slac accelerator laboratory annual laboratory plan 2015 .pdf · slac annual laboratory plan...

47
SLAC National Accelerator Laboratory Annual Laboratory Plan 2015

Upload: buitram

Post on 16-May-2018

218 views

Category:

Documents


1 download

TRANSCRIPT

SLACNationalAcceleratorLaboratoryAnnualLaboratoryPlan2015

SLACAnnualLaboratoryPlan Submitted1May2015 Page2of47

PublishedBy

SLACNationalAcceleratorLaboratory

2575SandHillRoad

MenloPark,CA94025

SLACisoperatedbyStanfordUniversityfortheDepartmentofEnergy’sOfficeofScience.

Approval

ThisSLACAnnualLaboratoryPlanfor2015hasbeenreviewedandapprovedby:

ElectronicallyapprovedChi‐ChangKao

ProfessorandDirector

SLACNationalAcceleratorLaboratory

1May2015

Thisdocument and thematerial anddata containedhereinweredevelopedunder the sponsorshipof theUnitedStatesGovernment.NeithertheUnitedStatesnortheDepartmentofEnergy,northeLelandStanfordJuniorUniversity(theUniversity),northeiremployees,makes any warranty, express or implied, or assumes any liability or responsibility for accuracy, completeness or usefulness of anyinformation,apparatus,productorprocessdisclosed,orrepresentsthatitsusewillnotinfringeprivatelyownedrights.Mentionofanyproduct, itsmanufacturer,orsuppliersshallnot,nor is it intendedto implyapproval,disapproval,or fitness foranyparticularuse.Aroyalty‐free,non‐exclusiverighttouseanddisseminateitforanypurposewhatsoeverisexpresslyreservedtotheUnitedStatesandtheUniversity.

About the cover image: Scientists at theDepartmentofEnergy’s SLACNationalAcceleratorLaboratory andStanfordUniversityhavediscovered a potential way to make graphene – a single layer of carbon atoms with great promise for future electronics –superconducting,astateinwhichitwouldcarryelectricitywith100percentefficiency.Addingcalciumatoms(orangespheres)betweengrapheneplanes(bluehoneycomb)createsasuperconductingmaterialcalledCaC6.NowastudyatSLAChasshownforthefirsttimethat graphene is a key player in this superconductivity: Electrons scatter back and forth between the graphene and calcium layers,interactwithnaturalvibrations inthematerial’satomicstructureandpairuptoconductelectricitywithoutresistance.[Imagecredit:GregStewart/SLAC]

SLACAnnualLaboratoryPlan Submitted1May2015 Page3of47

Table of Contents

1.0MissionandOverview..................................................................................................................................................................................................................................42.0Lab‐at‐a‐Glance...............................................................................................................................................................................................................................................43.0CurrentCoreCapabilities............................................................................................................................................................................................................................5Large‐ScaleUserFacilitiesandAdvancedInstrumentation..........................................................................................................................................................5CondensedMatterPhysicsandMaterialsScience.............................................................................................................................................................................6ChemicalandMolecularScience................................................................................................................................................................................................................7AcceleratorScienceandTechnology.......................................................................................................................................................................................................8ParticlePhysics.................................................................................................................................................................................................................................................9

4.0ScienceStrategyfortheFuture/MajorInitiatives..........................................................................................................................................................................10OverviewandContext..................................................................................................................................................................................................................................10InnovatingandOperatingPremiereAccelerator‐basedFacilities............................................................................................................................................10LCLS................................................................................................................................................................................................................................................................10SSRLEnhancements................................................................................................................................................................................................................................12FACET‐II.......................................................................................................................................................................................................................................................13UltrafastElectronDiffraction/Microscopy..................................................................................................................................................................................13

IdentifyingandPursuingNewScienceEnabledbyOurFacilitiesandDefiningTheirFutureDirection..................................................................14UltrafastScience.......................................................................................................................................................................................................................................14Catalysis........................................................................................................................................................................................................................................................15Biosciences..................................................................................................................................................................................................................................................16HighEnergyDensityScience...............................................................................................................................................................................................................16MajorUpgradestotheATLASDetectorattheLargeHadronCollider..............................................................................................................................17

PerformingUse‐InspiredandTranslationalResearchinEnergy..............................................................................................................................................17DefiningandPursuingaFrontierPrograminCosmology............................................................................................................................................................18CoreCompetenciesandSupportingTechnologyR&D...................................................................................................................................................................19AdvancedRFAcceleratorTechnology.............................................................................................................................................................................................19InstrumentationDevelopmentforLightSourcesandParticlePhysics.............................................................................................................................19LaserDevelopment..................................................................................................................................................................................................................................20ScientificComputingandDataManagement................................................................................................................................................................................20

5.0StrategicPartnershipProjects................................................................................................................................................................................................................22BaselineSPPProgram..................................................................................................................................................................................................................................22SPPStrategyfortheFuture.......................................................................................................................................................................................................................23

6.0Infrastructure/MissionReadiness......................................................................................................................................................................................................25OverviewofSiteFacilitiesandInfrastructure...................................................................................................................................................................................25CampusStrategy.............................................................................................................................................................................................................................................26SiteSustainabilityPlanSummary[Internal]......................................................................................................................................................................................35

7.0HumanResources........................................................................................................................................................................................................................................37RecentHistory.................................................................................................................................................................................................................................................37FutureChallengesandActions.................................................................................................................................................................................................................38

8.0CostofDoingBusiness...............................................................................................................................................................................................................................40OverheadBudgetProcess...........................................................................................................................................................................................................................40Metrics................................................................................................................................................................................................................................................................40MajorCostDrivers.........................................................................................................................................................................................................................................41DecisionsandTrade‐offs............................................................................................................................................................................................................................42

Appendix1:AnnualStrategicPartnershipProjectsReport.............................................................................................................................................................44Appendix2:ProposedLineItemInvestments........................................................................................................................................................................................45Acronyms................................................................................................................................................................................................................................................................46 

Tables and Figures

Table1.StrategicPartnershipProjectsFunding..................................................................................................................................................................................23 Table2.CurrentConditionandUtilizationSummary.........................................................................................................................................................................25 Table3.CoreCapabilityInfrastructureGaps..........................................................................................................................................................................................28 Table5.PlannedInvestments......................................................................................................................................................................................................................34 Table6.Three‐yearStaffingProfile............................................................................................................................................................................................................37 Table7.LaboratoryOverheadTrends.......................................................................................................................................................................................................40 Figure1.SLACCampusVision,5‐10years................................................................................................................................................................................................26 Figure2.ElectricityUsageandCostProjections....................................................................................................................................................................................36 

SLACAnnualLaboratoryPlan Submitted1May2015 Page4of47

1.0 Mission and Overview SLAC National Accelerator Laboratory pursuestransformative research on some of themost importantscientificquestionsandtechnologychallengeswithinthemissionoftheDepartmentofEnergy(DOE)usinguniquecutting‐edgeacceleratorfacilitiesandworld‐leading lightsources. Founded in 1962 with a two‐mile linearaccelerator used for revolutionary high‐energy physicsexperiments, SLAC has evolved into a multi‐programlaboratory whose mission leverages its intellectualcapital,uniquerelationshipwithStanfordUniversity,andlocationwithinSiliconValleyto:

● Innovate,developandoperateworld‐leadingaccelerators,lightsourcesandscientifictools;

● Delivertransformativechemical,materialsandbiologicalscienceenabledbyouruniquefacilitiesanddefiningtheirdirection;

● Performuse‐inspiredandtranslationalresearchinenergy;and

● Defineandpursueafrontierprogramincosmology.SLAC draws more than 4,000 researchers from aroundtheworldtouseitsfacilitiesandparticipateinlaboratory‐hosted science programs each year. The Laboratoryoperates two leading X‐ray scientific user facilities—theLinac Coherent Light Source (LCLS) and the StanfordSynchrotronRadiationLightsource(SSRL)—aswellastheFacility for Advanced Accelerator Experimental Tests(FACET), a unique research and development (R&D)facility opened in 2012 for research on next‐generationaccelerator concepts. SLAC also runs the InstrumentScienceandOperationsCenter for theFermiGamma‐raySpace Telescope (FGST), a joint DOE‐NASAmission thatlaunched in 2008, and is leading the construction andoperationoftheLargeSynopticSurveyTelescope(LSST).

SinceLCLSbeganoperationsin2009,ithasredefinedthefrontiersofX‐ray scienceasanunprecedented sourceofultrashort, ultrabright pulses of coherent X‐rays. TherecentdemonstrationofhardandsoftX‐rayself‐seedingandotheradvancedtechniqueshasfurtherenhancedtheuniquecapabilitiesofthisfacility.Breakthroughscientificresults achieved at the LCLS have garnered worldwideattention, andprompted constructionof similar facilitiesaroundtheworld.Workhasbegunonanupgrade,LCLS‐II, which will provide a much higher repetition rate,increasingthenumberofexperimentsruneachyear,andan expanded range of X‐ray wavelengths, addingimportant new capabilities to keep the U.S. in aninternationallyleadingposition.

SLAC is operated by Stanford University (Stanford) forDOE’s Office of Science (DOE‐SC). To date, six scientistshavebeenawardedtheNobelPrize forworkcarriedoutatSLAC.

2.0 Lab-at-a-Glance Location:MenloPark,CAType:Multi‐programLaboratoryContractor:StanfordUniversityResponsibleSiteOffice:SLACSiteOfficeWebsite:www.slac.stanford.eduPhysicalAssets#: 426acres,147buildingsand39trailers 1.606MGSFinbuildings ReplacementPlantValue:$1.442B 2,662GSFin2ExcessFacilities 654GSFin1LeasedTrailerHumanCapital: 1,422FullTimeEquivalentEmployees(FTEs) 52JointFaculty 110PostdoctoralResearchers 0UndergraduateStudents 120GraduateStudents 2,913FacilityUsers* 24VisitingScientists

FY2014FundingbySource:(CostDatain$M):

FY2014LabOperatingCosts(excludingRecoveryAct):$383.6FY2014DOE/NNSACosts:$384.6FY2014WFO(Non‐DOE/Non‐DHS)Costs:$12.3FY2014WFOas%TotalLabOperatingCosts:3.2%FY2014DHSCosts:N/ARecoveryActCostedfromDOESourcesinFY2014:$1.0#GSFandbuildingcountrelatesonlytoDOE‐ownedactive,operationalbuildingsperFIMS.*FacilityUsersasreportedtoDOEfromtheuserfacilitiesLCLS,SSRL,FACETandtestfacilitiesASTA,ESTB,NLCTA.ExcludesSLACemployees.

BES,224.0

BER,4.6SLI,49.8

FES,4.0

HEP,82.6 OtherSC,3.4

EERE,2.0

NNSA,1.3

OtherDOE,0.7

WFO,12.3

SLACAnnualLaboratoryPlan Submitted1May2015 Page5of47

3.0 Current Core Capabilities The Office of Science has identified five core capabilities at SLAC, which reflect the Laboratory’s scientific andtechnicalexcellence:Large‐ScaleUserFacilitiesandAdvancedInstrumentation;CondensedMatterPhysicsandMaterialsScience;ChemicalandMolecularScience;AcceleratorScienceandTechnology;andParticlePhysics.

Large‐ScaleUserFacilitiesandAdvancedInstrumentationSLAChastheintellectualcapital,infrastructureandexperiencetoinnovate,develop,design,construct,maintainandeffectively operate large‐scale scientific user facilities, deliveringbreakthroughdiscoveries that are relevant to theDOE‐SCandSLACmissions.SLACcurrentlyoperates threeDOE‐SCuser facilities—LCLS,SSRLandFACET—aswelltheFGST.

LinacCoherentLightSource: SLAC’s LCLS is theworld's first andmost powerful X‐ray free‐electron laser (FEL)operating in the hard X‐ray spectral range. LCLS provides highly focused beams to approximately 600 scientistsannually (with over 1,300 user visits), enabling frontier science into the fundamental processes of chemistry,materials, energy and life sciences and technology. In the past 12 months, using the LCLS’s six instruments andexperimental stations, scientists havemademany important advances. These include the first observations of theatomicstructureofaroom‐temperaturematerialasitenteredastateresemblingsuperconductivity;thedynamicsofliquid helium nanodroplets, revealing the presence of quantized vortices; major advances in the field of coherentdiffractiveimaging,withthefirstever3‐DreconstructionofalivevirusfromLCLS;thefirsttime‐resolveddatafromaserial femtosecondcrystallographyexperiment;andnewobservationsofreaction intermediates in theoxidationofcarbonmonoxideonacatalyticrutheniumsurface.

These experiments utilize the facility’s groundbreaking X‐ray beam,which offers a photon energy range from280electronvolts (eV) to 11.2 kiloelectronvolts (keV), with pulse energy up to 6 millijoules (mJ). The pulse length istypically50femtoseconds(fs)andcanbevariedfromabout5tomorethan300fs,whilethemaximumrepetitionrateoftheLCLSis120Hertz(Hz).Self‐seedingmodesarenowavailableinbothsoftX‐rayandhardX‐rayspectralregimes(0.5‐1.0and4.5‐9.5keV),benefittingexperimentsthatrequirenarrowbandwidth.Thenewsoft‐x‐raycapabilitywasfeaturedon the front coverofPhysicalReviewLetters.Thepeakpower achievedwasover anorderofmagnitudehigherthanpreviousapproaches.

LCLShasrecentlyutilizedanew“two‐color”modeofoperationthatshouldhavesignificantimpactinfieldssuchasprotein crystallography andmaterials science. This allows LCLS to deliver two bursts of X‐rayswith independentspectralandtemporaltunabilitywithinfemtoseconds,coupledtoarecentlydevelopedtimingdevicetomeasurethetemporaloverlap.

The first of a new family of detectors developed at SLACwas recently fielded at LCLS, continuing the tradition ofdriving thestateof theart in this fieldbasedonsynergiesgained frommultipleprograms.KnownasePix100, thisdetectordemonstratedtheabilitytooperateunderawiderangeofconditions–fromahighnumberofphotonsperframe,usuallyachievedinSAXSgeometry,downtoafewphotonsperframe.

LCLS has been extremely reliable, providingmore than 4,500 hours of user operation in FY14with 94% uptime.Recentworkhasfurtherimprovedthestabilityofthesource,withenergyjitterof0.05%(at1keV)and0.025%(at8keV)nowpossible.

StanfordSynchrotronRadiationLightsource:BuildingonmanyofthesamecorecompetenciesthatsupportLCLS,SSRL provides synchrotron X‐rays from its third‐generation storage ring (SPEAR3) and associated beamlines andinstrumentation,servingtheresearchneedsofmorethan1,600uniqueusersannuallyacrossmanyareasofscience,engineeringandtechnology.SPEAR3performancecontinuestobeexcellent,providing98.4%uptimeinFY14athigh‐current(500milliamp)operation,with top‐off injectionsevery fiveminutesas thestandardoperatingmode,alongwiththeabilitytoruninthelow‐αmodeallowingforpicosecond(ps)time‐resolvedexperiments.

ResearchatSSRLsupportsDOE‐SCandSLACmissionresearch, includingcondensedmatterphysics,energy‐relatedmaterialsresearch,catalysis,sustainableenergy,lifesciencesandbiopharmadrug‐discoveryprograms.SSRLisalsoinvolved in largerDOEandother initiatives includingthe JointCenter forArtificialPhotosynthesis(JCAP), the JointCenter forEnergyStorage (JCESR)andEnergyFrontierResearchCenters (EFRCs).To improve its supportof theseprograms,ongoingR&Disaimedat furtherreducingtheSPEAR3emittance to6nanometer‐radiansand improvingtime‐resolved capabilities to keep SPEAR3 competitive with other third‐generation sources. Ongoing beamlineconstruction projects include advanced spectroscopy capabilities for energy‐relatedmaterials and catalysiswith a

SLACAnnualLaboratoryPlan Submitted1May2015 Page6of47

focusontime‐resolvedscience;acalibrationbeamlinetosupportDOEmissionneeds;andamicro‐beamfacilityformacromolecular crystallography, which is also coupled to the structural biology R&D and user program at LCLS.Future beamlines include an X‐ray scattering beamline for energy sciences with a focus on interfaces and time‐resolvedscience.

ThedifferentpropertiesofX‐raybeamsatLCLSandSSRLallowthedesignofcomplementarytypesofexperimentsfrom femtoseconds to days. In addition, to maximize the impact of the light sources on innovation and scientificdiscovery,LCLSandSSRLcoordinateR&Dprogramsfocusedonnewmethodologiesandinstrumentation.SSRLoffersanR&DtestbedfornewinstrumentationandtechniquespriortodeploymentonLCLS,allowingmoreoptimaluseoflimitedLCLSbeamtime.

FacilityforAdvancedAcceleratorExperimentalTests:Withtheaidofpowerfulelectronandpositronbeamsfroma section of SLAC's 2‐mile‐long linear accelerator, FACET,which opened to scientists in 2012, is exploring how toharness plasmas and specialized materials to boost particles quickly to gigaelectronvolt (GeV) energies over anapproximately1‐meterdistance.Recently,plasmaaccelerationofpositronswasproven,akeysteptofuturecolliderdevelopment.Thegoalistoshrinkparticleacceleratorsforuseinhigh‐energyphysicsresearchaswellasforotherapplicationsacrossDOE‐SC,inmedicineandinindustry.ScientistsarealsousingFACETtostudymagneticpropertiesin materials, with applications in data storage; high‐energy sources of terahertz radiation, with applications inmaterialsscienceandchemicalimaging;anddiagnosticsforfutureaccelerators.InFY14,FACET,combinedwiththeLaboratory’sothertestfacilities—theNextLinearColliderTestAccelerator(NLCTA),theAcceleratorStructureTestArea(ASTA)andtheEndStationTestBeam(ESTB)—supported43experimentsfor401usersfromSLAC,Stanfordandotherinstitutions.InFY15,FACETaloneisexpectedtosupport15experimentswithatotalof144users.

Particle Physics and Astrophysics facilities and instruments: SLAC plays an important role in major particlephysicsandastrophysics(PPA)projects.TheLaboratoryledthedesign,development,constructionandoperationofthe state‐of‐the‐art Fermi Large Area Telescope (LAT), which launched in June 2008 on the FGST, a major spaceobservatorythatisrevolutionizingtheunderstandingofhigh‐energyprocessesintheuniverse.Theexperiencegainedfromthisprogramisnowbeingappliedtofuturefacilitiesthatwillbelocatedoffsite:thewide‐fieldLargeSynopticSurveyTelescope(LSST)innorthernChile;upgradestotheAToroidalLHCApparatus(ATLAS)detectorattheLargeHadronCollider; twonext‐generationexperiments fordirectdetectionof relicdarkmatter–SuperCryogenicDarkMatter Search (SuperCDMS) and LUX‐ZEPELIN (LZ); development of next‐generation experiments for precisioncosmology with Cosmic Microwave Background (CMB) studies; and development of the future national neutrinoprogram with the Long‐Baseline Neutrino Experiment (LBNE) at Fermi National Accelerator Laboratory. SLAC isplayingaleadroleindesigninganddevelopingimportantelementsofeachoftheselargeinternationalprojects.

In support of its large‐scale facilities and science programs, SLAC has developed and maintains a number ofcapabilities in advanced instrumentation and computational tools driven by the needs of existing and futureexperiments.Thesecapabilities includesystemdesign forhigh‐bandwidthdataacquisitionsystems, extendingallthewayfromcustomsensorsandapplication‐specificintegratedcircuitsfordetectors,tostorageanddistributedaccessfor100‐petabyte‐classdatasets;advancedinstrumentationanddiagnosticsforcharacterizationandcontrolofmicron‐scalephotonbeams;andhighlyautomated,robotic‐enabled,computer‐basedinstrumentcontrolandremoteaccess.Applications includehighly integratedX‐raybeamlinesand instrumentation inphotonscienceexperiments,ultralowbackgroundexperimentsfordirectdarkmatterdetection,andspace‐qualifiedelectronicsystems,aswellascomputationalresources forautomatedandoptimizeddataacquisitionstrategies,datacollectionanddataanalysis.SLAC has significant expertise and capability inmanaging very large sets of experimentaldata, and is activelydeveloping strategies for data acquisition and management for LCLS and for future opportunities with LSST andATLAS.

