciableeffectonthisinstability andincreasestheflutterspeed.

    I 4 .TheanalyticalresultsshowthatanincreaseofMachnumberreducestherangeofvaluesofaninertiaparameter f o rwhich aconfigu-rationwould bestable. Theresultsarebasedontwo-dimensionalcoef-ficientsanditispossiblethataspectratiocouldhaveagreateffect.5 .Theflutterseemstobeofamild variety,inthatit wouldno tnecessarilycausestructuralfailure,butthepossibleapplicationtophenomenasuchassnakingf o raircrafthavingashorttaillengthshould

    notbeoverlooked.

    LangleyAeronauticalLaboratoryNational AdvisoryCommittee f o rAeronauticsLangley Field,Va.,April10 ,1 9 ? 1

  • 8/13/2019 Single DOF Flutter Calculations

    12/29

    NACATN2396 1

    REFERENCES

    1 .Glauert,H.:heForceandMomentonanOscillatingAerofoil.R .&M.No .1 2 1 * 2 ,BritishA.R.C.,1929.

    2 .Possio,C:'Azioneaerodinamicasulprofilooscillanteallevelocitultrasonore.cta,Pont.Acad.Sei.,vol.I.,no .11,1937,PP.93-106.

    3 .Garrick,I .E.,andRubinow,S .I . :lutterandOscillatingAir-ForceCalculations f o ranAirfoilinaTwo-DimensionalSupersonicFlow.NACARep.8 1 * 6 ,1 9 l * 6 . (FormerlyNACATNll8.)

    1 * .Smilg,Benjamin:heInstabilityofPitchingOscillationso fanAirfoilinSubsonicIncompressiblePotentialFlow.our.Aero.Sei.,vol.16,no .11,Nov.1 9 1 * 9 pp.691-696.

    . Garrick,I .E.:ending-TorsionFlutterCalculationsModifiedbySubsonicCompressibilityCorrections.ACARep.836,1 9 l * 6 .(FormerlyNACATN 1 0 3 1 * . )

    6 .Theodorsen,Theodore,andGarrick,I .E. :echanism ofFlutter-ATheoreticalandExperimentalInvestigationoftheFlutterProblem.NACARep.685,1 9 l * 0 .

    7 .Smilg,Benjamin,andWasserman,LeeS.:pplicationofThree-DimensionalFlutterTheorytoAircraftStructures.CTR No .1 * 7 9 8 ,MaterielDiv.,ArmyAir Corps,July 9 ,1 9 i * 2 .

  • 8/13/2019 Single DOF Flutter Calculations

    13/29

    12 NACAN396

    HI

    s C D U

    h oabD I

    C D HdH03 O

    -3- aH-PC O dHC O Ma 5

    H i

    #in O-P oHH0 1 dWH

    o

    r a doH -pd -H ra oPid oH-Pcd PooIra Hcd ra doHfH C O ^ O H C D ft r a

  • 8/13/2019 Single DOF Flutter Calculations

    14/29

    N A C A N396 13

    ir\ H -P o

    < 1 J ubO H

    II

  • 8/13/2019 Single DOF Flutter Calculations

    15/29

    1)4 NACAN396

    000< ^ 1 5 0 * - *

    H 1 } Oc v j H+3 t= 1 uO 0OO 1 1 C O nr-t 0 H' (1)

    a s (J U Hi\ OOO1 O

    g , XC Z Z 2

    in OO 0 tui-l Jo *0 *7-d- II / / 0O HIX Xt 0\ rH

    rHI^t N tiSA >Sv _ _6-fr c OP0 O M3 CU 16 0 j*f\J C U C \J rH iH> 3

  • 8/13/2019 Single DOF Flutter Calculations

    16/29

    NACAN396 15

    en 1

    nd

    3 -P O O0)b0

  • 8/13/2019 Single DOF Flutter Calculations

    17/29

    16 NACAN396

    (Z ?

    000000

    A 000001 ^ -

    J 0000H P

    00p 0f4

    * 3 0000in

    a 00H 1ft0

    0 /l 000. = 1 -H y 00N OOO O8 Ei O?r C M 1^ON 1-1 _ X

    L _r

    IT SO

    -S B-4-1^ -O

    i )

