single-layer mos2 nanopores as nanopower...

30
Single-layer MoS2 nanopores as nanopower generators Aleksandra Radenovic EPFL Ecole Polytechnique Federale de Lausanne Bioengineering Institute Laboratory of Nanoscale Biology Barcelona, Graphene 2017. March 29 th 2017.

Upload: others

Post on 21-Feb-2020

14 views

Category:

Documents


0 download

TRANSCRIPT

Single-layer MoS2 nanopores as nanopower generators

Aleksandra Radenovic

EPFL – Ecole Polytechnique Federale de Lausanne

Bioengineering Institute Laboratory of Nanoscale Biology

Barcelona, Graphene 2017. March 29th 2017.

Nature inspired nanoengineering

Nature creates nano-stuctures

Biological systems are an existing proof of molecular nanotechnology.

The Biology is an ingenious form of nanotechnology

Cell compartmentalization

Pores –ion channels

Biopolymer translocations

2

Engineered nanopores

Nanopores- as sensors

Nanopores – in filtration

Nanopores – as powergenerators

3

Nanopores

Wanunu, M. (2012). Nanopores: A journey towards DNA

sequencing. Physics of Life Reviews, 9(2), 125–158. 4

Nanopores - materials

Nanopore material – dictates application

Silicon nitride nanopores – gold standard for solid state nanopores 5-20 nm thick

2D material nanopores: graphene, hexagonal boron nitride (hBN) and molybdenum disulfide (MoS2)-0.3-0-7 nm thick

Glass/Quartz nanocapillaries

5

Nanopore sensitivity - geometry

Kowalczyk et al. Nanotechnology 2011.

l

d

l

d

6

CVD grown MoS2

Dumenco et al. ACS Nano 2015. 7

1 nm

Feng et al. Nano Lett. 15 (5), 2015.

Nanopores from CVD grown MoS2

8

MoS2 nanopores conductivity

Liu et al. ACS Nano 2014.

Linear current voltage characteristics

20 nm

5 nm

9

1 nm

Feng et al. Nano Lett. 15 (5), 2015.

Nanopores from CVD grown MoS2

10

Electrochemical etching of monolayer MoS2

1 nm1 nm1 nm

Feng, et al. Nano Lett. 15 (5), 2015.11

Electrochemical etching of monolayer MoS2

1 nm1 nm1 nm

2

2 2 3 411 2 22 18MoS H O MoO SO H e

Feng, et al. Nano Lett. 15 (5), 2015.12

Electrochemical etching of monolayer MoS2

1 nm1 nm1 nm

1

2

4 1LG

d d

Vcritical ~ 0.8-2 V

2

2 2 3 411 2 22 18MoS H O MoO SO H e

Feng, et al. Nano Lett. 15 (5), 2015.13

Using dsDNA and ssDNA translocations to verify the size of nanopores

14

Enabling technology

15

Blue energy

salinity gradient

worldwide potential: 2.4-2.6 TW

16

Technologies in use

Pressure Retarded Osmosis (PRO)

Water selective membraneStratkraft SF, Tofte, NorwayMegaTon -Japan

RED (reverse electrodialysis)

Ion selective membraneRedStack, Afsluitdijk, the Netherlands

17https://en.wikipedia.org/wiki/Osmotic_power

Common membranes

Low efficiency- a few Watts per meter squared of membranes for sea/river combination

18https://en.wikipedia.org/wiki/Osmotic_power

Boron Nitride Nanotube based powergenerators

Siria

, A., e

t al.

& B

ocquet,

L.

(20

13

)N

atu

re,

494(7

438),

455–458.

19

Boron Nitride Nanotube

2013 –improved efficiency

Siria, A., et al. & Bocquet, L. (2013) Nature, 494(7438), 455–458. 20

Our approach

Boron nitride nanotube

L

Tunable d

MoS2 membrane with a single nanopore

21d

L=0.7 nm

Overview of osmotic power generator

Exploiting osmotic potential from a salt concentration gradient

Pores drilled using TEM or ECR

Varied ∆C

Varied Surface Charge by adjusting pH

MD- Simulations to confirm results

cis Ag/AgClelectrode

trans+−

MoS2

Co

nce

ntr

atio

n

Mo

tio

n o

f io

ns

-

A

5 nmSiria, A., Bocquet, L. et. al. Nature 2013

Feng et al. Nature 2016 22

Osmotic power generation

Feng et al. Nature 2016

( ) lncis

KClos is trans

KCl

RT aV f

F a

2 ( )ln

cis

B KClos trans

B KCl

rf k T aI

L a

23

Osmotic power generation

Feng et al. Nature 2016

( ) lncis

KClos is trans

KCl

RT aV f

F a

2 ( )ln

cis

B KClos trans

B KCl

rf k T aI

L a

24

Osmotic power generation

The role of pH (3-11)

Feng et al. Nature 2016 25

Molecular-dynamics-simulation

Feng et al. Nature 2016 26

Osmotic power generation

Self-powered system

𝑃𝑜𝑤𝑒𝑟 =𝑉𝑜𝑢𝑡𝑅𝑙𝑜𝑎𝑑𝑅𝑃 + 𝑅𝑙𝑜𝑎𝑑

2

Feng et al. Nature 201627

Conclusion

2D material membranes

ideal size of the pore:

10nm

single pore power:

1-10 nW

28

LBEN Laboratory of Nanoscale Biology

Prof. Andras Kis

Starting PorABELConsolidator Bionic

Prof. N.R. Aluru

29

BIONIC Potential

Control of translocation speed for all molecules not only ssDNA or RNA

Optimal speed for sequncing

Ability to electrochemically control the size of the nanopores

Nanofluidc quantum effects

Ionic Coulomb blockade

RT Single ion transistor

30