BasicEnergySciences (DOE‐BES)andHighEnergyPhysics (DOE‐HEP)are themajor sourcesof funding for this corecapabilityat SLAC.Other sources includeBiologicalandEnvironmentalResearch (DOE‐BER),FusionEnergy Sciences(DOE‐FES),andStrategicPartnershipProjects(SPP)fromtheNationalInstitutesofHealth(NIH).SLAC’seffortssupporttheDOE‐SCmissioninscientificdiscoveryandinnovation(SC2,10,21,22,23,24,26).

CondensedMatterPhysicsandMaterialsScienceMaterials,chemistryandenergysciencesarecentraltomanyoftoday’smostcriticaltechnicalchallenges.CondensedmatterphysicsandmaterialsscienceresearchatSLACaddressDOE‐BESmissionneedsandselectedGrandChallengeenergy science questions. The Laboratory focuses on selected areas ofmaterials science, including correlated andsuperconducting materials, diamondoids, bio‐inspired materials, topological insulators, atomically engineeredheterostructures and chalcogenides. SLAC also applies this research toward the development of future energy

SLACAnnualLaboratoryPlan Submitted1May2015 Page7of47

technologies, including methods for storing energy, more efficient energy conversion and carbon‐free energyproduction.

SLACusesandhelpsdrivethedevelopmentofforefrontmaterialssciencetechniquesandmethodologiesatLCLSandSSRL.Recentworkhasdemonstratedtheabilityofspectroscopytoilluminatefundamentalelectron,spin,orbitalandlattice dynamics on natural time and length scales. For example, unique laser‐based capabilities allow ultrafastphotoemissionstudiestoinvestigatesingleparticledynamics,resolvedaccordingtotheelectron’senergy,momentumandspininthetimedomain,whereprocessessuchasultrafastchargeandspindynamicsbecomeaccessiblefordirectobservation.Couplingtheseeffortswith insitumaterialssynthesisandcharacterizationatSSRL,andwithadvancedtheoretical simulation, provides synergistic advancement on all fronts. Adding to the capacity already in place atLCLS’s soft X‐ray end station has enabled pump‐probe resonant inelastic soft X‐ray scattering to study the timeevolutionofcoupledorderparameters.Otherrecenteffortsinultrafastmaterialsscienceallowstudyofthephysicsofcoupled orders in nickelates, cuprates, manganites and other correlatedmaterials, charge density wave collectivemodes, and magnetization dynamics in magnetic films and interfaces, important for next‐generation electronicdevices.

SLAC’s materials science research is coordinated under a joint institute between SLAC and Stanford called theStanford Institute forMaterials and Energy Sciences (SIMES). Through SIMES, SLAC provides a strong coupling toenergy technologyandpolicy initiativesatStanford, suchas theGlobalClimateandEnergyProject (GCEP)and thePrecourt Institute for Energy (PIE). SIMES is also involved in largerDOE initiatives including JCESR, the BayAreaPhotovoltaicConsortium(BAPVC)andEFRCs.Inaddition,SIMESisdedicatedtooutreachactivitiesforenergyscienceeducationandtraining,helpingtodevelopthenextgenerationoftalent.

FundingforthiscorecapabilitycomesfromDOE‐BES,withsupportfromotherDOEofficessuchastheOfficeofEnergyEfficiency and Renewable Energy (EERE) and internal Laboratory Directed Research and Development (LDRD)investments,andservestheDOE‐SCmissioninscientificdiscoveryandinnovation(SC7,8,9).

ChemicalandMolecularScienceSLAC’s efforts in chemical andmolecular science explore selected areas at the interface betweenultrafast physics,chemistry, materials, X‐ray science and theory and simulation. Ultrafast science has synergies across SLAC andenablestechnologyformanydifferentareasoftheLaboratory.

Researchprogramsinultrafastchemicalsciencefocusonseveralareasthatlieatthesciencefrontierandarealsoofparticular relevance to the Laboratory’s mission. Experiments permit access to dynamics occurring down to theattosecondandfew‐femtosecondtimescalesusinglaboratorysourcesandcapabilities,includinghighharmonicsandtime‐resolvedultravioletandsoftX‐rayspectroscopy.Thesemethodsarecurrentlybeingappliedtostudynon‐Born‐Oppenheimer dynamics, strong‐field laser‐molecule interactions, solution phase dynamics, non‐periodic X‐rayimaging, nonlinear X‐ray optics, and, most recently, time‐resolved studies of reduced dimensional systems. Theexperimentaleffortsarecoupledtoastrongtheoryprogramsupportedbyadvancedcomputationalcapabilities.

Another major research area addresses the fundamental challenges associated with the atomic‐scale design ofcatalysts. The overall aim of the SLAC catalysis program is to develop understanding of surface phenomena andcatalysis to the pointwhere science‐based design strategies for new catalysts can be developed.Major challengeswhere new catalysts are essential include artificial photosynthesis, chemical fuels, energy storage and sustainablechemicalprocesses.Thetheoreticaldescriptionofsurfacereactivityandheterogeneouscatalysis,electrocatalysisandphotocatalysishasbeendevelopedoverthelastfiveyearsatSLACinassociationwithStanford.

Bycombiningtheoreticalresearchwithcomplementaryexperimentalactivityincatalystsynthesis,characterization,andtesting,SLACcanmakegreatheadwaytowardrealizingthefullpotentialofthecatalysisinitiative.Experimentalactivityhasnowbeenestablished,andtheplanistoexpanditsignificantly,whileexploitingtheuniquepossibilitiesprovided by SSRL and LCLS. The theoretical activities have also paved the way for new “materials genome”approaches to catalyst discovery that call for new infrastructure in terms of computing strategies and thedevelopmentofdatabases.

The research efforts in chemical science are closely coupled to aligned departments and institutes at Stanford,specifically through the Stanford PULSE Institute and the SUNCAT Center for Interface Science and Catalysis,providingabroadfoundationfortheresearchandanessentialeducationalroleinadditiontosupportingtheDOE‐BESmissionobjectives.

SLACAnnualLaboratoryPlan Submitted1May2015 Page8of47

FundingforthiscorecapabilitycomesfromDOE‐BES,withsupportfrominternalLDRDinvestments,andservestheDOE‐SCmissioninscientificdiscoveryandinnovation(SC7,8,9).

AcceleratorScienceandTechnologyThe futuredevelopmentof light sourceandparticlephysics facilities serving the researchmissionsofDOE‐SCandSLACreliesona continuingadvancementofaccelerator science andassociated technology.SLAChasastrongcorecompetencyinacceleratorphysicsandtechnology,andmajorthrustsinacceleratorR&Dincludethedevelopmentofforefrontlightsourcesandnovelcompactaccelerationschemes.SLACalsocontinuestoplayasignificantroleinthedesign of future colliders, both linear and circular. These endeavors support SLAC’s strategic goal of maintainingworldleadershipinacceleratordesignforX‐rayFELs,storageringlightsources,high‐energyphysicsapplicationsandvarious industrial,medical and security‐related applications. At the same time, in conjunctionwith Stanford, SLACmaintainsarenownedacceleratoreducationprogram,trainingfutureleadersinthefield.

WiththeLCLS,SLAChasthemostadvancedoperationalhardX‐rayFELintheworldtoday,andtheassociatedR&Dimpactshowinternationalprojectsarebeingdesigned,constructedandoperated.ThedemonstrationsofbothhardandsoftX‐rayself‐seedingatSLAChavepavedthewayforself‐seedingoperationsnowbeingadoptedbymajorXFELfacilitiesaroundtheworld.Thedevelopmentoftwo‐colorFELbeamsgeneratedbytwoindividualelectronbunchesisenablingnewmethodstostudyultrafastprocessesinbiology,materials,chemistryandotherfields.

The LCLS‐II upgrade project employs high repetition rate superconducting accelerator technology, leveraging corecapabilitiesofotherU.S.laboratoriesthroughalarge‐scalecollaboration.Thefacilitywillincreasebothcapabilityandcapacity of a broad X‐ray FEL‐based program, serving both hard‐ and soft‐X‐ray users. In contrast to the pulsedsuperconductingEuropeanXFEL,LCLS‐IIwilloperateina1‐megahertz(MHz),continuous‐wavemode.Thisopensthedoor fornewX‐rayscience.Fullexploitationof thesepossibilitieswill requiredevelopments inacceleratorphysicssimulation tools, beam instrumentation and accelerator control technology. Advanced FEL techniques are beingpursued for future applications, such as precision synchronization among X‐ray, laser and RF systems; circularlypolarized undulators; and for manipulating bandwidth and duration of pulses to enable new capabilities inspectroscopyanddynamics.

SLAChasa longhistoryofdevelopinganddeliveringnewtechnologies forcompactandhigh‐gradientaccelerators.Overthelastdecade,wehavesystematicallyandsuccessfullyinvestigatedthelimitsonRFbreakdownphenomenainhigh‐vacuum metallic accelerating structures. Significant advances have been made in our understanding of RFbreakdownphenomenatothepointwheregradientsashighas175MV/m–abouttwicethepreviousstate‐of‐the‐artfornormalconductingandsixtimesforsuperconductingstructures–appeartobeachievable,throughchoosingtheright materials and geometry for the accelerator structure. Further gains can also be obtained by cooling thesestructurestocryogenictemperaturesandinitialexperimentsindicatethatagradientofabout300MV/matX‐bandfrequenciesisultimatelypossible.

NowtheLaboratoryhasembarkedonanewprogramthatusesRFstructuresinanovelway,extendingbeyondthetraditional11.4‐gigahertz(GHz)X‐bandregimetoterahertz(THz)frequencies.ThisisaccompaniedbyadevelopmenteffortforthenextgenerationofcompactandhighlyefficientRF‐to‐THzpowersources.TheseprogramsarerelevantforSLAC’songoingresearchprogram,includingSPPactivities.SLACmaintainsacorecapabilityinRFpowersourcetechnologyamongtheOfficeofSciencelaboratoriesandU.S.industry.

SLAC has an internationally unique role in developing more novel accelerating methods, including beam‐drivenplasma wakefield acceleration (PWFA), dielectric wakefield acceleration, and laser‐driven dielectric acceleration(DLA).ThesetechnologiesholdthepromiseofreachingacceleratinggradientsofGeVpermeter(inthecaseofDLAandbeam‐drivendielectricacceleration)totensofGeVpermeter(inthecaseofbeam‐drivenPWFA),whichwouldrevolutionizetheworldofcompactacceleratorsusedformedicine,industry,lightsourcesandteraelectronvolt(TeV)‐scale linearcolliders.FACET,auser facilityoperatedbyDOE‐HEP, is thecenterpieceof thisprogram.FACET‐II, theproposedfollow‐onfacility,wouldexpandthewiderangeofhigh‐energyelectronbeamexperimentsthatareuniqueatSLACandtimelyforacceleratorscienceneedsoverthenext5‐10years.

The SLAC accelerator test facilities, including the low‐energy ASTA bunker, the medium‐energy NLCTA, and thehigher‐energy ESTB, support not only new‐generation acceleration development, but also a wide range ofexperiments in materials science, THz generation, Compton‐scattered photon sources, photocathode R&D, FELseeding, high energy physics accelerator component and detector development, and general accelerator R&D.Recently, a new initiative has been launched to develop an Ultrafast Electron Diffraction and Ultrafast ElectronMicroscopy(UED/UEM)facility.TheUED/UEMinitiativeleveragesSLAC’sacceleratorcorecompetenciestoprovide

SLACAnnualLaboratoryPlan Submitted1May2015 Page9of47

themostadvancedultrafastandnano‐diffractionfacilityintheworld,complementarytotheX‐rayFELs.AswiththenovelRFtechnologyprogram,theseprogramsarerelevantforbothSLAC’sincreasingSPPactivities(Section5.0)andthenascentDOE‐HEPAcceleratorStewardshipprogram.

FundingforthiscorecapabilitycomesfromDOE‐BESandDOE‐HEP,withsupportfromSPPcustomersandinternalLDRDinvestments.Thecorecapabilitysupports theDOE‐SCmission inscientificdiscoveryand innovation(SC10,21,24,25,26).

ParticlePhysicsSLAC’s scientificand technicalworkforceprovides leadingcontributions toauniquecombinationofunderground‐,surface‐andspace‐basedexperimentstoexplorethefrontiersofparticlephysicsandcosmology.Theprimarysciencedrivers forcosmic frontierresearchare identificationof thenewphysicsofdarkmatter, testing thenatureofdarkenergyindetail,andprobingthephysicsofthehighestenergyscalesthatgovernedtheearlyuniverse.

SLAC and Stanford supported research with the BICEP2 experiment, which, in a joint analysis with the Planckobservatory,hasprovidedthemoststringentlimitsonB‐modesfromgravitationalwavesintheearlyuniverse.TheBICEP team is deployingBICEP3 at the South Pole thiswinter, a new instrumentwith a two‐fold improvement insensitivityand10‐foldimprovementinsurveycapabilityoveritspredecessor.Theultimateexperimentinthisfield,CMB‐S4,willbuildonthisandotherpathfinderexperimentstoprovidedefinitivemeasurementsoftheuniverse’sfirstlightwithabroadsciencescopethatincludesneutrinomass,CMBlensingandclustercosmology.

Inadditiontofocusingoninflationandtheearlyuniverse,theSLACparticlephysicsprogramalsoplaysanimportantrole in studies of darkmatter anddark energy. SLAC is the leadDOE laboratory for constructing the3.2 gigapixelcamera for the LSST, which will probe the properties of dark energy with high precision, enabling a betterunderstandingofthisdominantcomponentoftheuniverse.

Meanwhile,theFGSTissevenyearsintoadecade‐longprogramofspace‐basedgamma‐rayobservations,whicharetransformingourunderstandingofthehigh‐energyuniverse.Recently,FGSTrevealedtheoriginsofsomecosmicraysandmayevenhavedetectedhintsof thenatureofdarkmatter. SLACwas the lead laboratory forconstructionandintegrationof theLATandplaysan important rolesupporting instrumentoperations.R&D for thenextgenerationCherenkov Telescope Array, an advanced, ground‐based observatory of ultrahigh‐energy gamma rays, is alsounderway.

TheSuperCDMSwillallowdirectsearches forrelicdarkmattercandidatesatunprecedented levelsofsensitivityatlowWeaklyInteractingMassiveParticle(WIMP)masses,whilethecomplementaryLZliquidxenonexperimentwillprovidetheworld’sbestWIMPsensitivityathighermasses.Bothhavebeenselectedasnext‐generationdirectdarkmatter searchexperiments,withSLACplayingadesignated lead role in theSuperCDMSSNOLABproject. SLAChasoptimized thedesignandproductionof largegermaniumsensors forSuperCDMSand isestablishingcryogenic testfacilitiesandTimeProjectionChambersystemtestcapabilitiesfornobleliquidsystemsforLZ.

SLACisalsoinvolvedinseveralenergyfrontierendeavors.TheATLASexperimentattheLHCisexploringTeVmassscalesandbeyond,withprospectsforelucidatingthepropertiesoftheHiggsbosonanddiscoveringsupersymmetry.SLAC plays a significant role in the recently upgraded pixel tracking system, data acquisition and trigger systems,simulationsandoperationsofATLASaswellasinupgradeR&D.SLACisalsoaleadingcontributortodetectorR&Dforthe International Linear Collider. At the intensity frontier, SLAC has played a leading role in the design andconstructionoftheEnrichedXenonObservatory(EXO)andisgrowingitsengagementintheLong‐BaselineNeutrinoExperiment(LBNE),whichwillalsoallowexplorationof themasshierarchy forneutrinosandeventuallyallowthesearchforcharge‐parityviolation.

Sinceitsinceptionin2002,theKavliInstituteforParticleAstrophysicsandCosmology(KIPAC)hasbecomeaworld‐leadingcenterforparticleastrophysicsandcosmology.Theparticlephysicstheoryeffortpursuesabroadspectrumofforefronttheoreticalresearchacrossallareasoffundamentalphysics,frominflationarycosmologytocomputationalQuantumChromodynamics(QCD)tostringtheory.

Funding forthiscorecapabilitycomes fromDOE‐HEP,aswellasSPP(NSFandNASA)and internalLDRD investments.SLAC’seffortsservetheDOE‐SCmissioninscientificdiscoveryandinnovation(SC21,22,23,24,26,29).

SLACAnnualLaboratoryPlan Submitted1May2015 Page10of47

4.0 Science Strategy for the Future/Major Initiatives

OverviewandContextInSeptember2014,SLACcompletedthedevelopmentofan institutionalstrategicplaninformedbyDOE’sStrategicPlan, following a year‐long process of engaging stakeholders and considering mission priorities. This plan wasinformed by the 2008 BES Grand Challenges report and the work leading to the 2015 BES TransformationalOpportunitiesreportinthecaseofmaterialsandchemicalsciences,andbytheParticlePhysicsProjectPlanningPanel(P5)reportforHEP.Thestrategicdirectionsincorporatedintotheplanrestonfourpillars:innovatingandoperatingpremiereaccelerator‐basedfacilities;identifyingandpursuingnewscienceenabledbyourfacilitiesanddefiningtheirfuturedirection;performinguse‐inspiredandtranslationalresearchinenergy;anddefiningandpursuingafrontierprogram in cosmology. A set of core competencies in accelerator technology, instrumentation, X‐ray science andtechnologyandopticallasersystemsunderpinsthesestrategicdirections.OnthebasisoftheSLACstrategicplan,wehavedevelopedandarticulatedasetoffuturemajorinitiativeswithineachofthemainthrusts.

Foremostamongthesemajor initiatives isanewlydefinedLCLS‐IIX‐ray laserupgrade,utilizingacontinuous‐wavesuperconducting linearaccelerator.LCLS‐II’s capabilitieswilldramaticallyexpand theFEL capabilitiesatSLACandkeep theU.S. at the forefront of X‐ray science. To take full advantage of this new capability, SLAChas updated itsstrategies in ultrafast science formaterials and chemistry, aswell as new programs in catalysis, biology and highenergydensityplasmas.TherearealsosignificantadvancesrequiredintheLaboratory’scoretechnologiesneededfordetectors, lasers,X‐rayphysics, and computing/datamanagement tomatch the light source capabilities.Continuedwork in accelerator science will help to not only refine and enhance the capabilities of LCLS‐II, but addcomplementary facilities for UED/UEM and define pathways for compact and high‐energy accelerators for futurecolliders and light sources, including through the proposed FACET‐II facility. The new scientific capabilities anddiscoverieswillnaturallyleadtoimprovedpathwaystowardsolvingtheenergychallengesoftomorrow,andSLACisrefiningastrategytohelpconnectthisknowledgetopracticalsolutionsthroughexpandedsynthesis,characterizationandprototyping capabilities. SLAChas alsoprioritized the cosmic frontierwithin itshigh‐energyphysicsprogram,withleadingrolesintherecentdiscoveryofthefirstdefinitiveproofofcosmicinflation,andinmanynext‐generationdarkmatteranddarkenergyexperimentsincludingtheLSST.

InnovatingandOperatingPremiereAccelerator‐basedFacilitiesLCLSVision. The startup and ongoing highly successful operation of LCLS at SLAC has transformed the field of X‐rayscience.TheLCLS‐IIupgradeproject,byprovidingasecondvery‐high‐repetition‐rateX‐raysource,willexpandthisX‐raycapabilityinnewandpioneeringwayswhilealsodramaticallyincreasingthevolumeofexperimentsthatcanbeaddressed. Our vision is to continue to aggressively build on SLAC’s position as theworld‐leading center for FELsciencethroughthecombinationoftheforemostcapabilitiesofLCLSandLCLS‐IIandascience‐drivendevelopmentstrategy founded on unique accelerator, laser, optics and instrumentation experience, capability and furtherdevelopment.

It is clear that the rest of theworld is now responding to the successof theLCLSwithwell‐developedprojects toreplicate or advance the capabilities presently offered at SLAC. Recognizing this, SLAC and DOE are pursuing avigorous and well‐coordinated series of developments to keep the U.S. facility in a preeminent state. LCLS‐II willprovideanew,superconductingacceleratorinthefirstkilometerofthelinactunnel,abletodeliverX‐raysfrom0.2to5keVatupto1millionpulsespersecond(comparedtothecurrentoperationat120pulsespersecond).TheprojectwillalsoextendtherangeofX‐rayenergiesthatcanbeproducedfromtheexistingaccelerator(fromanupperlimitof~11.2keVcurrentlyto~25keVinthefuture),providingcapabilitiesunmatchedanywhereintheworld.