    00000

    s s . Si J CS*AI^001^ c c 30 < < 1 c DD c c 3a

    3 C c0J c< p DDH c P

    o TH-P oo

    m bO HP -4

  • 8/13/2019 Single DOF Flutter Calculations

    18/29

    NACAN396 17

    ^

    ftTi< 1 > T)* d 0 H 0IT A d 1 00II

    0 1 H(1 )C H g > H P -4

    II

  • 8/13/2019 Single DOF Flutter Calculations

    19/29

    18 NACAN396

    C Q O -PrH cd W )Prt0H (H C Q CHfH O0CH C Q 3-4- c d Pa aQ O Kt

    H 8H1 H h-= f || C O -pg - c d C Q Ua0H

    . c d cd D^ ^ c dOHP OJ cd C Q H14

    ^ (J Q3 Qopr 5?-^

  • 8/13/2019 Single DOF Flutter Calculations

    20/29

    NACAN.396 19

    m Hc d

    H -PooI

    OJ < D

    H

    C M

  • 8/13/2019 Single DOF Flutter Calculations

    21/29

    20 NACAN396

    c v j

    0< \

    C T \u\< vZi OOO0

    a /n O3 O> O1 0U 1

  • 8/13/2019 Single DOF Flutter Calculations

    22/29

    NACAN396

    000

    dn o 1 1 1

    c

    z?

    0000000000000Oin

    000 0H=t0000OOOOC \J

    OOO0H

    /0HP

    B p ^0UOm 1 \

    HXIa s V -t->c -d

    / d H-pd 00 0

    0 ~ ' I\ bO H*

    STS'TS

    CM inVO 1^ 1

    in0HI.\r-l.M 1 1 1^ - 0aL 2 Hi N

    3u OIM H C M C \J \ 3,

    0 ^t-

  • 8/13/2019 Single DOF Flutter Calculations

    23/29

    22 NACAN396

    00000 SO0000r-00000> 00000ITiOOO O* HO=tOOOOOK\

    OOOOOC \J

    OOOOOH

    P

    d1

    0)

    A OHat O O09 H

    at H 1

    / OJ a > 0IIJ - / P -4

    r-l s 7 -

    tt' > Xc c M r-3 c r 0 * c c\ i

  • 8/13/2019 Single DOF Flutter Calculations

    24/29

    NACAN396 23

    o

    a )T> 30 H O O0-=fp cd a

  • 8/13/2019 Single DOF Flutter Calculations

    25/29

    2 U NACAN396

    irptr

    Figure3.-Ploto fasymptoticvalueofinertiaparameter againstMachnumberf o rvariousaxis-of-rotationlocations.

  • 8/13/2019 Single DOF Flutter Calculations

    26/29

    2 5

    Figurek.-Plotofaxis-of-rotationlocation gainstreducedfrequency/korthreeMachnumbersf o rsingle-degree-of-freedompitchingflutter.

  • 8/13/2019 Single DOF Flutter Calculations

    27/29

    26 NACAN396ooo

    fz?

    0OJ

    000> x > rH

    OOOC M r-4

    dH

    O8 to

    003

    T\\"C VJ00 i\\ c ' S 0\ IIay f a O 1 1060 \ All H P.a 0) CO V \ \ \\ 0c ed tru0113x4)a O D 0S- r|lM*= cd -P \ \

    v aH d\ \ 0)

    0rlP P0u-1 0n 1 \\ \ rvotchn\1 \\ i O ft1 0 M]/ \ } LT \d -H< U ft( u a ;) / \\ M fH cdHH N p LoL . - *-*- F5

    CV J 8 o o oCM II

  • 8/13/2019 Single DOF Flutter Calculations

    28/29

    NACAN396 2?

    h - AxisfrotationBallbearing^ Jf

    Air-flowdirection. 1 1 - 9 6 .

    + 8 " *

    Wing-

    Ballbearing-^2^_

    kV

    SupportlyTunnelwall

    Figure6. -Diagramofmodelandmodelinstallation. Inertiaofsystemaboutaxiso f rotationa=0.09^ foot-pound-secondssquareperfoot;naturalfrequency o fsystem =22.99-

    NACA-Lang l e y7-3-511000

  • 8/13/2019 Single DOF Flutter Calculations

    29/29

    CM M 1M

    3co s_ :_bo ao-2 J rt.

    rt rt 3 33QmmQ

    Eou

    ooS

    5 T 3 CaE o 5AB

    H C B y>>HZwB

    eg iM' u-30)M

    -c3O -'5 0 c- ,otit ' r-9

    cu 4:o Cj 3 3^r > IK 0s T)c SrtS HZ> * - B

    T3 b o Jj.5 crt-g

    CO enCO CM z < U< 5 Z

    < o fe w B - >O rt-n -C

    pH-*-> I332 rt.t2

    JoIsOpa to be

    C O

    afjr ttNBZ H=laHZ* B

    -HMM O'S-< O rtO 3J j lu^.a o fe ,3 ScSBIlls

    Qa

    a3XIBr t

    a > >H 3o3Ht3gog3s3HOai zogO

    ZUw