LCLS‐IIwillbeatransformativetoolforenergyscience,qualitativelychangingthewaythatx‐rayimaging,scattering,andspectroscopycanbeusedtostudyhownaturalandartificialsystemsfunction.Itwillenablenewwaystocapturerarechemicalevents,characterizefluctuatingheterogeneouscomplexes,andrevealquantumphenomenainmatter–usingnonlinear,multidimensional, and coherent x‐ray techniques that are possible onlywith advanced x‐ray lasertechnology.Thisfacilitywillprovideaccesstothe“tenderx‐ray”regime(2to5keV)thatislargelyinaccessibletoday,andwillusethelatestseedingtechnologiestoprovidefullycoherentX‐rays(atthespatialdiffractionlimitandatthetemporal transform limit) in a uniformly spaced series of pulses with programmable repetition rate and rapidlytunablephotonenergies.Theextensionof capabilities in thehardX‐ray regimewill enable laser‐excitedstructural

SLACAnnualLaboratoryPlan Submitted1May2015 Page11of47

dynamics, serial femtosecond crystallography usingmulti‐wavelength anomalous dispersion phasing, the study ofgas‐phasephotochemistry,andhigh‐resolutionstructuralstudiesofmatterunderextremeconditions.

The BES Grand Challenges and Transformative Opportunities reports guide planning for LCLS‐II and the furtherdevelopmentofLCLS.Inthefirstcrucialsteptowardsdevelopingacoherentstrategylinkingtransformativescienceopportunities to researchanddevelopment requirements, six strategic sciencedirectionsemerged froma seriesofLCLS‐IIcommunityplanningworkshopsthisspring:, thefundamentaldynamicsofenergyandcharge;catalysisandphotocatalysis; emergent phenomena in quantum materials; nanoscale material dynamics, heterogeneity andfluctuations;matterinextremeenvironments;andrevealingbiologicalfunctiononnaturallengthandtimescales.

Inthenearterm,SLACwillcontinuetooperateLCLSasaflagshipfacility,pursuingthefollowinghigh‐levelstrategytoensurecontinuedinternationalleadership:

a. ImprovingLCLSperformance in areas such aswave‐front quality, energy stability and bandwidth control viaseeding.

b. Delivering increased capacity to users via upgrades to X‐ray Correlation Spectroscopy (laser pump and pinkbeamfunctionality);configuredmodesofoperationinappropriateareas(suchasmatterinextremeconditions);andmultiplechambersinCoherentX‐rayImaging.

c. Introducing new capabilities. One example is a dedicated end station for Macromolecular FemtosecondCrystallography (MFX), working with SSRL and the newly created Bioscience Division. Another is thedevelopmentofhigher‐capabilityopticallasersinconjunctionwiththeMEChutch,toincreasetherangeofstatesaccessibleforfusionscienceandfundamentalplasmaphysicsstudies.

d. Improving operational effectiveness and efficiency via adoption of facility‐wide and SLAC‐wide solutionswhereappropriate,aswellasdeliveryofatargeted“missionreadiness”program.

Another key part of this program is the science‐driven development of strategically important technologies andtechniquesforexploitationonLCLSandLCLS‐II,withprioritiesestablishedthroughcommunityconsultations:a. Optics:Criticalimprovementstoharnesshighaveragepower;provideaccesstothetenderX‐rayregime;andthe

developsolutionsforhighspectroscopicresolutionwithunsurpassedtimeresolution.b. Source:Developmentofasuiteofmulti‐pulseoptions(intime,spaceandspectrum);exquisitesynchronization

(<10 fs) and source stability; time/bandwidth tradeoffs for spectroscopy anddynamics; andultra‐short pulseswithhighcoherentbandwidth.

c. Detectors:Developmentofhigh‐repetition‐ratedetectors anddataacquisition (DAQ) infrastructure, consistentwiththemovetohigherphotonenergies,thehigh‐repetition‐rateX‐raysourceandultra‐lownoiseenvironments.

d. Scientific computing: Development of real‐time data analysis; large‐scale data management; and advancedalgorithmstoenablewidercommunityaccessandmaximallyexploitthisnewresource.

e. Instrument development: Optimization of the LCLS end‐stations, including advanced laser systems driventhrough a series of strategic improvements linked to near‐term and longer‐term constraints in the availableexperimentalhalls.

Overthelongerterm,weforeseemanyoptionsforsubstantialfuturedevelopmentoftheLCLSX‐raylaserfacilityatSLAC,exploitingtheLCLS‐IIupgradeasarobustplatformforsustainedgrowththatultimatelycandriveupto8or10undulatorsatatime.RefinementoftheseoptionswillbeinformedbyongoingexperimentsatLCLS,developmentofscienceprogramsforLCLS‐II,andexperiencegainedfromotherFELfacilitiesaroundtheworld.TheseoptionshavealsobeenconsideredintheprocessofupdatingSLAC’slong‐termsitemasterplan.

a. Useof the existing “EndStationA” and/or “EndStationB” facilities and infrastructure.TheLCLSbeamcanbedivertedintotheseareasandoptimizedfor"soft”X‐rayscience(<1keV),allowingtheexistingLCLSexperimentalhallstobedevotedtotheharderX‐rayregime.

b. Buildinga longundulator tunnel thatextends to theNorthof thecurrent facility, coupled toanupgradeof theLCLS‐II linac, would provide a capability to reach very high X‐ray energies (~50‐100 keV), for studying thepropertiesofbulkmaterialsandnewregimesofextremematerialscience.

c. Installing "superconducting undulator” technology, currently in development in partnership with other DOEnational laboratories. If successful, this technology would allow very high peak powers (>1 TW), as well asextendingthespectralrangeathighrepetitionrate.

d. Moregenerally, theperformanceof theLCLS‐IIacceleratorwillallowgreatlyextendedcapacity for thecurrentareasofcapabilitywithadditionalundulatorsandexperimentalfacilities.

RequiredResources.ThetotalprojectcostforLCLS‐IIisduetobebaselinedforCD‐2laterthisyear,followingtheindependent cost review undertaken as part of the CD‐1 approval process. Alongside this, the development of the

SLACAnnualLaboratoryPlan Submitted1May2015 Page12of47

instrumentsandtechnologiesrequiredtoappropriatelymaintainworldleadershipisacriticalpartoftheoperationsbudgetofLCLS,withmanynewandsignificantareasofexpenseemergingoverthenext5‐7yearstoensuresmoothtransitiontooperationsofLCLS‐II.PrioritizationofthisbudgetisunderwayaspartofdevelopingtheLCLS‐IIstrategicplan,alongsidescrutinyoftheoperatingbudgetforthefacility.SLACwillalsoinvestincorecompetenciesinoptics,lasersandofflinelaboratoriesthatsupportthesedevelopments.

SSRLEnhancementsVision. SSRL and its evolution are an integral part of our vision for aggressively building on SLAC’s position as aworld‐leadingcenterforX‐rayfacilities.Inthemid‐termthisstrategyisbuiltuponcontinuingtodevelopandoperatestate‐of‐the‐art instrumentation and tools to explore the structure and function ofmatter across a wide range oflength and time scales. SSRL offers a broad array of well‐established and innovative X‐ray instruments andmethodologiestoabroadcommunityofusers,somesignificantfractionofwhomexploitbothSSRLandLCLS.Inthelonger term, SSRL is pursuing accelerator concepts and opportunities that, if proven feasible, will provideperformancedistinct from themulti‐bendachromatdesignsbeingpursuedby theotherU.S. synchrotron facilities,andwouldprovideagloballyuniquecapabilityatSSRL.

Aspartofitsmid‐termstrategy,SSRLwilltargetkeyscientificareasofstrategicgrowthfortheLaboratory:(1)time‐resolvedcapabilities thatcomplement those foundatLCLSand that further theSLACultrafastsciencestrategy, (2)instrumentation for X‐ray characterization of use‐inspired energymaterials under realistic in situ and inoperandoconditions,and(3)micro‐focusX‐raybeams forproteincrystallographydeveloped in tandemwithcomplementarycapabilityatLCLS.Byemphasizingcommonscientificopportunities,SSRLandLCLScanbothdirectlybenefitfromtheX‐rayoptics anddetectordevelopmentsneeded forLCLS‐II. For instance, reducing the footprint of high‐resolutionsoftX‐rayspectrometersandthesolidangleofsoftX‐raydetectorswouldbetransformativeforchemical,biologicaland quantum materials research at SSRL. In addition, SSRL is building a metrology beamline and expanding theinstrumentationofanexistingbeamlinetoaccommodatetheexperimentalneedsofdisplacedNationalSynchrotronLightSource(NSLS)users.

Thesedevelopmentsdirectlysupport theDOEstrategicplan, coupling toandhelpingdrivescientific innovationonnewbatteryandsolarcellmaterials,photosynthesisandcatalysis,andstrengtheningpartnershipswithStanfordandindustry. SSRL will also address DOE‐BER mission needs through the BER science focus area on subsurfacebiogeochemistry, an emerging program in ammonia oxidizing enzymes central to the nitrogen‐cycle, and thesynchrotron structural biology program. The new capabilities will further align this program with the sciencedirections of LCLS (especially time‐resolved imaging, chemical spectroscopy, surface catalysis andnanocrystallography), theSLAC‐specificpartsof theU.S. energy initiativesand the largerU.S. light source strategy.The synergistic SSRL and LCLS strategy couples the spatial and temporal regimes and helps optimize the limitedavailabilityofLCLSbeamtimetothecollectivebenefitofthescientificusercommunity.

As a third‐generation synchrotron light source, SPEAR3 has been operating formore than a decade, refining andsubstantially improving the beam capability and creating an array of forefront beamlines and instrumentation.However, theNSLS‐IIwill be built out over the remainder of the decade and upgrades for other U.S. synchrotronfacilitieswillpresumablybeinitiated,withtheresultthattheexistingSPEAR3platformwilleventuallybeovertakenbythesemorecapablefacilities.Recognizingthisoutcome,ourstrategyistotakeadvantageofthecombinationoftheX‐ray and accelerator design capabilities at SLAC and physical accelerator assets on the SLAC site to create apotentiallyuniqueopportunitythatfurtherstrengthensthecouplingbetweenSSRLandLCLS.Inparticular,injectionfromtheLCLS‐IIsuperconducting linac intotheSPEAR3ring isbeingexplored inordertoprovideanewsourceofexquisite X‐ray beams simultaneously delivered to multiple experiments at existing SPEAR3 beamlines. Linacinjection provides a novelmeans of generating picosecond pulseswith a high level of transverse coherence. Suchbeamswould enable the development of novelmethods for characterizing transient phenomena in heterogeneousmaterials, reaction bottlenecks in catalysis, charge carrier traps in photovoltaics, thermal energy traps in nano‐structuredmaterialsandnucleationofemergentbehaviorinquantummaterials.

Required Resources. The new metrology beamline is funded by the National Nuclear Security Administration(NNSA), while the new advanced spectroscopy beamline is funded through DOE‐BES, in part through JCAP. Asignificant fraction of the macromolecular crystallography beamline is funded by Stanford and other non‐federalsources. Upgrades related to optimized short pulse operation and very low emittance are being explored as R&Dprojects,aswellasthelonger‐termoptionofLCLS‐IIinjectionintoSPEAR3.WhilethecoreteamneededtoimplementtheSSRLupgradesexists,increasedtechnicalstrengthisalsorequiredinsomespecificareas.

SLACAnnualLaboratoryPlan Submitted1May2015 Page13of47

FACET‐IIVision.FACET‐IIwillenableacceleratorsciencevitaltothefutureofadvancedaccelerationtechniquesforDOE‐HEP,ultrahighbrightnessbeamsforDOE‐BESandnovelradiationsourcesforawidevarietyofapplications.Itwillbetheonlyfacilityworldwidecapableofprovidinghigh‐energyelectronandpositronbeamsforabroadarrayofacceleratorR&Dapplications.Byofferingawiderangeofsinglepulsechargeandemittance,electronsandpositrons,singleanddouble bunches, tailored current profiles and energy up to 10 GeV, FACET‐II provides unparalleled experimentalcapabilities. In addition, FACET laser systems provide multi‐terawatt peak powers with state‐of‐the‐artsynchronizationapproaching10fs.

A primary goal of FACET‐II is to utilize gradients 1,000 times higher than current technology in a meter‐scaleprototypeplasmaaccelerator.Theexistenceofsuchultrahighgradientsalsomakes itpossibletotrapparticlesandproduceabeamwith1,000timesthebrightnesscurrentlyachievable.Thecombinationofuniquelyhigh‐energy,high‐densitybeamsandtheshortpulse,high‐powerFACETlaserenablesthegenerationofveryhighfluxphotonbeamsofinterestfornuclearphysics,gamma‐gammacollidersandmanyotherapplications.

ThecurrentFACETresearchprogram forPlasmaWakefieldAcceleration (PWFA)hasmadesignificantstridesoverthepastyear.PWFAstudieswithpositronshavedemonstratedanewaccelerationregimeofferingpromisingresultsforcoherentpositronaccelerationcapabilitycriticaltofuturecolliders.FACET‐IIwouldallowtheseproof‐of‐principleexperimentstobeextendedintoacompletedemonstrationofasingleplasmaaccelerationmoduleforbothelectronsandpositrons,allowingexplorationofemittanceandenergypreservation,efficiencyoptimizationfortheacceleratedbeam,andahostofissuesrelatedtoplasmapropertiesinahigh‐repetition‐rateenvironment.

Implementationandrequiredresources.InFY16,thefirstkilometerofthepresentSLAClinacwillberemovedtoalloweventual installationof the superconductingLCLS‐II linac in the same tunnel. FACET‐IIwill reutilize injectorcomponentsprovidedbyDOE‐BESandtheexistingmiddlekilometeroftheSLAClinac,alongwithanenhancedfinalfocusdesignforflexibleelectronandpositronbeamdeliverytotheexperimentalarea.Theprojectisconfiguredtobeimplemented inaseriesofphasedsteps inclosecoordinationwith theLCLS‐IIconstructionschedule.ConstructioncostsforFACET‐IIareestimatedat$50Moverthefive‐yearperiodrequiredforcompletingthefullproject.

UltrafastElectronDiffraction/MicroscopyVision.SLACispursuingthedevelopmentofaworld‐leadingUED/UEMfacilityasakeypartof itsultrafastsciencestrategy.SinceUEDandUEMaretechniquesforstudyingnucleargeometriesonthesametemporalandspatialscalesastheLCLSprobeselectronicstructures,thecombinationoftheseco‐locatedfacilitieswouldprovideunprecedentedcapabilities in ultrafast science. Development of nano‐UED and microscopy would allow complementarymeasurements of charge/spin dynamics on the same samples measured at LCLS using soft X‐ray holography orscattering.Withnanoscale focusing,UED/UEMalso complementsLCLS’shardX‐ray capabilitiesby enabling game‐changingaccesstoenergytransferprocessesatthenanoscale.TheabilitytocoupletheUED/UEMmeasurementswithlinac‐basedintenseTHzandX‐rayFELpumppulsescouldfurtherexpandthescientificopportunities.

TheDOE‐BES sponsoredworkshop “Future of Electron Scattering andDiffraction” identified ultrafast imaging anddiffraction as the new frontier of electron microscopy, and recommended UED and UEM facilities as a major instrumentation development. Theelectronprobehasalargescatteringcrosssection,especiallysuitableforstudyingdilutesamplesandconductingreal‐spaceimaging.TheproposedSLACUED/UEMfacilityisbeingdevelopedinthreestages:(a)ultrafastelectrondiffraction,withkilohertzoperationand100‐fstemporalresolution;(b)nano‐UED,withelectron beam focus to 10‐nm spot size with 100‐fs temporal resolution; and (c) ultrafast full‐field electronmicroscopy,capableofsingle‐shotimagingwithspatialresolutionof10nmandtemporalresolutionof10ps.

Overthepastyear,thefirstUEDstagehasbeenestablishedwithavailableSLACinfrastructureandhardwareandacombinationofDOE‐BESandinternalfunding.InitialscientificresultsfromUEDscatteringarealreadydemonstratingthepromiseofsuchafacility.SLAChasalsoacquiredasuperconductingRFgunfromtheUniversityofWisconsinasthebasis for theUEMdevelopment.Furtherstagesof theSLACUED/UEMfacilitywill takeadvantageof therecentdevelopmentsinhigh‐brightnessultrafastelectronsources,high‐fieldmagnetsandelectrondetection.

RequiredResources.SLACwillproposefundingfromtheDOE‐BESmid‐scaleultrafastinstrumentationinitiativeinFY16 to upgrade ASTA UED to provide better temporal resolution and higher repetition rate. Modest additionalfundinginFY16wouldallowdesignstudiestoaddresstheelectronbeamsourceoptimizationandUEMdesign.

SLACAnnualLaboratoryPlan Submitted1May2015 Page14of47

Identifying and Pursuing New Science Enabled by Our Facilities and Defining TheirFutureDirectionUltrafastScienceVision. The2008BESGrandChallengesand2015BESTransformationalOpportunities reportsmake a compellingcasefortheforefrontresearchopportunitiesthatcanberealizedthroughadvances inultrafastscience.Progress inthefieldhasbeenenabledbydramatic improvements in lasers,notablytheadventoftheuniquecapabilitiesoftheLCLSfree‐electronlaserforultrafastlaserpulsesintheX‐rayspectralrange,withfurthermajorimprovementstobeprovidedbythehighrepetitionrateoftheLCLS‐IIfacility.Asaresult,SLAChaslongidentifiedultrafastscienceasastrategicresearchdirection.Inourvision,furthergrowthinthisprogramisvitalforthetimelyscientificexploitationoftheFELprogram,theevolutionofchallengingexperimentsattheLCLSandLCLS‐II,andultimatelythedirectionofourfuturelightsourcefacilities.

There are three key elements to our ultrafast strategy: enhancing the Laboratory’s ultrafast science program;expanding the capabilities of LCLS and utilizing the new capabilities of LCLS‐II; and strengthening the theory andmodelingcouplingtoLCLSscience.

Build internalprogramsand collaborationsaimedataddressingBESgrand challenge scienceproblems.Thenatureofelectroncorrelationisakeyquestioninphotonscience.Inmaterials,thisisconnectedtotheoriginsofhightemperature superconductivity and the dynamic properties of ferroelectric and magnetic materials. In molecules,electrons and their correlations generate the time‐dependent forces thatmake and break bonds.While these twoareasaredescribedseparately,therearemanyconnectionsbetweenthem:

a. Materials Science (MS): Using spin, charge, orbital and lattice excitations as fingerprints for this collectivebehavior, the Materials Science Division endeavors to construct a complete “genomic map” of low‐lyingexcitations that define the physical properties of materials. Among the tools are high‐resolution time‐domainspectroscopyandscatteringexperimentsatSSRLandLCLSrepresentedbytheResonantInelasticX‐rayScattering(tr‐RIXS)andAngle‐ResolvedPhotoEmissionSpectroscopy(tr‐ARPES)techniques.

b. ChemicalScience (CS):Theelectron‐nucleus interplaygives rise to chemical change that isbest revealedusingtoolsthatcanresolvethenaturalfemtosecondtimescaleandÅngströmlengthscaleofthechemicalbond.Thus,LCLSandLCLS‐IIareidealforinvestigatingchemicalreactivity.ThismotivatesSLAC’sultrafastCSstrategicplan,“Towardspredictiveunderstandingofchemicalchange,”withitsfocusonseveralresearchthemes:theattosecondandhigh‐fieldfrontier,imagingmolecularstructureanddynamics,controllingchargeseparationandexcitedstateprocesses,andfollowingthedynamicsofcatalyticreactionsatsurfacesandinterfacesinrealtime.

Drivethehigh‐priorityscienceagendafordirecteddiscoveryatLCLSandLCLS‐II.Severalhigh‐priorityresearchdirections, under development for a number of years, extend current capabilities and develop new ones uniquelycoupledtoLCLSandLCLS‐II.TheimportanceandpriorityofthesedirectionshasbeenrecentlyreiteratedaspartoftheLCLS‐IIstrategicplanningexercisethisspring:

a. Developcapabilitiesintime‐resolvedsciencetotakeadvantageofLCLS‐II’shighrepetitionrate.Oneexampleisthe development of time‐domain methods for resonant inelastic (Raman) scattering at LCLS. Ultrafast X‐raystudies with high momentum and energy resolution will play a critical role in addressing the emergence ofcollectivebehavior in correlated systemsandunderstandinghow to exercise control of theproperties and theresulting novel quantum phases and states. These methods, which combine RIXS and diffraction in the timedomain,canleadtonewinsightsintograndchallengeproblems.ThiscapabilityiscurrentlybeingimplementedinLCLS, andwill bewell positioned to take advantage of the higher repetition rate LCLS‐II source for improvedspectralresolution.

TheultrafastCSstrategywillsimilarlyrequirethedevelopmentofstimulatedandspontaneousRamanmethodsthat will be critical for observing electron dynamics with atomic specificity, andwill greatly benefit from thehigher repetition rate of LCLS‐II. These experimental effortsmust be strongly coupled to the advancement oftheoryandsimulationtoenablethetransitionfromexperimentalcharacterizationtowardmeaningfulprediction.TheultrafastCSstrategywillleverageSLAC’scorecompetencyinlasersciencetodevelopnovelultrafastextremeultravioletsourcesforinvestigatingtheelectrondynamicsthatcontrolbondinginmolecules.

b. Develop avenues of research to derive finer‐tuned “pumps” to drivematter in differentways. The goal of thiseffort isbettercontrolofmaterialandmolecularsystemsdrivenfarfromequilibriumtocreatestatesofmatternot realized by othermeans. Specialized pump sources have been developed through advances in strong field

SLACAnnualLaboratoryPlan Submitted1May2015 Page15of47

scienceoverthepastdecade.Forexample,SLACscientistshavecarriedoutinitialTHzpumpexperimentsusingbothcurrentLCLSandtabletopprobes.Newsourcesofattosecondpulseshavebeencommissionedandusedforinvestigations of molecules in non‐equilibrium quantum coherent states. Since LCLS‐II will create a high‐repetition‐ratesoftX‐raysource,workrequiringthisfrequencyrangeandstabilitywillbeemphasized.

Additionally, future experiments that add pulsedmagnetic field capabilities at LCLSwill complement neutronscattering techniques available elsewhere. The time structure and ultrabright LCLS beams provide a uniquecapabilitytoperformhighmagneticfieldexperimentsthatcannotbedonewithneutrons.Thehighmagneticfieldrequirementsonthefemtosecondtimescalemaybesatisfiedincompletelynewways.

c. Develop ultrafast electron diffraction research. As noted earlier, SLAC is establishing a facility in ultrafastrelativisticelectrondiffraction.Electronscatteringisparticularlyusefulforgasphaseordilutetargets,andalsoforlow‐dimensionalmaterialsorsurfaces.Temporalresolutioninthefemtosecondrangewillmakethisausefulprobeforultrafastchemicalandmaterialsscience.

Provide strong theory coupling to LCLS and non‐equilibriummeasurements. Addressing the grand scientificchallenges that require the structure and dynamics of matter to be imaged and understood at the atomic levelnecessitatesastrongtheoreticalbackbonetointerpretresultsandtochartnewareasofinvestigation.Byformingapowerful theoretical framework, SLAC has the chance to guide progress and forge successful outcomes to manyexperiments. Thiswould also be the foundation for seeking to build a larger community beyond SLAC devoted tounderstandingthetheoryofnon‐equilibriumphenomenaunderlyingmanyoftheactivitiesatLCLS,withthegoalofrevealingnewsignaturesfortime‐dependentphenomena.

RequiredResources.Akeypartof the strategy is theabilityofSLACandStanford toattract scientific talentwithleadershipcapabilitiestoexpandtheresearchportfolioaswellastocultivateanewgenerationofyoungresearchers.CriticallaboratoryspacetogrowexperimentalprogramswillbeprovidedinthenextfewyearsbytheconstructionofthePhotonScienceLaboratoryBuilding(PSLB).AcombinationofSLAC,StanfordandDOEresourceswillallowustoequipthePSLBandattractthehigh‐qualitytalentneededtodrivetheseambitions.

CatalysisVision.ThegoalofcatalysisresearchatSLACistodevelopanunderstandingofchemicaltransformationsatcatalystsurfaces. SLACpresently distinguishes itselfwith a unique theoretical effort in this area.However, the coupling oftheory and experiment is critical to developing science‐based design strategies for catalysts. New catalysts andprocesses are needed to solvemajor challenges related to sustainable energy and chemical production. Thus, weintend todevelop amatching experimental program that couples toourX‐ray facilities andother capabilities, andenjoyssynergieswiththeultrafast,biosciencesandappliedprograms.

Theexperimentalcatalysisprogramunderdevelopmentwillhavethreeessentialcomponents:a. Synthesis:Newwetchemicalmethods,nano‐structuring,atomic‐layerdepositionandphysicalvapordeposition

methodsformodelsystemsb. Characterization:Single‐crystalmodelsystemsandhighsurfaceareacatalystsdevelopedtogetherwithSSRLand

involvinginsitucharacterization,aswellasnewSLACmethodsforcharacterizingthesurfaceintermediatesc. Testing:Measurementsofkineticactivityaswellasselectivity,andprovisionoffeedbacktoreactivitytheory.ArecentexampleisanewelectrocatalysisprogramfocusedprimarilyonCO2reduction,wheretherearepresentlynoefficientcatalystsandaparadigmshiftinourunderstandingofelectrochemicalprocessesisneededtomakeprogress.

Onefoundationofthecatalysisprogramisthetheoreticalsimulationandscreeningofmillionsofdifferentmaterials,compositions and structures. This presents an enormous computational challenge, while requiring specificinfrastructuretostoreandshareelectronicstructuresimulationsofrelevantmaterialsandprocesses.Thebenefitofadatawarehousewillbe toensurereproduciblequalitywhileproviding thepossibility forsystematicallycomparingsimulationsandestablishingbenchmarkstoimproveelectronicstructuretheory,andtoenabledirectcomparisonofdifferentmethodologies.Itwillalsobeanaturalplatformforenablingmaterialssearchalgorithms,statisticalanalysistodeterminedescriptors,dataminingtoolsandmachinelearningalgorithms.

RequiredResources.As in thecase forultrafast science,SLACandStanford intendtoattractscientific talentwithleadershipcapabilitiestoexpandtheresearchportfolioaswellastocultivateanewgenerationofyoungresearchers.ExpandedsynthesisandcharacterizationlaboratorieswillbelocatedinthenewPSLB.SLACissupportingacommoncomputing hardware facility for its scientific computing needs that is located in the StanfordResearch Computing

SLACAnnualLaboratoryPlan Submitted1May2015 Page16of47

Facility (SRCF). Together with similar hardware investments by Stanford and seamless common operations, thisfacilityprovidesveryimportantsupportforsimulationprogramsacrosstheLaboratory’ssciencemission.

BiosciencesVision. Our vision is to develop a new strategic direction for biosciences research at SLAC by establishinginterdisciplinary biosciences programs that, through close coupling to SLAC’s unique facilities, will achieve highscientificimpactintheareasofstructuralbiology,biogeochemistryandbiomedicalsciences.Experimentaleffortswillleverage LCLS and SSRL X‐ray facilities and R&D programs, future capabilitieswith LCLS‐II and ultrafast electrondiffraction,aswellasaplannedhigh‐resolutioncryo‐electronmicroscopyfacility.

Newbiosciencesresearchprogramsare focusedon targetedelementsofBERsciencemissionareas. Currently themost advanced research initiative focuses on the nitrogen (N) cycle,wherewewill be identifying novel N‐cyclingenzymesdirectly frommetagenomesfromterrestrial fieldsitesandinvestigatingcellsurfacestructureandenzymefunctionof ammoniaoxidizing archaea (AOA).With initial funding from theDOE‐BER’sMesoscaleProgram, anewbeamline,MFX, is beingdeveloped at LCLS for studying complexbiological systemswith radiation sensitivity as isfoundinAOAenzymes.StrongsynergyexistsbetweentheMFXinstrumentandthemicro‐focuscrystallographyBeamLine12‐1 at SSRL for studying challenging large‐scale complexes anddeveloping instrumentation relevant tobothSSRLandLCLS.Computationalbiologywill connectmodalitieswithdifferentspatiotemporal scalesandhelp in theunderstandingofhierarchicalbiologicalsystems.

Themostchallengingproblemsatthefrontiersofbiosciencerequiretechniquesthatinterrogatemultiplelengthandtimescales.SLACseekstobuild,instages,acompletesuiteoffacilitiesandscientificexpertiseforstudyingstructuresand dynamics ranging from single particles to cells. The initial effort is focused on establishing a cryo‐electronmicroscopy (cryoEM) facility for single‐particle studies and subcellular and cellular tomographic analyses incollaborationwith Stanford. The new cryoEM tomogram and single particle analysis capabilitieswill be critical toconnectinghigh‐resolutionstructuralknowledgewithunderstandingofAOA’sglobalbiogeochemicalprocesses.ManyofthecomputationaltechniquesusedincryoEManalysisarealsorelevanttosingleparticleimagingatLCLS.

RequiredResources.TheSLACbiosciencesprogramwillbuildonexistingfacilitiesandexpertisewithinLCLS,SSRL’sStructuralMolecularBiology(SMB)program,theScienceDirectorateandSLACacceleratorprograms.Inadditionweintend to strengthen tieswith Stanford and other partners through the creation of the newly created BiosciencesDivision. Future expansion for thebiosciencesprogramswill behoused in theplannedPSLB, including ahigh‐endcryo‐electronmicroscope.FundingforthisfacilityisbeingsoughtincollaborationwithStanford.

HighEnergyDensityScienceVision.The combination of the unique properties of the LCLS X‐ray beam and next‐generation high‐power lasersincorporatedintotheMatterinExtremeConditions(MEC)instrumentwillpositionSLACtobeaworld‐leadingcenterforhighenergydensity(HED)science.Thescientificopportunitythisenableswillbeverybroad;fromhigh‐pressurecondensedmatter to hot dense plasmas; exploration of new frontiers of laboratory astrophysics; investigation offusion‐relevantplasmasusingwhollynewmethods;andstudyofhigh‐pressurematerials sciencerelevant toEarthandplanetaryphysics.

EarlyresultsfromtheMECinstrumenthaveestablishedhigh‐precisionX‐rayprobesoftransientwarmdensematterstates using the LCLSX‐ray beam. For this purpose,we have developed and utilized record peak brightness X‐raybeams that enable spectrally resolvedX‐ray scatteringmeasurementsanddynamicX‐raydiffraction fromstatesofmatterapproaching5Mbar.The firstexperimentshaveprovidedaccurateequation‐of‐statedataandcharacterizedthedynamicstructurefactorneededforthesuccessfulmodelingoflaboratoryfusionexperiments,andhaveimpactedtheplanetaryandmaterialsciencecommunities.

Intheimmediateterm,thelasercapabilityatMECwillbeenhancedbyupgradingtheexisting30TWlasersystemto200TW.Thiswillmaintainaninternationallyleadingpositionforthenext1‐2years,withtheability,forexample,toobtaincritically importantdataon the temperatureequilibrationofelectronsand ions inhydrogenanddeuteriumunderfusion‐relevantconditions.OtherstudieswillopenuptheabilitytoproduceMeV‐protonradiationsources,aswellasvery‐high‐energyX‐raysfroma“betatron”laserplasmasource.Thesecomplementarytechniqueswillofferauniquesuiteoftoolstounderstandthefundamentalprocessesforradiationproductionandinteractionwithmatter.

However,thefundedplansatSACLA(Japan)andEuropeanXFEL(Germany)willeventuallyovertakeourcapability.Tomaintainaworld‐leadingexperimentalprogram inMECscienceatSLAC,higher‐power laserswillbeneeded toreachnewregimes,suchasradiationpressureaccelerationorcollisionlessshocks.Thiswillalsoallowustoachievestatesofmatteratthehigherpressureneededtodiscovernewphasetransitionsandmaterialphases.Finally,itwill

SLACAnnualLaboratoryPlan Submitted1May2015 Page17of47

allowustostudyion/neutronstoppingpowerandmaterialresponseeffectscriticaltofusionscience.Afacilitydesignstudy is underway to lay out the options for possible future laser capability enhancements. In parallel, ourexperimental and theoretical effort is preparingnovel target anddiagnostic capabilities to fully exploit the scienceopportunitiesenabledbyLCLSandhigh‐powerlasersatMEC.

Anessentialnewcomponentofthisprogramistherecentadditionofatheoryeffortinhighenergydensityphysics.This will lead to better design of LCLS experiments by providing the physics simulations for comparisons withexperimentalresultsandtheinjectionofnewideasfordiscoveriesatthenewphysicsfrontier.Thetheorygroupwillstudyallareasofmatter inextremeconditionsandhasalreadybegun investigatingcollisionlessshockphenomenaandshockwaveionbeamaccelerationphysics.

RequiredResources.Futureexpansionforthehighenergydensitysciencefacilitieswillrequireupgradestohigherenergy and higher power (e.g. petawatt‐class) laser drivers at LCLS. In addition,we intend to continue attractingscientific talent supported by a combination of SLAC andDOE resources in order to expand research expertise intheoryandsimulations.AnewHEDScienceDivisionhasbeenestablishedtodevelopallareasofthisfield.

MajorUpgradestotheATLASDetectorattheLargeHadronColliderVision.TheLargeHadronCollider(LHC)atCERNacceleratesprotonstothehighestenergies,withthecollisionsbeingrecordedincomplexdetectorsassembledbylargeinternationalteams.TheLHCformsacorepieceoftheU.S.particlephysicsprogramandSLACenvisionsasignificantroleintheATLASdetectorPhase‐2upgrades.Theseupgradeswereidentified by P5 as the highest‐priority project for the U.S. HEP program and are essential to exploit the physicsopportunitiesatthehigh‐luminosityLHC,plannedforoperationsfromthe2020sintothe2030s.Thephysicsprogramof these upgrades is compelling and comprehensive with essential precision measurements of the Higgs bosonproperties,explorationfornewparticlesandsearchesfordarkmatter.

SLAChasinvaluableexpertiseessentialtothesuccessofthePhase‐2upgrades.SLACcapabilitiesareworldleadinginanalysistooldevelopmentsonpileupmitigation,jetsubstructureandjettagging,inparticularb‐quarktagging,allofwhichareessentialforperformingphysicsinthehigh‐luminosityenvironment.Withitsoutstandinginstrumentationcapability,SLACiswellpositionedtoassumeamajorroleintheconstructionofthesiliconinnertracker–themostimportantofthedetectorsubsystemsrequiringupgrade–withsubstantialexperienceinseveralkeyareasincludingthe3‐Dpixels,CMOSpixelandstripdetectordevelopmentandtesting,data transmissionandreadout,andmoduleandstaveassemblysite.Othercriticalcomponentsoftheupgradearethetriggeranddataacquisitionsystems.SLAC’sreconfigurableclusterelement,developedbytheTechnologyandInnovationDirectorate(TID),isastrongcandidatefortheinnertrackerreadout,andSLAC’sexpertiseintriggerdevelopmentwillbevitaltothesuccessofthephysicsprogram.

RequiredResources. SLAC assumes project funding at the level of $20M over the next 8 years for the Phase‐2upgrades. Some initialR&D to explore technical optionswill be supportedby SLAC funding.Theprimary resourcerequired is the existing core group of physicists and engineers with technical expertise matching the programrequirements.

PerformingUse‐InspiredandTranslationalResearchinEnergyVision.AnimportantpartofSLAC’sstrategyistoleveragetheknowledgegainedthroughourscientificfacilitiesandresearch programs to perform use‐inspired R&D in support of the important societal challenges regarding energygeneration,useandefficiencydescribedintheDOEstrategicplan.Bydevelopingadeepscientificunderstandingofthematerials and chemistry of emerging energy technologies, SLAC and Stanford arewell positioned to drive thedevelopmentandtranslationofthesetechnologiesintoearlyprototypesandsystemconceptsaswellasconnectwithindustrialpartnerstotransferthetechnology.

Thefirstexampleofthisstrategyhasbeenintheareaofenergystoragetechnologywhere,asnotedearlier,SLACisapartner in JCESR, the energy storage hub, and has been developing newmaterials that show promise for higherenergydensitiesand lowercosts forbothvehicleandgridbatteries. ThroughworkatSSRL,wehavedevelopedaprogram for battery imaging using transmission X‐raymicroscopy that allows in situ and in operando imaging ofbattery materials to evaluate the chemical states of electrode materials during operation, which can help indeveloping batterymaterials and understanding failuremechanisms. This has led to a program supported by theVehicleTechnologyProgramatEEREtofurtherdevelopthiscapability,aswellaspendingsupportfromtheAdvancedResearchProjectsAgency‐Energy (ARPA‐E) toworkwith someof their industrialprojects onbatterymanagementsystems. To better facilitate this industrial interaction, SLAC has been a leader in a new collaborative initiative,CalCharge,whichprovidestechnologyacceleration througheasieraccessandpartnershipsbetweencompaniesand

SLACAnnualLaboratoryPlan Submitted1May2015 Page18of47

national labssuchasSLACandLawrenceBerkeleyNationalLaboratory(LBNL).Thiscontinuum, fromfundamentalmaterials research through characterization analysis and industrial interaction, provides a unique integratedcapabilityandfacilitatesfasterdevelopmentcycles.

In the futureweenvisionbuilding inananalogouswayonourmaterialsandchemistry foundationincatalystsandsolarmaterialstogrowtheexperimentalanduse‐inspiredprogramsintheseadditionalareasaswell.Aspartofthedevelopmentofmulti‐labconsortiumteamstotackle“bigideas,”SLACisparticipatingintheGridModernizationandSubTERprograms,aswellasinthedevelopmentofnewprogramsinMaterialsManufacturingandtheWaterEnergyNexus.Forexample,inconnectionwithGridModernization,SLAC,inpartnershipwithStanford,isdevelopingasmartgridcapabilityprototypingnewdistributiongridsoftware,measurementandcontrolsystems.

RequiredResources.Expandedsynthesis, testingandnon‐X‐raycharacterization techniqueswillbehoused in thefuturePSLB.SLAC intendsto improveandexpandmultiple insituX‐raycharacterizationtechniquesatSSRL.TheseprogramswillbesupportedbynewDOEprogramgrowth,SLAC,Stanfordandindustrypartners.

DefiningandPursuingaFrontierPrograminCosmologyVision.Ithasbecomeclearoverthepast20yearsthatmanyofthemostfundamentalquestionsinparticlephysicsandcosmologycanonlybeansweredwithnewinstrumentsunderground,onremotemountain‐topsorinspacethatuse the universe as a laboratory to explore the interplay between physics and cosmology. SLAC envisions acomprehensiveexperimentalandtheoreticalprogramtoexplorethenatureofdarkmatter,darkenergyandcosmicinflation, taking advantage of the synergy in the underlying science, the common technologies and capabilitiesrequiredforexperimentsinthisarea,andthestrengthofitsscientificandtechnicalleadership.Basedonanexcellentrecord of scientific and technical accomplishment, SLAC is continuing to play a lead role in the development,constructionandultimatelythescientificexploitationofcosmicfrontierfacilities.

The measurement of properties of dark energy. The dark energy that appears to be driving the acceleratedexpansionoftheuniverseposesfundamentalchallengestoourunderstandingofquantumfieldtheoryand/orgravity.Thedetailedpropertiesofdarkenergycanbeconstrainedviaavarietyofmethods,all relyingondeepopticalandinfraredsurveysofmajorfractionsofthesky.TheLSSTprojectwillprovideadefinitivewide‐field,ultradeepgalacticsurvey forprecisionmeasurementofdarkenergyproperties.SLAC is leading thedevelopmentof theproject’s3.2‐gigapixel digital camera system and houses a vibrant dark energy research community at KIPAC. As the hostlaboratory,SLACisworkingcloselywiththeLSSTDarkEnergyScienceCollaboration(DESC)toachieveitsimportantgoalsofmeasuringdarkenergywithhighprecision.Likewise,SLACisdevelopinganoperationsplantogetherwiththeAssociationofUniversitiesforResearchinAstronomyandtheLSSTCorporationfortheLSSTfacility.ThecombinationofclosetiestotheLSSTcameraanddatamanagementprojects,theplannedoperationssupportforDESCandLSST,andastrategicinvestmentindarkenergyresearchwillmakeSLACapowerfulcenterforthisscienceinthe2020s.

The search for darkmatter through direct detection techniques. Extensive evidence exists that dark matterdominates thematterdensityof theuniverse.Various theoriespredict a smallbutnon‐zero cross‐section fordarkmatterinteractionwithordinarymatter.Detectioncouldbeaccomplishedbyfieldinglarge(ton‐scale)experimentsinminesdeepunderground,wherebackgroundsassociatedwithcosmicrayparticlescanbeadequatelyshielded.ThedetectionofrelicdarkmatteratanundergroundexperimentwouldprovideacrucialcomplementtoeffortstocreatedarkmatterparticlesdirectlyattheLargeHadronColliderandatfutureenergyfrontieracceleratorfacilities.SLACisleading thedevelopment of the recently approved SuperCDMSproject at SNOLAB inCanada, a jointDOE/NationalScienceFoundation(NSF)projectthatwoulddeploy100‐400kilogramsofcryogenicgermaniumsensors.SLACisalsogrowingasubstantialeffortonthenobleliquidxenonexperimentLZastheotherapprovedsecond‐generationdarkmattersearchexperiment.Thetwoexperimentstogetherwillprovidecomplementary improvementonthecurrentmass and cross‐section sensitivity by several orders of magnitude. These experiments also complement SLAC’songoingleadingroleintheFGST,whichisprovidingthestrongestlimitsfromindirectdetectionsearches.

The measurement of properties of the CMB. The CMB carries the imprint of cosmology and forces from theinflationary period of the Big Bang, which defined the large‐scale structures of the present‐day universe. SLACscientistsmadekeycontributionstothe2014BICEP2discoveryofB‐modepolarizationinthemicrowavesky.Suchobservationsareexpectedtoconstrainthenatureofcosmicinflation—therapidexpansionoftheinfantuniverseinitsfirst10‐36seconds.Overthenext10years,SLACplanstoremainanimportantpartof theBICEPcollaborationas itdeploysBICEP3; play a leading role in futureCMB experiments; andhelpmakeP5’s CMB‐S4 experiment a reality.These future experiments will also constrain neutrino masses and number density. These roles couple SLAC’sextensiveinstrumentationcapabilitywiththeproblemofdevelopingefficient,low‐cost,mass‐produciblemicrowavedetectorsrequiredforlarge‐scaleCMBexperiments.

SLACAnnualLaboratoryPlan Submitted1May2015 Page19of47

RequiredResources.SLAC’splanassumesproject funding forLSST,SuperCDMSatSNOLABandLZatHomestakeoverthenextfiveyears.WeanticipateaCMB‐S4projectwillbedevelopedforconsiderationlaterinthedecade.R&DinadvanceoftheseprojectsisalreadysupportedbyDOE‐HEPandinsomecasesbySLACLDRDfunds.Theprimaryresource required at SLAC is a largely existing core group of technically capable physicists and engineers withexperience in the construction and operation of large experiments in remote environments. Modest personneladditionsorredirectionsinareassuchassensorfabrication,cryogenicandlow‐backgroundengineering,andprojectmanagementwillberequired.SLACalsointendstostrategicallyinvestindevelopingastrongcorescientificteamtoexploitthedarkenergyanddarkmatterscienceexpectedfromthenextroundofexperiments.

CoreCompetenciesandSupportingTechnologyR&DOneoftheprimarymotivationsfortherecentestablishmentoftheTIDatSLACwasrecognitionoftheneedtoidentifyand sustain unique core technology capabilities required to support the long‐term vision for the SLAC and DOEmission.Initially,TIDhasbeenestablishedbyconsolidatingcoreRFtechnologyandinstrumentationcapabilities.Thislist of capabilitiesmayexpand in the future to include advancedoptics, laserR&Dand scientific computing as theunderpinning for the science program. SLAC intends to support TID infrastructure needs as part of providing asustainablebusinessmodel,whilealsofocusingondevelopingalternativeapplicationsforthesetechnologiesoutsideourtraditionalDOEsourcesinordertobroadenthefundingbase.

AdvancedRFAcceleratorTechnology

Vision. SLAC intends to develop next‐generation accelerating systems and power sources that will dramaticallyincreaseaccelerationgradientsandcorrespondinglyshrinkthelengthandcost,therebyopeningnewdoorsinmanyareasofscienceandapplications.Overthelastdecade,SLAChasextendedthelimitsonRFbreakdownphenomenainhighvacuummetallicacceleratingstructures.However,thecapabilityoftheRFpowersourceshasnotkeptpacewiththis development, and for high‐energy, compact or high efficiency accelerator applications, the standard RFapproaches are no longer feasible. SLAC seeks to establish a new paradigm for RF sources and acceleration thatdramaticallychangesthecost/capabilitycurveofRFaccelerationandopensupamuchbroaderapplicationsspaceforthesetechnologiesforbothacceleratorsystemsandstandaloneRFsystems.

Thesuccessofthisvisionrequiresmovingforwardsimultaneouslyonthreefronts: novelhigh‐gradientacceleratorstructureswithtopologiesandmaterialsoptimizedforhighefficiencyandlowcostofmanufacturing;advancedpowersourcesfromRFthroughTHzfrequencies;andtheoptimizationofcompletesystemsfromthewallplugthroughtheparticlebeam,includingRFenergyrecovery.Ourscienceandtechnologythrusthastwoparts.Thefirstisdirectedatimprovingboththeindividualcomponentsandtheoverallsystemefficienciesandcostforsystemsoperatingunder20GHz,whererealprogresshaslanguishedforseveraldecades.Thesecondisextendingourfrequencyreachtoclosethefour‐order‐of‐magnitudegapbetweenRFandopticalfrequencies,wherenopracticalsourcesorstructuresexist.This effort represents a unique new research area that has been largely ignored in the development of advanced,compacthigh‐gradientacceleratorsdespitebeingmotivatedbyscalinglawsforbreakdownstrengthwithfrequency.

Our proposed RF and THz power source program is built on three pillars: 1) an R&D program with the goal ofproducing revolutionary source concepts with new levels of power and frequency performance, efficiency andeconomicfeasibility;2)hardwareimplementationoftheseconceptsinaspiraldevelopmentcyclewheresuccessivelyhigher performance goals are demonstrated; and 3) parallel development of applications in concert with othergovernmentagenciesandthecommercialsectorassourcesachieveincreasingfrequencyandpowerperformance.Weseeawiderangeofemergingapplicationsinhigh‐resolutionradar,remotesensing,high‐bandwidthcommunications,compactacceleratorsandotherareasthatprovideapathforlong‐termsustainabilityandpotentialfundingsourcesbeyondDOEfortheprogramonatimescaleofseveraldecades.

RequiredResources.TheDOE‐HEPAcceleratorStewardshipprogramwillofferopportunities for funding inmoreapplied areas outside HEP, such as accelerators for medicine, energy or national security. Funding through theStanfordMedical SchoolandotheragenciesoutsideofDOEmaybepossible. SLAC is also investingLDRD funds toexplorethedevelopmentofcompact,high‐average‐powerTHzsources.Someadditionstothescientificstaffwillberequired to enhance the breadth of the source development effort. Flexible and cost‐effective experimental testfacilitiesarerequiredtosupportR&Dandtestingofadvancedstructures.

InstrumentationDevelopmentforLightSourcesandParticlePhysicsVision. Instrument development plays a critical role in SLAC's science, from particle physics to light sources. TheinstrumentationeffortischaracterizedbyanintegratedcapabilityallthewayfromsensorstoDAQandsoftwarewithanoverarching systemsdesign emphasis. SLACbenefits fromhigh‐quality staff, strong connections to the Stanford

SLACAnnualLaboratoryPlan Submitted1May2015 Page20of47

campusandtheabilitytoleveragecommoninstrumentationinvestmentacrossourscienceapplications.Ourvisionistocontinuetoexpandcapabilityinpriorityareasdrivenbyourscienceprogram,whilealsodevelopingabroadersetofapplicationsthroughtieswithStanfordandotheroutsidecustomers.

Severalhigh‐priorityupcomingprogrammaticscienceopportunitieswilldependcriticallyonourcorecompetencyininstrumentation.TheLCLS‐IIstrategicplanningexerciseunderwayatthemomentdefineschallengingrequirementsforinstrumentationR&D,suchashighframerate,improveddynamicrange,increasedarrayscale,improvedspectralresolution and high‐efficiency spectroscopy, in order to meet demands for high‐repetition‐rate, ultralow‐noisedetectors and DAQ infrastructure. Radiation‐hard silicon tracking systems for high‐multiplicity environments andsophisticatedhigh‐performanceDAQsystemswillbe required for theATLASupgrade for thehigh‐luminosityLHC.Highlyintegratedlarge‐scalefocalplaneswillberequiredforCMBStageIVexperiments.Beyondtheseprogrammaticopportunities, we see potential interest from the neurosciences community in high‐density integratedinstrumentationandfromtheastronomycommunityinbuildingonourexperiencewiththeLSSTcameraproject.InorderforSLACtosupporttheseopportunities,wemustcontinuetoinvestininfrastructurefortheinstrumentationcorecompetency,includingthedevelopmentofacleanroomfacilityforsensorfabricationanddetectorintegration.SuchaflagshipfacilitywouldbethefoundationfordevelopmentofdetectorsforLCLS‐IIandtheCMBStageIV.

RequiredResources.SLAChasawell‐developedcorescientific,engineeringandtechnicalstaff in instrumentationandweenvisiononlymodestadditions innewareasofdevelopment.ThefabricationandintegrationcleanroomisanticipatedtobejointlyfundedbySLACandStanfordwithoperationssupportedbyfundingfromfacilityusers.

LaserDevelopmentVision.ThereisagreatopportunityforSLACtoevolvetobetheU.S.homeforanimportantareaofhigh‐powerlasertechnology.TheU.S.DOE/NNSAhasstrongcapabilitiesinhigh‐energyandhigh‐peak‐powerlasers,whichSLACcancomplement with its strength in the area of ultrafast, high‐average‐power laser systems, coupled to exquisitesynchronizationandpulsetailoringcapabilities.FlowingfromthescientificopportunitiesidentifiedforLCLS‐II,andbuildingon theuseofoptical laser systems in themajority of present‐dayLCLS experiments, SLAChas a strategicneed todriveadvances in the stateof theart forhigh‐power lasers.This includes theneed forakW‐classaveragepower system for pump‐probe studies on LCLS‐II (representing a step of 5‐10 times above the state of the art,currentlyindevelopmentatSLAC);petawatt(PW)‐classpeak‐powerlasersfornext‐generationstudiesofrelativisticplasmaphysicsandextremematerialsscience;andhigh‐repetition‐rate,highlytailoredpulsesculptingtoprovidethecapability to map an entire phase space of material properties by carefully matching the X‐ray and optical lasersystems.

Installationofhigh‐powerlasersystemsiscurrentlyapriorityforSACLAandtheEuropeanXFEL,withfundedplansthat stretch far beyond the capabilities in place at LCLS. However, the experience gained at LCLS in fieldingexperiments that combine X‐ray and optical lasers, coupled to the world‐class laser team in place at SLAC, andpartnerships with other DOE laboratories such as Lawrence Livermore National Laboratory (LLNL) and LBNL,providesaclearpathwayforustomaintainandextendour leadershipby informeddecisionsonthemosteffectivestrategicinvestments.

RequiredResources.Developmentofhigh‐average‐powerpump‐probesystemsandhigh‐repetition‐ratedriversforextremematerialssciencearemulti‐million‐dollarinvestmentsthatwouldrepresentamajorcomponentoftheLCLSoperations/developmentbudget.Theinitialstepsinthisstrategyarecurrentlybeingfunded,andrequirenewlaserlaboratory space as well as R&D resources. Incorporation of high‐energy laser systems or high‐peak‐power (PW‐class)laserswouldrequirefundingfordedicatednewprojects.TheseopportunitiescouldariseaspartofthestrategytopositionSLACasaworld‐leadingfacilityforhigh‐energydensityscience,bycombiningthepropertiesoftheLCLSX‐raysourcewithnext‐generationopticallasersystems.

ScientificComputingandDataManagementVision. SLAC will expand its existing core capabilities in scientific computing to achieve a paradigm shift in theexploitationofthelargedatasetsanticipatedfromLCLS‐IIandLSST.SLAChasexistingworld‐leadingcapabilitiesinreal‐time data acquisition, database technology and many areas of computational simulation. The addition of acapabilityinforefrontalgorithmdevelopmentandcomputersciencewithafocusonexascalesoftwaresystemswillpositionSLACtoplayaleadroleinfacilitatingscientificexploitationofourfacilities.SLACiswellsituatedtoexploitsynergies with NERSC at LBNL, significant computing expertise at LLNL and the powerful capability of Stanfordfacultyinmanyrelevantareas,aswellaslinkstoleadingSiliconValleycompanies.

SLACAnnualLaboratoryPlan Submitted1May2015 Page21of47

Thedramatic improvements incapabilitiesplanned forLCLS‐IIcreatesignificantcomputationalchallenges fordataacquisition systems, storage systems and data processing andmanagement. One of themain challengeswill be toprovidereal‐timefeedbacktoexperimentsconcerningthequalityofdataandtheefficiencyoftheexperimentalsetup,whichcould result inamajor improvement inefficiencyandeffectivenessofLCLSexperiments.Commonsoftwaretoolsanddataalgorithmdevelopmentwillalsobecritical.

AcomparablechallengefortheCosmicFrontierprogramwillbetheLSSTdataset,whichwillconsistofanenormous100‐200petabytepublicarchive. Inaddition, computingcapabilitiesandsoftwaremanagementwillbeessential toenable dark energy science from the LSST‐DESC collaboration. Ongoing development of the advanced databasetechnology being deployed for LSST will provide support for a broad range of future, extremely large databaseapplicationsinDOE‐HEPandDOE‐BES.Advancedalgorithmdevelopmentforimageprocessingandimagecorrelationstudieswill continue tobenefit fromclose ties toStanford.AnextensiveprogramofcosmologysimulationswillbeneededtoexploitLSSTdata,withfurtherR&Drequiredonadaptivemeshandothernumericaltechniques.

Theabilitytosimulatemolecularprocessesandchemicalreactions,atatimescaleandspatialresolutionthatmatchthe experimental capabilities of SLAC’s light sources, are an important aspect of both planning and analyzingexperiments that will be greatly expanded with the proposed Theory Institute for Materials and Energy Science(TIMES)andtheHEDScienceinitiatives.Thedevelopmentofadvancedtheories,numericalmethods/algorithmsandassociatedmodelingsimulationsarealsoencompassedintheseefforts.

RequiredResources. SLAC is developing a strategic plan to optimize the exploitation of the unprecedented datamadeavailablebytheLCLS‐IIandLSST.Weanticipateestablishingacentralizedcoreteamofoutstandingsoftwareprofessionals,buildinginitiallyonexistingcapabilitiesaugmentedbystrategichiresthroughinternalSLACfundstoexpandintoexascalecomputerscienceareasincollaborationwithStanfordfaculty.

SLACAnnualLaboratoryPlan Submitted1May2015 Page22of47

5.0 Strategic Partnership Projects

BaselineSPPProgramSLAChasa focusedSPPstrategy that iswellalignedwith itsstrategicplan,andenables theLaboratory toenhancesupportforessentialcorecompetenciesanditsscienceandtechnologybase.SPPalsoenableshiringandretentionofstaff,developmentofnewadvancedresearchfacilities,developmentofnewmethodologiesandsoftware,engagementof outside scientific talent, the addition of new instrumentation and collaboration and technology transfer withindustry.

SPP placesminimal strain on the scientific and technical talent pool; none of the projects expected over the nextseveral yearswillbe largeenough tohavea significant impacton theworkforce if cancelled.On the contrary, SPPenablesSLACtoretaintalentthatwouldotherwisebelostbecauseofreductionsinsomeDOEbaseprogramsandtoenhancetheviabilityofcorecompetencies.NodiscretionaryfundsareusedtosupportSPP‐specificinfrastructureandthereisnosignificantsubcontractingoutsidetheLaboratory.

BioscienceandStructuralMolecularBiologyPrograms:SLAC’sSMBR&DandusersupportalignswithSLAC’scorecapabilitiesandlightsourceinitiatives.TheSMBprogramsupportsdevelopment,operationanduseraccessforaboutninededicatedand sharedbeamlinesandassociated instrumentation/techniques, enablingapplication to forefrontproblemsinstructuralbiologybyabout800uniqueusersatSSRLperyear–about10%ofwhomalsouseLCLS.SPPfundingfromtheNIH’sNationalInstituteofGeneralMedicalSciences(NIGMS)ismanagedinclosepartnershipwithfunding from DOE‐BER. NIGMS has provided partial funding for the construction of an LCLS MFX station fordevelopingdedicatedcapabilitiestoutilizethe“diffractbeforedestroy”concept.TheMFXstation,locatedintheLCLSFar Experimental Hall (FEH),will offer increased capacity, provide an in‐air sample environment for a number ofsampledeliverymethodsandallowfortime‐resolvedstudies.InadditiontoNIHfunding,SLACcontinuesaDefenseAdvanced Research Projects Agency (DARPA)‐funded program on X‐ray optics,which can lead to enhancement ofbeamlineinstrumentsaswellasbroaderapplications.

Accelerator and High Energy Physics Programs: Over the last two years SLAC has been very successful inimplementingstrategicpartnershipstofosteranddevelopitsmission.ThishasbeenparticularlythecaseforsomeofthemostvisibleconstructionprojectswithintheOfficeofScience,whereSLAChasbeenverysuccessfulinsettingupnational collaborations among DOE‐SC laboratories and the NSF.Often SLAC was able to bringinternationalcollaboratorsintothepartnershipaswell.OfparticularlynoteistheLCLS‐IIprojectwhere,withoutthesuccessfulmanagementofapartnershipamongfivenationallaboratories,CornellUniversity,anNSFlaboratoryandcontributions fromFrance (SACLAY,ORSAY),Germany(DESY)andSwitzerland(CERN), theunprecedentedpaceoftransitionfromconcept(CD‐0)toconstruction(CD‐3b,CD‐2)wouldnothavebeenpossible.ForLSSTacollaborationofnationallaboratories,universitiesandinternationalpartners(IN2P3LaboratoriesinFrance)wasestablishedandnowisverysuccessfullyexecuting theconstructionof theLSSTcameraaspartof theNSF‐ledLSST facilityproject.Super CDMS, a project presently preparing for CD‐1 is similar: a DOE/NSF partnership involving two DOELaboratories anda combinationofNSF‐ andDOE‐supporteduniversity groups. In all these examples, national andinternational resources and partners are efficiently providing existing core competencies, rather than having theprojectspendtimeandmoneytoreproducethemlocally.

SLACisthehostlaboratoryfortheFGST,amajorinternationalHEPcollaborationthatinvolvesanoperatingcommonfundwithcontributionsfromallparticipatinginternationalagencies.ThereareongoingcollaborationswiththeKEKlaboratory in Japan, fundedunder a collaborative science and technology agreement in high‐energy physicswhichfunds high‐gradient research and research directed towards future high‐luminosity and high‐energy electronaccelerators,bothofwhicharesynergisticwiththeDOE‐fundedacceleratorresearchprogram.SLACalsofabricatesX‐bandklystrons,RFphotoinjectorguns,andotherhigh‐powerRFcomponentsonanSPPbasis forArgonneNationalLaboratory, BrookhavenNational Laboratory, LLNL,CERN,Paul Scherrer Institute andotherU.S. and internationallaboratories.ViaSPPagreements,SLACalsogivesU.S.industryaccesstohigh‐powertestfacilitiesfortestingklystronsthat have been built by industry for its customers. The klystrons are a SLAC design that has been transitioned toindustryforcommercialproduction,althoughindustryatthistimedoesnothavethehigh‐powertestinfrastructure.ThisworkalignswellwithandhelpssustainDOE’shigh‐powerRFcorecapabilityatSLAC.

SLACAnnualLaboratoryPlan Submitted1May2015 Page23of47

Table1.StrategicPartnershipProjectsFunding(BAin$M)1

SponsorsFY2014Actual

FundingReceived2

FY2015Estimated

FundingLevel

FY2016Request

DOD 1.3 1.0 3.0

NRC ‐ ‐ ‐

DHHS/NIH 2.0 2.0 2.0

AllOtherFederalWork ‐ ‐ 1.5

Non‐FederalWork 13.2 13.5 14.9

TotalSPP3 16.5 16.5 21.9

LabOperating4 324 333 319

SPPas%ofLabOperating 5% 5% 7%

DHS ‐ ‐ ‐

SPP+DHSas%ofLabOperating 5% 5% 7%

AgreementtoCommercializeTechnology(ifapplicable5) 0% 0% 0%1.Numbersareforplanningpurposesonly.2.IncludesfundingreceivedaspartoftheARRA.3.DoesnotincludeDHSfundingwhencomputingtheTotalSPPfundinglevel.4.FundingprogramsandotherssenttothelabtoperformR&D,etc.includingcapitalequipmentandGPP,butexcludingconstruction.

SPPStrategyfortheFutureSLAC’sSPPstrategyistoexpanditsprogramconsistentwiththeDOE‐SCandSLACmissions.TheLaboratory’sgoalistoincreasetheSPPportfoliofromthecurrent~5%oftheFY15Laboratorybudgetto~8%bytheendofthedecade(approximately $30M). This level of funding will balance primary mission execution with sustaining criticalcapabilitiesandinfrastructure,particularlyinacceleratorandhigh‐powerRFcorecapabilities,detectors,sensorsandinstrumentation,andlasers.

SLACalsoaimstomoreeffectivelytransitionsuccessfultechnologiestoU.S.industryforcommercialapplicationsandhelp themremainat thecuttingedge.Thenewly‐createdTID isdevelopinganaggressiveSPPprogram in theneartermtohelpachieve thisgoal, toenhance thecorecompetenciesonwhich theSLACcoreprogramsdependandtodevelopabroadersponsorbaseacross federalagencies to furtherserve thenation’s interest. Ithasaddedstaff tosupportandmanagethesegrowthefforts.CurrentareasbeingdevelopedbyTIDandotherorganizationsatSLACareoutlinedbelow.

TargetedareasofSPPgrowthinFY15andbeyond:

IndustrialApplicationsofLightSources:Opportunitiesexistforsupportof industrialR&DatSLAC’s lightsources,especiallySSRLand in the futureLCLS.A strongbasealreadyexists inusingSSRL fordrugdiscovery, and there issignificantpotentialforexpansionthroughinnovativeNIH‐fundedprogramsforthedevelopmentofpipelines,aswellasemergent interestfromNIHinusingLCLSfortranslationaldrugdiscoveryresearch.Stronginterest intheuseofSSRLforenergy‐relatedtechnologiesbyindustrialpartnersworkingonbatteries,photovoltaicsandcatalystshasalsobeendemonstrated,ashasthefirst(non‐proprietary)useofLCLSbyanindustrialresearchteam(fromRollsRoyce).SLAC’s strong connection to Stanford offers potential synergy with several initiatives at Stanford that focus onsustainableenergytechnology.

Materialsand Chemical Sciences: SLAC’s SSRL‐based programs inmaterials science, chemistry and catalysis areformulatingascientificandinstrumentationstrategytoenabledevelopmentofnewfacilitiesandtechniques.Interestinenhancinghigh‐throughputmaterialstestinganddataanalysishasdevelopedandwillbepursuedwithbothDOEandSPPfunding.

Biosciences:ThedevelopmentofBioscienceDivisionresearchprogramsrestsonstrategiesaddressingtheneedsofDOE‐BERandNIHmissions.FundingfornewinitiativesandinstrumentationarepursuedtogetherwithLCLS,SSRL,Stanfordandexternalcollaborators,andtargetfederalandprivateSPPfundingmechanisms.

Accelerator and RF Technology and Applications: SLAC will broaden and strengthen its core capabilities inaccelerator and high‐power RF science and technology by applying them to a wide range of new applications,

SLACAnnualLaboratoryPlan Submitted1May2015 Page24of47

includingnewprojectswithDARPA,DepartmentofHomelandSecurity(DHS)andtheOfficeofNavalResearch(ONR).U.S.industryhasinitiateddiscussionsregardingadvancedtechnologydevelopmentthatSLACcouldundertakeintheareasofmedicine, terahertz sourcesanddetectionofnuclearmaterial and contraband. In addition, the successofLCLShasledtoseveralopportunitiesinsupportofFELprojectsworldwide.SLACisbeginninganewDARPAprogramto develop a novel approach for achieving revolutionary increases in neutron source intensity and reductions indevicesize,weightandpowerforin‐the‐fieldneutronradiographyandanalyticaltechniques.

ApplicationsofDetectors,InstrumentationandComputing:SLAC’scorecompetenciesinsensors;instrumentation;data acquisition and controls; electronics and electronics systems; space‐based, low‐background and systemsengineering;datamanagement;simulation;andanalysisframeworks,willlikewisefindbeneficialapplicationstonewproblems.Withabroaderfoundationofrelatedactivities,SLACwillbeinabetterpositiontosustaincorecapabilitiesandretain thebest talent. SPPopportunities includeNSF,NASAandNIHaswell as industry. Strong capabilities insuperconducting sensors and amplifiers impact a broad range of activities in X‐ray spectroscopy, quantum‐limitedsignal processing and sensitive THz and mm‐wave detection for materials, biology, forensics, cosmology andastrophysics applications. SPP opportunities include NSF, NASA, NIH, the Justice Department, NNSA, DARPA andpartnersinindustryandtheprivatesector.

SLAC is providing accelerator controls and instrumentation, such as beam positionmonitor systems and controlselectronics and software to Pohang Accelerator Lab (PAL) in Korea via an SPP agreement and to the EuropeanSpallationSource(ESS)throughaCRADA.IntheESScase,thetechnologydevelopedwilldirectlybenefittheLCLS‐IIproject.

SLACAnnualLaboratoryPlan Submitted1May2015 Page25of47

6.0 Infrastructure / Mission Readiness

OverviewofSiteFacilitiesandInfrastructureSLAC’s426‐acrecampussitswithinalargertractoflandownedbyStanfordUniversityinunincorporatedSanMateoCounty. The campus accommodates 152 buildings (147 ofwhich are DOE‐owned) and over 40 parking lotswith1,900spaces.StanfordleasesthelandtoDOEandallSLACfacilities,withtheexceptionoftheStanfordGuestHouse,Starbucks,ArrillagaRecreationCenter,StanfordResearchComputingFacility,andKIPAC,areownedbyDOE.Majorutility systems include electricity, chilled and hot water, domestic water, sewer, storm drain, and gas. Power isprovided by a DOE‐owned 230 kV tap line that runs from the public utility 230 kV circuit to the SLAC MasterSubstation, a distance of about 7.5 miles. The SLAC site includes many tunnels and other unique experimentalfacilities, thelargestofwhicharethe2‐mile‐longKlystronGalleryandthetunnelthathousesthe linearacceleratorunderneathit.

SLAC’s site master plan, entitled the SLAC National Accelerator Long Range Development Plan, is located athttps://www‐internal.slac.stanford.edu/do/longrangeplan/slac%20plan%20final.pdf. SLAC is updating its sitemaster plan to guide the coordinated use and development of all campus areas. The plan provides a conceptualroadmap toward achieving a collaborative, safe, sustainable and inspiring work environment. It shows wherebuildingsareneededbaseduponexistingandplannedprogrammaticneeds,andalsoillustrateswherenewprogramsthatarenotyetknowncouldbeplacedinthefuture.

Overthe lastseveralyears,key investmentstotaling$228Mforcurrentandrecentlycompletedprojectshavebeenfunded by SLAC, Stanford, and DOE‐SC. Important SLAC investments over the last 10 years include InstitutionalGeneral Plant Projects (IGPP) and General Plant Projects (GPP). Key Stanford investments include KIPAC, SRCF,ArrillagaRecreationCenter,StanfordGuestHouse,andStarbucks.TheDOEScienceLaboratory Infrastructure(SLI)investmentsprovidedlineitemconstructionfundingforprojectsincludingtheResearchSupportBuilding(RSB)052,AdministrationandEngineering(A&E)Building041,OperationsSupportBuilding028,ScienceUserSupportBuilding(SUSB)053,andthefuturePhotonScienceLaboratoryBuilding(PSLB)057.

With theoldest facility52yearold, thenewest2yearsoldandtheaverage trailerandbuilding31.7yearsold, theSLAC site poses a challenge for the reliability and maintenance of utility infrastructure. In FY14, the LaboratoryOperationsBoard(LOB)initiatedaconditionandutilizationeffortinordertounderstandinfrastructureneedsacrossthe DOE national laboratory complex. Table 2 summarizes the general condition and utilization of non‐mission‐uniqueassetsperthisassessment(SLACwillcompleteitsassessmentofmission‐uniquefacilitiesinFY15).

SLACisalsoundertakinganassessmentaspartoftheLOB’sinitiativeonexcessfacilitiestodeterminethosethatarenolongeroperatingorneededforthemissionandthoseplannedtobecomeexcessfacilitiesoverthenextdecadeinorder to understand the extent of excess facilities across the complex. Two facilities have already been declaredexcess,perTable2below,andmoreareexpectedinthenearfuture.InformationaboutSLAC’splanfortheseexcessfacilitiesisdiscussedintheCampusStrategysectionbelow.

Table2.CurrentConditionandUtilizationSummary

Adequate Substandard Inadequate

1 OtherStructures&Facilities(OSFs)NonMissionUnique 38 19 7

2 MissionUniqueFacilities(Note:SLACwillcompletetheassessmentofMUFsinFY15)

Quantity NA NA NA

Squarefeet NA NA NA

3 Non‐MissionUniqueFacilities(buildingsandtrailers)

Quantity 119 29 9

SquareFeet 574,470 297,584 54,531

SLACAnnualLaboratoryPlan Submitted1May2015 Page26of47

Quantity SquareFeet AnnualCarryingCosts

4 ExcessFacilities(perFIMSexcessindicator) 2 2,662 $16,171

ExcessSpace UnderutilizedSpace

5 Non‐ExcessFacilities 0 0

CampusStrategy

OverviewAs SLAC embarks on its multi‐disciplinary mission in the coming decades, it is challenged to revitalize its agingfacilitiesandinfrastructuretomeetcurrentandemergingneeds,whileensuringeffectiveandefficientmanagementand stewardship of its DOE assets. SLAC’s program expansion requires a substantially different support andoperationalmode,furtherchallengingthereliabilityandoperabilityoftheexistinginfrastructure.

SLAC has established a campus strategy and layout that best supports the current and expected future missioninitiativesandscienceandtechnologycompetencies.Thecurrentprimarydriversofourinfrastructureplanningareupgrading LCLS and SSRL capabilities and capacity, modernizing the existing campus (electrical and coolingdistribution reliability, mechanical infrastructure and building repairs and upgrades) and creating modern,collaborative spaces to enable our growing research areas. The conceptual locations of projected investments andtheirfundingsourcesareidentifiedinFigure1below.By2020,SLACexpectslikelynewconstructionof275,000grosssquarefeetineightnewbuildingswithanexpectedcampusoccupancyincrease.Thisplanincludes:

● Newbuildingstosupportfacilityusersvisitors,newresearchandclosercollaboration.● Upgrades to increase general site access to46% (from17% today) to encourage cross‐discipline collaboration

andmulti‐modalaccess.Onlytheacceleratorandresearchyardwillberestricted.● Renewalofthecentralcoreofthecampusthroughenhancementstothestreetscape,openspaceandpedestrian

networks.● Improvementsinthereliabilityofelectricalpowerdistributionandcoolingwatersystemstoincreaseefficiency

andminimizelong‐termoperatingcostsinsupportofthemission.● PlansforStanfordUniversitylandreturnPhaseI(12.5acres),whichwouldresultinroadrealignment,siteutility

relocationandareductionofparkingspace.

Figure1.SLACCampusVision,5‐10years

SLACAnnualLaboratoryPlan Submitted1May2015 Page27of47

TomeetSLAC’sfutureobjectivesandmakethecampusvisionpossible,infrastructureandsystemsmustbereplacedor renewed. In order tomaximize scarce resources, the Laboratory has completed a risk‐based prioritization thataddressestheidentifiedinadequateandsubstandardgapsandsupportsSLAC’scorecapabilitiesandmajorinitiativesnowandoverthenextdecade(summarizedinTable3).SLAC’soverallapproachistoidentifyandrevitalizethemostcriticalinfrastructurefirst,prioritizedbytheirrisktosafetyandmission‐criticalprograms.Ourcurrentfocusisonthereliability of electrical and cooling distribution systems that have been assessed as inadequate or substandard.Remainingneedsareprioritizedasfundingandtimingallowsorputinrun‐to‐failuremode,wheredecisionsarethenmaderegardingtheviabilityofretainingsparepartsand/orcontingencyfundsforunexpectedfailures.

SLAC’smaintenanceandrepairspendingis lessthanthe2%guideline. Implementinga funding levelperthe2%ofReplacementPlantValue(RPV)guidewouldnotbepractical,sincetherearehigh‐RPVassetsthatdonotrequire2%levels, such as non‐operational tunnels, and facilities with limited future use. SLAC uses its mission readinessapproachtoevaluatecurrentandfutureneedsandplanmaintenanceandrepairsaccordingly.Forsomeassets,majorrepairswill not be conducted because the assets are scheduled for replacement in a few years. SLAC balances itsproposalsforIGPPprojectstoreduceSLAC’sdeferredmaintenanceagainstoverall laboratorysupportneedsduringits budget process. The deferred maintenance trend is expected to remain flat or improve when the plannedinvestmentsidentifiedinTable4belowaremade.AsSLACcontinuestorefinemaintenanceandrepairprocessesandidentifycriticalneeds,theLaboratorywillfundprioritizedprojectstomitigatethoserisks.

SLAC’s infrastructurepriorities includingmaintenanceandrepairwillbeaddressedusingmultiple fundingsources,includingSLI funding,GPP fundingprimarily fromDOE‐BESandDOE‐HEP, IGPP fundingandLab‐leveloverheadtofund general infrastructure needs andmaintenance. A summary of SLAC’s planned investment needs is shown inTable4.

Multi‐programsupportgapsWiththesuccessoftheLCLS,SLACisexperiencinganincreaseinvisitorsanduserstothecampus,andexpectsthistrendtocontinuewithLCLS‐II.TheSLI‐fundedScienceandUserSupportBuilding,scheduledforcompletioninlate2015,replaces50‐year‐oldbuildings,includingtheoldauditorium,visitorcenterandcafeteria.Thisnewbuildingislocated at SLAC’s entrance, serving as SLAC’s front door, and will bring together many of SLAC’s administrativefunctions that support science facilityusers, visitors and theLaboratory. Itwill alsohouseanupdatedauditorium,cafeteria and conference center providing much‐needed collaborative space. Once SUSB is complete, the sectionvacatedinB040canberepurposedintoofficeandlaboratoryspacetomeetimmediateneedsofourgrowingscienceprogramsandinitiatives.

Thesecurityinfrastructureupgradeprojectisalsocontinuing.Animportantgoaloftheprojectistomakealargerpercentageofthesiteopentogeneralaccess,supportingSLAC’sgoalsofencouragingcollaborationacrossdisciplinesinpartby improvingeaseofmovementandconnectivityaroundthecampus.This involvessecuringexcessstorageitems onsite,moving security fences and automating gates, while securing individual buildings outside the secureperimeter. In2015,17%of campus isopen togeneral site access.Thegoal is to increaseaccess to46%, includingmost of the east campus except the research yard. Once complete, the site will be generally open, accessible andsecure. Phase I and II security upgrade accomplishments to date include installation of an access control system,constructionofAlpineGatewith24/7accessandautomationofGate17(SSRL)andSector30(Accelerator).Fundingpermitting,workinthenextfiveyearswillincludetheremovalofGate17andtheSector30Gate,theinstallationoffournewgates(SSRLnorthandsouthresearchyardsandtwonewacceleratorgates),andtheadditionofradiationportalmonitorsatbothSandHillandAlpineGates.Theabilitytosuccessfullygrowthecampusdependslargelyonthecompletionofthisproject,andthereforefundingtheentiretyoftheprojectisimportant.

ConventionalinfrastructuregapsThe electricaldistribution system affects all activities at SLAC, andmuchmaintenance and repair is needed toimprovesafetyandreliabilityforcurrentoperations.Forexample,replacementorupgradesareneededformultipleKlystronGalleryelectricalitems(e.g.12.47kVcables,480VMotorControlCenters,batterybanks)andotherelectricaldistributioncomponentsthroughoutthesite.Inaddition,the12.47kVsubstationswithFederalPacificElectricload‐breakswitchesandbreakersneedtoberenovatedandpower factorcorrectionequipment isneededat themastersubstationtoreplaceafailedsynchronousgenerator.SLACisplanninginvestmentsintheseasshowninTable5.

The linac K‐substations, which are part of themedium voltage electrical system, have significant code and safetydeficiencies andoperational limitationsandarenot capableofmeetingcurrentandplannedmissionneeds.Thesesubstations and related components must be replaced in order to provide operator safety and to ensure system

SLACAnnualLaboratoryPlan Submitted1May2015 Page28of47

reliability.Much of the existing electrical distribution equipment is the original equipment installed 50 years ago.Someoftheolderequipmentisnotsafetooperateandperiodicallyfails,affectingoperationoflaboratoryprograms.SLACplanstoreplace12kVdistributionfeedersthathavefailedorthathavebeenevaluatedtohaveahighprobabilityoffailure,andreplacevarious480vacmotorcontrolcenters,distributionpanelsandpanelboardsthataredifficulttomaintainandindicatehighpotentialforfailure,replacemultiplecables,purchaseelectricalpanelspares,andupgradesubstationsandmaintainelectricalbreakers.

Theundergroundpipesforthestormwaterandsanitarysewersystemsarealsoinneedofsignificantrepairsduetopipebreaksandmisalignmentduetoage.IncrementalinvestmentsarebeingmadeeachyearusingIGPPfundstoaddressthemostcriticalissuesfirst.

Upgrades are proposed using GPP funds for control andmonitoring systems associated with all infrastructureutilities. Installingmodern technology allows for better decision‐making based on data as a part of the reliabilitycenteredmaintenanceprogram.

Like the conventional facilities infrastructure, SLAC’s computing infrastructure is also aging. Servers, cables,switchesandothercomputinginfrastructureneedtobereplacedtosupportfuturescienceandoperations.SLACalsoplacesahighpriorityoncybersecurity initiativestoprotect thedataand intellectualassetsentrustedtous,and isexecutingaprioritizationplanthatalsoleveragesStanfordresources.

AcceleratormissionreadinessInthepast,SLAChasrunitsacceleratorsystemstofailure;however,wenowoperateunderanewapproachwheresystemswiththehighestmissionneedandhighestreturnoninvestmentarebeingupgradedinasystematicmanner.Inearly2014,anexternalreviewofouracceleratormissionreadinessapproachassessedthemethod’seffectivenessandreturn.AnacceleratormissionreadinessprogramwasinitiatedinFY14,andtheinitialfundingof$5MincludedprojectssuchasalinacPersonnelProtectionSystemupgrade;linacRFmodulatorupgrades;BeamSwitchyard(BSY)pumping;machinetooling;andcryogenicnitrogentankupgrades.Asystematic,comprehensiveplanforthenexteightyearshasbeendeveloped,whichwhenimplementedisexpectedtoassureSLAC’sacceleratormissionreadinessfordecadestocome.Theassociatedsavings(ROI)areincorporatedintothefutureoperationsbudgetsoftheassociatedfacilitiesandallowforacost‐efficienttransitiontooperations.

Asimilarassessmentandprocesswillbecompletedin2016forconventionalinfrastructure,withitssavingsservingalargescienceinfrastructureatanapproximatelyflatcost.

SLACAnnualLaboratoryPlan Submitted1May2015 Page29of47

Table3.CoreCapabilityInfrastructureGaps

CoreCapability Timeframe Gap Risk StrategyLargeScaleUserFacilities/AdvancedInstrumentation

Today

SitepreparationforLCLS‐IIisneededincludingD&D,andcoolingtowerandelectricalreliabilityneedstobeimprovedtoadequatelysupportcurrentandfutureoperationsatLCLSandSSRL.

Sectors0‐10needtobeclearedtomakewayfortheLCLS‐IIupgrade.TheCT‐1200and1201systems,whichsupportthelinac,sufferfromweakpipinginfrastructure,andmoreimportantly,whilethereisastand‐bypumpassociatedwiththissystemthereisnoassociatedstand‐bycoolingtowercell.Coolingtowermaintenanceshutdownsorfailureswouldpreventnormaloperationofacceleratoroperations.CT1701supportsmultipleprogramsandisasinglepointoffailure.Withouttheseinvestments,SLACwillnotbeabletomeetLCLS‐IIconstructionschedule(resultinginincreasedcosts)ormeetmajormissionobjectives.Withoutinvestmentstoaddressagingcoolingtowerinfrastructurethatservesthesefacilities,SLAC’sabilitytoperformitsmissionandnecessaryupgradeswillbeseverelyimpacted.Therearealsorisksoflostexperimentaltimeduetoequipmentfailure,domesticwaterusage,andleakageofchemicalfluidsintotheground.

InFY16,D&Dwillcommenceonsectors0‐10ofthelinactoprepareforLCLS‐II.

ModificationstotheCT‐1201coolingtowersystemarenowunderwaytosupporttheupgradestothelinacforLCLS‐II.

ThereplacementofCT‐1701isbeingrequestedfromIGPPfunds.

ThereplacementofCT‐1200willbeproposed,alsofromIGPPfunds.

Future AnupgradetoLCLSisrequiredtomeetfuturescientificneedsandremaininternationallycompetitive.

WithoutinvestmentsinLCLS‐II,SLACwouldbeunabletomeetresearchgoalsforusersandassociatedscientificobjectives.

LCLS‐IIwillexpandthescientificcapabilitiesoftheLCLSfacilitywithhigherrepetitionratesandincreasedphotonenergy.Itwillcreateanewsuperconductinglinaccapableofproducinghigher‐intensityelectronpulses,andincludetwonewvariable‐gapundulatorsthatwillreplacetheexistingLCLSdevice.TheLCLSinstrumentswillundergomodificationsandenhancementstooperatewiththeenhancedbeampropertiesdeliveredbytheLCLS‐IIproject.Theprojectwillalsoincludea10,000SFCryogenicBuildingtobebuiltonthewestsideofthecampusnearSector4.Estimatedcompletionin2019,withapproximatelytwoyearsoffloatto2021.

WetlabfacilitiesarerequiredtosupportLCLSandSSRLuserprograms.

Aninabilitytosupportuserneedswillhinderabilitytoperformneededresearchandachievemissionobjectives.

TheSamplePreparationLaboratorieswillprovidewetlabfacilitiesforSSRLandLCLSuserprograms.Thelabswillsupportfinal‐stagesamplepreparationsandstraight‐forwardlaboratorymanipulationsinbiology,chemistry,materialsscienceandthegeosciences.SSRLwillhousetwoBioChemMat‐focusedLaboratories(BCM1&2)andonegeoscience‐focusedlaboratory.LCLSwillhouseonelaboratorysupportingthesedisciplinesinamorerefined

SLACAnnualLaboratoryPlan Submitted1May2015 Page30of47

CoreCapability Timeframe Gap Risk Strategycapacity.AllSamplePreparationLaboratoriesarepotentiallyavailabletoallusers.ConstructionofthisbuildingisplannedtooccuronthenorthsideofB750.

CleanroomfacilitiesneededtosupportR&Dindetectors,sensorsandotherdevices.

InabilitytoperformneededR&Dandmeetmissionobjectives,andachievegoalsassociatedwithcorecapability.

Anassessmentofcleanroomneedsandoptionsisbeingconductedtoprovidefacilitiesfordetectors,sensorsandotherdevices.Devicefabricationwillrequirelow‐vibrationspaceandextensivesupportfacilitiessuchaschemicalandgasstorage.Thereispotentialforreuseofexistingbuildings(e.g.B033andB026)toaddressthesegaps,andfundingwouldlikelybesoughtfromIGPP.

ChemicalandMolecularScienceandCondensedMatterPhysicsandMaterialsScience

Today Increasedspaceandmodernlaboratoryfacilitiestomeetprogramgrowthneedsinthephotonsciencesandappliedenergyinitiatives.

Lackofmodernlaboratoryfacilitiesandadditionalofficespacewillresultinourinabilitytoperformneededresearchandachievegoalsassociatedwithcorecapabilities.

WhilePSLBisconstructed,SLACplanstorenovateB040whenoccupantshaverelocatedtoSUSB(late2015)toprovideadditionalofficeandlaboratoryspaceasneeded(IGPP).

Future Increasedspaceandmodernlaboratoryfacilitiestomeetprogramgrowthneedsinthephotonsciencesandappliedenergyinitiatives.

Lackofmodernlaboratoryfacilitiesandadditionalofficespacewillresultinourinabilitytoperformneededresearchandachievegoalsassociatedwithcorecapabilities.

PSLB(approvedforconstructioninApril2015)willprovidearound60,000squarefeetofassignablelabandofficespacethatincludeswetlabs,drylabs,characterizationfacilitiesandasmallcleanroom.Thebuildingwillcollocatecomplementaryprogramstoincreasecollaborationacrossdisciplines.Estimatedcompletionis2018(StanforddonorandSLI).SeeAppendix1forLineItemInvestmentdetails.

AcceleratorScience

Future Flexiblestate‐of‐the‐artexperimentaltestfacilitiesthatareagileandcosteffectiveareneededtosupportR&Dfornovelacceleratorstructures,diverseparticlespecies,andradiationsources.

InabilitytoperformneededR&Dandmeetmissionobjectivesandachievegoalsassociatedwithstrengtheningfoundationalcorecapability.

SLACisexploringoptionstodevelopaflexibleexperimentalfacilitythatleveragesexistingtechnicalinfrastructure.WhileprimarilyprovidingatestbedforSLACR&D,thefacilitywillbeavailabletoStanfordUniversity,industryandotherfederalagenciesthroughStrategicPartnershipProgramsandtheAcceleratorStewardshipProgram.

ParticlePhysics Today AdequatecleanroomfacilitiesrequiredforpreparationofLSST.

Withoutaninvestmentincleanroomfacilities,SLACwillbeunabletomeetLSSTobjectives.

RenovationofB620attheIR‐2Halltocreateanew2,400squarefootClass1000cleanroomtosupporttheLSSTproject(GPP‐HEP).Expectedcompletionin2015.

Future SpacewillbeneededtosupporttheLSSTdarkenergyscienceprogramexpansion.

Inabilitytomeetuserneedsandmeetobjectivesrelatedtofutureinitiativesandcorecapabilities.

MinorrenovationsarebeingconsideredtoB048 tomodernizeandaccommodateprogramneeds.

SLACAnnualLaboratoryPlan Submitted1May2015 Page31of47

PlanforExcessAssetsandMaterialsWhilenoneofSLAC’scurrently identifiedexcessassetshasbeenassessedaspresentingarisk to thepublicor theenvironment,orposeasafetyrisktoemployeesandvisitorsattheLaboratory,theircontinuedpresenceonsitedoespresent a modest burden to mission accomplishment due to their collective annual cost of operation andmaintenance.Moreimportantisthefactthattheyoccupyvaluablelandthatcanberedeveloped(e.g.forparkingtooffset the Stanford land take‐back, office/laboratory space to support future research, and research facilityexpansion).

Thebulkofexcessassetsonsitearemadeupoftemporarystructures(e.g.trailers)thatarenolongerasustainablesolution for housing people or laboratories, and old scientific structures (e.g. collider arcs, beam dumps andsubstations) that are no longer serving the SLAC and DOEmissions and are not part of the future vision for thelaboratory. Because there are no safety, health or significant financial risks associatedwith the existing suite ofexcessmaterials,whereitisnotcost‐effectivetoremoveanitem,SLACinsteadlooksforreusepotentialandisalsodeveloping a process for minimal maintenance on non‐utilized buildings designated as “cold and dark” to lowerannualcarryingcosts.

SLAC’scurrentinventoryofexcessassetsissummarizedinthefollowingcategories:

Trailers: As shown in Table 2 earlier, SLAC has two facilities currently declared as excess that are awaitingdemolition:theB292TestLaboratoryMicrowaveLabandB231TestLaboratorytrailers.Thesetworepresent2,662squarefeetandaround$16,000inannualcarryingcosts.Theestimatedcostofremovingtheseis$105K.

Inaddition,SLAChasapproximately40othertrailersthatareeithershutdown(pendingD&Dordisposal)andslatedforremoval,orareoperationalandbeingusedforstorageoroperationalandstillfunctioningasofficeandlaboratoryspacebuthavethepotentialtobecomeexcessinthenextdecade.Thetrailersareofvaryingages(rangingfrom1966to 1995) and are located throughout the site, totaling approximately 50,988 square feet. The collective annualoperationalcostsarearound$272,500,asmanyareoccupied,andannualmaintenanceisaround$87,500.However,onceatrailerisclosed,itsannualcostsdroptolessthan$1,000peryear.

SLAChasmaderemovingthetrailersandothersmallertemporarystructuresapriorityforavarietyofreasons:cost‐effectiveness (removal costs are moderate and maintenance costs are eliminated); need for developable land tosupport campus growth; and aesthetics. SLAChas thereforedevelopedaTrailerDemolitionPlan, phasedover thenextsevenyearsandalignedwithknownplanningtimeframestoaddressremovalofthesetemporarystructures(seeFigure2).

Figure2.ProposedTrailerDemolitionPlan

SLACAnnualLaboratoryPlan Submitted1May2015 Page32of47

Buildings: SLAC has currently identified a small number of buildings and interaction region (IR) halls as excessassets.MostofthestructuresarenotinuseanddonotcostSLACmorethan$1,000eachperyear.However,someofthosebuildingscontainworkingelectricalsystemsthatwouldneedtobere‐routedpriortoanydemolition,whichiscostly. Ifadequate fundingbecomesavailable, thenSLACwouldrework theelectricalsystemsandthesebuildingscouldthenbecomecandidatesfordemolition.

Since removing the IRhallswouldbe too costly, as theywould require a thoroughhazard reviewand are deeplyembedded in the land,SLAC’spreference is to repurpose them.Thehalls’highbaystructureandproximity to theresearchfacilitiesmakesthemgoodcandidatesforcleanrooms;IR‐2hasalreadybeenrepurposedasacleanroomspacetosupporttheLSSTcameraconstruction.

OtherStructuresandFacilities:Afterpreviousscientificfacilitiesendedoperations(e.g.PEP,SLCandBaBar),muchoftherelatedmissionandancillaryinfrastructurehasremainedinplace,includingtwocolliderarcs(tunnels),beamdumpsandsubstations.ThecolliderarcsareinshutdownpendingD&Dmode,andareawaitingadecisionfromEMon funding andD&D0F

1. Thepreliminary cost estimate ranged from$70M to $150M; since the collider arcs are notaccessibletothemajorityofstaffandthereforeposenosafetyorhealthrisk,andtherearenegligibleannualcarryingcosts,thevacantspaceisbeingusedtostoreoldprogrammaticequipmentuntilfundsareavailablefortheirD&D.

The PEP rings and old beam dumpswill remain in place until they are deactivated, and a number of the excesssubstations(e.g.thosethatsupportedPEPoperations)willlikelybecandidatesforremovalinthenextdecade.

ExcessAcceleratorMaterials:There are large amounts of excess acceleratormaterial at many locations aroundSLAC.ThepresenceofthesematerialsisinpartaresultoftheDOEmetalmoratoriumandmetalsuspensionpolicythat began in 2000.With laboratory space and real estate now at a premium, and the development of programsenablingresponsiblemanagementandrecyclingofacceleratormaterials,SLAChasputalong‐termplanintoactiontoaddress this issue. Additionally, programs are in place to reduce the radioactive waste inventory at SLAC. Acombination of these long‐term plans for waste and recycling and a disciplined and consistent approach willeventuallyresultintheclearanceofallmaterialsbytheprojecteddateof2025.

Inordertomakeprogressinaddressingthemoratoriumpolicy,atargetsitewasneededandtheSLACB‐factorywaschosen. In preparation for completion of the B‐factory mission (PEP‐II accelerator and BaBar detector), and incollaborationwithpeeracceleratorlaboratoriesfromDOE‐SC,NNSAandCERN,SLACdevelopedaMaterialReleaseProgramwhichaddressesall of thekeyelementsoutlined in themetalsmoratoriummemorandum.Thisprogramwasapprovedin2011,andshortlyafterthemetalsrecyclingbeganatSLAC.

SinceFY11,theSLACAcceleratorMaterialClearanceProgramhasfocusedonrecyclingmetalsinsidebothPEP‐IIandBaBar,andmaterialsstoredoutdoors.Theseeffortshaveyielded3,000tonsasofApril,2015,and$1.4Minrecyclingrevenue. In addition, SLAChas led thedevelopmentof aDOETechnical Standard thatwill enable allDOE sites toperformsimilarrecyclingoperations.

TheworkexpectedtooccurbetweenFY15andFY18willfocusontheequipmentremovalprojectfromlinacSectors0–10andtheBSYthatisneededtofacilitateLCLS‐IIinstallationwork.ThiswillprepareSLACfortheconstructionofLCLS‐II. Duringthe long‐rangeperiodofFY15–FY25,thisprogramplanstorecyclematerials includedinthemorethan10,000tonsoflegacyacceleratorequipmentthatnolongersupporttheSLACmission.

Inadditiontothematerialsthatcanberecycled,SLAChaslargequantitiesofradioactivewasteonsitethatnolongerservetheLaboratorymission.Inthepast10years,SLAChasdisposedof1,470cubicyardsofradioactiveandmixedwastesand422excessradioactivesealedsources,andhasmadedisposaloflegacywastesalong‐termpriority.TheworkslatedtooccurbetweenFY15andFY18willfocusprimarilyonthedisposalofthewastefromlinacSectors0–10andtheBSY,andcompletedisposaloftheremaining300radioactivesealedsources.Overthenextdecade,SLACwillcontinuetheeffortstoreducethe3,367cubicyardsoflegacyradioactivewaste.

The impact and benefits of the recycling and disposal operations are numerous. They include protection of theenvironment,reductionoftheDOEfootprintatcontractorsitesandreductionofDOEfutureliabilities,cleanerandsaferareas,andnewspacesintowhichSLACcanexpanditssciencemission.

1 In2009,EMagreed to accept the collider tunnels fordemolition, under amemorandumentitled “EnvironmentalManagementTransferDecisions forOfficeofScienceExcessFacilitiesandMaterials”.

SLACAnnualLaboratoryPlan Submitted1May2015 Page33of47

WiththedecommissioningofthefirstkilometeroftheSLAClinacandklystrongallerytomakeroomforthenewlyconstructedLCLS‐II,radioactiveaswellasnon‐radioactivewastewillbedisposed.Aprojecthasthereforebeenputinplace to manage the waste stream from LCLS‐II construction efficiently and, using SLAC’s approved AcceleratorMaterialClearanceProgram,directasmuchnon‐radioactivematerialaspossibletorecyclingimmediately.

SLACAnnualLaboratoryPlan Submitted1May2015 Page34of47

Table4.PlannedInvestments($K)

Objectives: Innovatingandoperatingpremiereaccelerator‐basedfacilities CoreCapabilities: 1 Large‐ScaleUserFacilitiesandAdvancedInstrumentationIdentifyingandpursuingnewscienceenabledbyourfacilities 2 CondensedMatterPhysicsandMaterialsSciencePerforminguse‐inspiredandtranslationalresearchinenergy 3 ChemicalandMolecularSciencePursueafrontierprogramincosmology 4 AcceleratorScienceandTechnologySupportsallormultipleobjectives 5 ParticlePhysics

Total 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025Funds(Type)

Core Capability

51,850        ‐             2,800          3,200          2,600          12,500        12,500        2,500          3,000          3,500          3,500          3,000          2,750          GPP(BES) 1

29,170        ‐             950             5,910          5,210          8,650          8,450          ‐             ‐             ‐             ‐             ‐             ‐             Indi rect 

OPE/IGPP

1

20,055        ‐             ‐             ‐             6,500          1,555          5,000          6,000          1,000          ‐             ‐             ‐             ‐             GPP Al l

9,800          ‐             ‐             9,800          ‐             ‐             ‐             ‐             ‐             ‐             ‐             ‐             ‐             GPP (SLI) 1,4

3,150          ‐             ‐             ‐             ‐             ‐             ‐             ‐             ‐             ‐             1,575          1,575          ‐             IGPP Al l

36,222        2,322          6,448          2,548          798             140             2,321          2,400          4,245          3,700          3,500          3,500          4,300          IGPP 2,3

55,000        ‐             10,000        25,000        20,000        ‐             ‐             ‐             ‐             ‐             ‐             ‐             ‐             LIC (SLI) 2,3

1,150          1,150          ‐             ‐             ‐             ‐             ‐             ‐             ‐             ‐             ‐             ‐             ‐             GPP(HEP) 5

37,402        25,482        11,920        ‐             ‐             ‐             ‐             ‐             ‐             ‐             ‐             ‐             ‐             LIC (SLI) Al l

50,937        59               1,288          4,700          2,700          12,600        11,210        6,300          2,700          2,380          3,500          2,300          1,200          Direct 

OPE/GPP

Al l

7,000          ‐             ‐             ‐             ‐             ‐             ‐             ‐             ‐             3,500          3,500          ‐             ‐             GPP Al l

12,585        ‐             ‐             277             1,400          1,789          1,567          1,742          610             1,500          1,200          1,900          600             IGPP Al l

12,775        53               1,020          1,000          2,250          2,932          1,920          2,350          1,000          250             ‐             ‐             ‐             Direct 

OPE/GPP

Al l

11,650        ‐             250             1,500          4,000          2,000          3,900          ‐             ‐             ‐             ‐             ‐             ‐             IGPP Al l

24,566        383             200             187             564             2,190          2,580          4,058          2,585          4,125          2,475          2,175          3,045          Indi rect 

OPE/IGPP

Al l

172,812      10,743        12,106        12,824        13,804        14,570        14,825        15,167        15,257        15,593        15,688        16,067        16,167        Indi rect OPE Al l

18,789        3,654          1,015          535             1,140          875             975             4,085          1,175          1,185          1,670          1,505          975             Indi rect OPE Al l

6,900          ‐             ‐             ‐             ‐             ‐             ‐             3,200          3,700          ‐             ‐             ‐             ‐             GPP Al l

10,514        204             350             450             550             450             650             850             660             1,450          2,450          1,450          1,000          Indi rect OPE Al l

4,210          ‐             50               105             200             660             1,000          300             500             1,395          ‐             ‐             ‐             Indi rect OPE Al l

196,106 11,060 13,336 13,851 14,554 15,831 16,995 17,617 18,202 18,243 18,613 18,892 18,912

27,500 28,000 28,000 28,000 28,000 28,000 28,000 28,000 28,000 28,000 28,000 28,000

Project

GPP Investments  Prgrammatic (LCLS Ops , SPEAR 

10s  alcove, roof replacements)

LSST Clean Room

Science  and User Support Bui lding

Lab‐wide  Infrastructure  Investments , 

Accelerator (S0‐10 D&D, MMF upgrades , 

s ta i rway and fi re  alarm upgrades )

K Substations  (Replacement)

Si te  Access  (reduce  res tricted areas )

D&D (legacy sea led source  disposal , concrete  

blocks , metal  recycl ing)

Tra i ler Demo (remove  vacated tra i lers )

Maintenance  and Repair 

Deferred Maintenance  Trend

Si te  Computing & Cyber Safety (B050 upgrades , 

cyber securi ty improvements , server upgrades)

Lab/Office  Upgrades  (Emerging Science, new 

cleanrooms, IR2 LZ Hut, petawatt study, B040 

lab and B026 upgrades )

Infrastructure  Maintenance  and Repairs

12 KV Electrica l  (Ksubs , VVs, Cables  and 

Protective  Relays )

480 Electrica l  Dis tribution

Cool ing Dis tribution System (Replace  piping, 

pumps, and heat exchangers ; upgrade  HVAC)

Cool ing Tower 1701 (pump upgrade, cel l  

replacement, heat exchangers )

Si te  Uti l i ties  (Storm Dra ins , Sanitary Sewer, 

Roads , Domestic Water, Natura l  Gas , water 

revi ta l i zation)

Photon Science  Laboratory Bui lding

Cool ing Towers  1200 , 1201, and 1202 

(Repairs/Replacement)

Ramsy Relocation

230 KV Electrica l  (ins ta l la tion of new 

substation at tower 1)

SLACAnnualLaboratoryPlan Submitted1May2015 Page35of47

SiteSustainabilityPlanSummary[Internal]SLACapproachessustainabilityontwogeneralfronts;integratedsustainableinfrastructureimprovementsandbehavioralchanges.SLAChasstrategicallyinvested$5.9MofSLIinthelastfewyearsand$2.7Mofinfrastructureindirectfundsonenergy/waterprojectssinceFY10,inanefforttoreduceenergyconsumptionandgreenhousegases(GHG)emissions.

InFY12andFY13,SLACrenovatedandbuilt85,900squarefeetofLEED®Goldcertifiedofficespaces,B028andB052respectively. In FY14, a 6,600‐square‐foot SIMES laboratory in B040 achieved LEED® Gold certification. A freshsustainabilityapproach toofficebehaviorhasbeen implemented in thesenewbuildings, leavingbehind inefficientandnon‐sustainablepractices.

SLAC is in theprocessofan infrastructuremodernizationprogram thatwill replaceenergy‐inefficient trailersandbuildingswithLEED®Goldcertifiedbuildings.SLACisintheprocessofcertifyingnewbuildings—B028,B041,B052,B053andB901—tomeetDOEHighPerformanceSustainableBuildings(HPSB)requirements.

WastediversionsuccessesinFY14includeamunicipalsolidwastediversionrateof84%andaconstructionwastediversionrateof98%,wellinexcessoftheDOEgoalof50%.

By promoting positive behavioral change through engineered and administrative improvements, SLAC hasaccomplishedthefollowing:

● Provided16Level1andfourLevel2electricvehiclechargingstationstopromotestaffuseofelectricvehiclesforcommuting.

● Installed low‐flowaerators infaucets,andinstitutedsite‐widecommunicationoutreachondroughtawareness.Potablewaterconsumptioninbuildingsdroppedby37%,areductionof2milliongallonscomparedtolastyear.

● Haltedautomaticirrigationofcampuslawnsandshrubswhilestillwateringthecampustrees,whichsavedover7milliongallonscomparedtothesameperiodlastyear.

● Completedlawnreplacementwithdrought‐resistantlandscaping,whichreceiveda$10,000rebatefromtheCityofMenloPark.Thiswasaprototypeforexpandingwater‐conservinglawnreplacements.

● Replaced80agedofficeprintingdeviceswith11newnetworkedmulti‐functiondevices.● ExpandingSLAC’sZero‐Wasteprogramwithrecyclingandcomposting.One‐thirdofSLAC’sfull‐timeemployees

andalargeportionofthefacilityusercommunityarenowparticipatingintheprogram.● Organizeda sustainabilitypledgecampaignonprintingawareness. SLAC’s continuing three‐year sustainability

awareness effort on paperwaste has resulted in reducing the quantity of paper purchased by 50% over thisperiod.

SLACanticipatesmeetingmostsustainabilitygoals;however,therearesomegoalsthattheLaboratorywillnotmeet.Specifically,SLAChadagoalofnineHPSBs,butwillonlyachievecompliancewith five;andSLACcannotmeet thefleetannualfuelconsumptiongoalsduetoalackofalocalE85fuelsupplier.SLAChadproposed$2MinFY15tomeetthesustainabilitygoals.Whiletheintendedprojectswerenotfullyfundedduetootherlaboratoryfundingpriorities;approximately $300K was approved to implement needed infrastructure revitalization projects to support theLaboratory’s sustainabilityoperations.Examplesofcompletedand future infrastructure improvements thathaveapositivesustainabilityeffectincludeutilitypiping,coolingandheatingequipment,pumpingandcontrolsystems,andmoreefficienttransformersinelectricalsubstations.Lookingahead,SLAChasappliedforafundingawardfromtheSustainabilityPerformanceOffice for threeprojects inFY16: conversionofB048 toaHSPB, adetailed site energyauditandupgradinglandscapingforwatersavings.Thetotalforthesethreeprojectsisapproximately$830Kaboveourprojectedannual$50Kinvestment,asreflectedinTable5.

Asaresultofmissiongrowth,SLACanticipatesincreasedHighEnergyMissionSpecificFacilities‐relatedenergyandwater usage,with an associated increase in GHG. The planned purchase of renewable energy credits (RECs)willoffsettheexpectedincreaseinGHGemissionsandassistSLACinachievingtheGHGgoals.InFY14,SLACpurchasedRECs to offset 17% of electricity GHG generation at a cost of $22K. In FY20, the goal requirement is to offset aminimumof20%GHGthroughRECs.

SLACwillcontinue to integrateandbalancesustainability improvementswithneeded infrastructureupgradesandrevitalizationtosupportthemissionoftheLaboratory.

SLACAnnualLaboratoryPlan Submitted1May2015 Page36of47

Table5.SustainabilityProjectFunding

SummaryofSustainabilityProjectFunding($K)

CategoryFY14Actual

FY15Planned

FY16Projected

FY17Projected

SustainabilityProjects 50 50 880 50

ESPC/UESCContractPayments 0 0 0 0

RenewableEnergyCredits(REC)Costs 22 27 30 33

Allother 0 0 0 0

Total 72 77 910 85

Figure3.ElectricityUsageandCostProjections

SLACAnnualLaboratoryPlan Submitted1May2015 Page37of47

7.0 Human Resources

RecentHistoryTo increase alignment with the Laboratory’s mission and scientific strategies and to ensure critical operationsservices,SLACundertookamulti‐yearworkforceevaluationandrestructuringthatresultedinanetdecreaseof166staff,or8.8%fromFY12toFY14(seeTable4below).TotalturnoverincreasedinFY14to14.8%from11.5%inFY13,driveninlargepartbylayoffs,whichaccountedfor48%ofallterminations.Voluntaryturnoverremainedconsistentat7.5%.Adjusted for layoffs, the total turnoverwas6.7%,withvoluntaryat4.9%.Themajorityof thisworkforcerestructuringwascompletedinFY14.ConsistentwiththeLaboratory’sstrategytoexpandanddiversifyitsportfolioofresearchandscientificpractice,thenumberofscientificstaffhasincreasedandseveralhighlyrenownedscientificleadershavebeenhired. Strategicallyplanned reductions in force setupSLAC inFY15 tohire theworkforcenowneededtofacefuturechallengescomingwiththeconstructionofitsnewmajorsciencefacilities.

Table6.Three‐yearStaffingProfile(FTEs)

FunctionalArea FY2012 FY2013 FY2014

Scientists 268 305 308Engineers 449 416 401PostDocs 90 92 110ResearchSupport 217 179 162GraduateStudents 125 121 120UndergraduateStudents 0 0 0Operations/AdministrativeSupport 720 653 602

TOTAL 1,869 1,766 1703

Afterayear‐longinternationalsearchfornewdirectorsofSSRLandLCLS,KellyGaffney,aSLACfacultymemberandamemberoftheStanford/SLACjointPULSEInstitute,waspromotedtotheroleofSSRLdirector,andMichaelDunne,formerlythedirectorforLaserFusionEnergyatLLNL,acceptedthepositionofLCLSdirector.

Inearly2015,SLACunderwentanorganizationalrestructuringtobetteralignitsworkforcewiththestrategicplan.ThisallowstheLaboratory toplacegreateremphasisonscientificareas thatarecrucial toSLAC’s future;promoteinteractionandinterdisciplinaryresearchopportunitiesamongthescientificdivisions;andcapitalizeonouruniquesetofcorecompetenciesandenableustopursuenewopportunitiestogrowtheLaboratory.

The new Science Directorate is comprised of Chemical Sciences, led by Tony Heinz who comes from ColumbiaUniversity; Elementary Particle Physics, led by JoAnne Hewett, professor of physics and department head oftheoreticalparticlephysicsatSLAC;ParticleAstrophysicsandCosmology,ledbyTomAbel,actingdirectorofKIPAC;Biosciences, ledbySoichiWakatsuki,professorofphotonscienceatSLACandofstructuralbiologyat theStanfordSchool of Medicine; High Energy Density Science, led by Siegfried Glenzer, a SLAC distinguished scientist; andMaterials Science, led by Tom Devereaux, who served as the associate laboratory director (ALD) for the formerPhoton Science Directorate and has successfully grown the photon science portfolio over the last few years. AnAppliedProgram, ledbyMarkHartney,wasalso createdwithin thisdirectorateandworkswith theother sciencedivisions to help translate fundamental discoveries into practical applications; it also collaborates with our userfacilitiestodothesamewiththeiruniquecapabilities.

ThenewlycreatedTechnologyand InnovationDirectorate focusesonSLAC’swell‐developedcorecompetencies inadvanced instrumentationandRF technology that support theLaboratory’s sciencemissionbroadly.Pulling theseteams together has two clear benefits: It consolidates some of our areas of core expertise that have previouslyresidedindifferentpartsofSLAC,anditallowsustobetterdevelopthesecapabilitiesandleveragethemforouruserfacilitiesandscienceprograms.MichaelFazioiscurrentlyservingastheactingALDforTID.

AsthephysicallandscapeofSLACisexpectedtochangesignificantlyoverthenextseveralyears,meetingthedemandwillrequireimprovedcoordinationofandemphasisonefficientandeffectiveprojectandfacilitiesmanagement.Twoof the Laboratory’s key leadership gaps in this regard have been filled. Russell Thackston, the new Facilities andOperationsdirector,heldasimilarpositionatUCSanDiegoand isnowproviding leadership forcampusplanning,conventional operations and maintenance, systems engineering, and building management here. Brian Sherin,formerdeputyESHdirector,waspromotedtoESHdirectorleadingSLAC’sESHinitiatives.

SLACAnnualLaboratoryPlan Submitted1May2015 Page38of47

FutureChallengesandActionsSLAC’songoingchallengeistohire,developandretainbest‐in‐classscientificandtechnicaltalentaswellasenhancethe Laboratory’s leadership capacity in order to accomplish its strategic science objectives and advance its corecapabilities.SLACiscurrentlyintheprocessofidentifyingitsneededlong‐termskillcapabilities,someofwhichareoutlined below. Many science, technology, engineering andmathematics (STEM) job groups, comprised of highlyspecializedscientistsandengineers,arerecruitedfromasmallandverycompetitivedomesticandinternationalpool.TheLaboratoryalso faceschallengesassociatedwith thecurrentmarketconditions,which includehavingsomeofthehighesthousing costs in the country.Toaddress these challenges, SLAChasenhanced its internal recruitmentcapabilitiesandtargetedcriticalskillsourcing,andaddedhousingassistanceprogramsandenhancedproject‐basedfinancial incentives.SLAC isalso focusing its recruitmentcommunication tohighlight itsuniquemission; the long‐termvalueofworkingaspartoftheSLAC,StanfordandDOEcommunities;andthebenefitsoflivingintheBayArea,particularlyforout‐of‐stateandinternationalcandidates.

TechnicalexpertiseforLCLS‐II.ThisprojectremainsthemostimportantfocusforSLAC,aswellasfortheOfficeofScience,andSLAChasassembledahigh‐performingprojectteamledbyJohnGalayda.TheLCLS‐IIprojectisworkingwithotherlaboratoriesinthecomplex,mostnotablytheArgonne,Fermi,LawrenceBerkeleyandThomasJeffersonnationallaboratories,aswellasCornellUniversity,tosupporttheconstructionofnewtechnologyatSLAC.Toensurelong‐termprojectsuccess,thereisaneedformanagers,engineersandscientistsincryogenicstechnology.Toacquirethisscarceskillset,SLACisusingtemporaryassignmentsatotherDOEandinternationallabs.

Scientificexpertise forLCLS facilityoperationsanddevelopment.TheemergenceofmultipleX‐rayFELfacilitiesaroundtheworldoverthenextfewyears(EuropeanXFEL,Swiss‐FEL,PAL,inadditiontoSACLA)meanstherewillbeaninevitablemigrationofsomeLCLSstafftothesefacilitiesandtheirassociateduniversitygroups.SuchmovementcanbeapositivedevelopmentaslongasthereisfocusedattentiononcreatingadynamicpipelineofstaffforLCLSandattractivecareerdevelopmentoptionsatSLAC.TheLCLSmanagementteamisactivelyworkingontheseissues.ThenewScienceDirectorateatSLACalsoprovidesanopportunitytoenhancetheresearchoptionsforLCLSstaff.

Leadership for Accelerator directorate. Attracting and selecting a new ALD with the requisite combination ofinternationally recognized achievement and organizational leadership is a priority for the Laboratory. A searchcommittee has been established and has identified strong candidates. In addition, maintaining the requisiteintellectual and technical capacity in accelerator research and development, engineering and technical support iscriticaltomaintainingourcorecapabilityandrealizingfutureacceleratorinitiatives.Intheimmediatefuture,SLACisrecruiting leadership for theAcceleratorResearchDivision and theAcceleratorTechnologyResearchDepartment.Whiletheformerisstillinsearchmode,astrongcandidatehasbeenidentifiedforthelatter.

Keyscienceandappliedenergyinitiatives.Tobuildexpertiseinitsbasicsciencesandappliedprograms,SLACwillcontinuetocultivateyoungresearcherswithintheLaboratoryandworkwithStanfordtoidentifyandattracttalentwith leadership capabilities to expand the relevant research portfolios, particularly in biosciences, high energydensityscienceandultrafastscience.

Tosupportandstrengthenthecosmologyprograms,SLACneedsacore teamof technicallycapablephysicistsandengineersfortheconstructionandoperationoflargeexperimentsinremoteenvironments.Toaddressthis,SLACwillcontinue to recruit new and reassign existing staff in key areas, such as sensor fabrication, cryogenic and low‐backgroundengineering,electronicsystemsandprojectmanagement.SLACwillalsoinvestindevelopingacoreteamfordarkenergyanddarkmatterscience.

Critical operations. SLAC has recently identified and implemented a methodical workforce and talent planningprocess.Theworkforceplanwill focusonneededcritical skillsandhires in theshort term(nextyear)and longerterm(2‐5years).Thefocusherewillbeonneeds,gaps,andplanstoclosethosegaps.Thetalentplanwillfocusonthebackfillsandlonger‐term(highpotential)developmentofkeyleadershippositions(leadershiptrack),aswellasfocusonourvitalscientificandengineeringtalent(technicaltrack).Forthisfirstyear,allemployeesnamedintheseplanswillhaveindividualdevelopmentplansputinplace.

Leadership Development. SLAC has refocused its efforts on developing leadership competency, including moreattentiontomanagersnominatedtoStanfordleadershipandmanagementprogramstoensureappropriatenomineesinneedof skill building, andwithaneye towomenanddiverseparticipants.One internallydeveloped leadershipprogram already in place focuses on strategic planning, customer relationships and business acumen. A secondprogramconcentratesonbuildingleadershipcapabilitiesaroundworkforceengagementanddevelopmentpractices.

SLACAnnualLaboratoryPlan Submitted1May2015 Page39of47

A third program is in development that will give attention to “leadership intelligence,” building on research intoneuroscienceandemotionalintelligenceprinciples.

Diversityconsiderations.Despiteongoingefforts,SLAChasmademinimalprogressonincreasingdemographicsofhistorically under‐represented groups in various job categories across the Laboratory. As a result, SLAC hasembracedanewdiversityandinclusionstrategythatpositionsthepracticewithinthelargerpictureofengagement;oneofcreatinganinclusivecultureinwhicheachmemberoftheworkforcehasavoicethatisvaluedandrespectedandthatcontributestothelab’ssuccess.Thereisathree‐pointfocusofthisstrategy:1)addressculturalbiasesanddefineculture‐changingpracticesthatcreateanenvironmentthatallowsallemployeestofeelwelcome,andtothrive;2) build a talent pipeline leveraging internal advocates, employee resource groups and relationships with keyuniversities and professional societies; 3) focused development and sponsorship of internal diverse talent.Leadershipiscommittedtothisprogramandiscollectivelyaccountableforitssuccess.

SLACwillmeasureprogressagainstitsDiversity&Inclusioneffortsalongthelinesofthisthree‐pointstrategy,andintermsofnearandlonger‐termprogressassuch:

NearTermMeasures

LongTermMeasures

Culture

EducateSeniorManagementTeam,andthenlinemanagersoninherentbias

InvolveEmployeeAdvocatesinselectionandon‐boardingprocess

EngageEmployeeResourceGroupsforkeyconstituencies

CreateaDiversity&InclusionCounciltoadviseSeniorManagement

Greaterawarenessofinherentbiasandpracticesinplacetomitigateitsinfluence

Vibrantinternaladvocacy(individualsandemployeeresourcegroups)

Increasednumbersofunder‐representedgroups

Increasedretentionrates Culturalmeasuresofinclusionincludinginfluence,communicationopenness,strengthofrelationships,anddevelopmentreceivedfordiversepopulations

o

Pipeline

Cultivaterelationshipsandcreatepartnershipswithkeyuniversitiesandprofessionalsocieties

QualifiedDiversityrepresentationoncandidateslates

EmployeeAdvocatesandEmployeeResourceGroupsidentifyingpotentialcandidates

Qualitypartnershipswithtargeteduniversitiesandprofessionalorganizations

IncreasednumbersofqualifiedDiversityrepresentationoneachcandidateslate

Improvednumbersofhiredcandidatesandmembersofmanagement

Development

Identifywomenandunder‐representedminoritiesintalentplanningprocess

Createsponsorshipforidentifiedcandidates

EnsureappropriaterepresentationinStanfordLeadershipandManagementAcademies

Increasednumbersofwomenandunderrepresentedcandidatesintalentplanning

Increasedpromotionrates EquitablerepresentationinStanfordLeadershipandManagementAcademies

SLACAnnualLaboratoryPlan Submitted1May2015 Page40of47

8.0 Cost of Doing Business

OverheadBudgetProcessForthedevelopmentoftheFY15lab‐widespendingplan,SLACcontinueditsformalinstitutionalbudgetformulationprocess based on a best practice adopted by other multi‐program national laboratories. The process is jointlystewardedbythechieffinancialofficerandthedeputylaboratorydirectorandprovidesaframeworkforimprovedinstitutionalbudgetperformancemeasurement.Theguidancecoversthebudget formulationprocess,assumptions,timelineandtemplatesforSLAC’smissionsupport(GeneralandAdministrative,CommonSiteSupport,Procurement,Institutional Capital Projects and LDRD), Program Support, and service center (shops, professional centers orrecharge)budgets.

The Institutional Change Control Board (ICCB) was established to ensure that SLAC’s institutional planning andbudget execution processes are managed in a strategic, integrated and transparent manner, and thatrecommendations are made to SLAC’s Senior Management Team with a balanced, cross‐cutting and institutionalperspective that supports the Laboratory’smission.Membership of the ICCB includes both research and businessrepresentation from each SLAC directorate. The primary objectives of the ICCB are to: 1) review and makerecommendationsoncostmodel,includingindirectcostpoolsandbudgets;2)reviewandmakerecommendationsinprogramplanningandbudgetexecution;3)recommendprioritiesforinstitutionalinvestments,providingalignmentwithSLAC’s strategic goals; and4) reviewperformanceandalldivisionbaseline changeproposals. Finaldecision‐makingauthorityresideswiththelaboratorydirectorandtheseniormanagementteam.

SLAC’sLDRDportfolioismanagedbythedirectorofstrategicplanning.LDRDproposalprioritizationisinformedbyaninternal/externalreviewcommitteeandfinalizedbytheseniormanagementteam.Proposalsareevaluatedinaformal manner that considers the quality of the proposed science, likelihood of success and future fundingopportunities, associated risk and other relevant factors. Funds are limited and the process is highly competitive,helping to ensure that approved LDRDprojects are valuable initiatives that promotenew researchdirections andseedinnovativescienceprograms.

MetricsTable7.LaboratoryOverheadTrends(CostDatain$K)

FY2012

FY2013

FY2014

FY2015Est.

FY2016Est.

1a.   Direct FTE Ratio Staff (Excludes Temporary Employees)          Numerator:DirectFTEs1,forpermanentstaffwhichrepresenttimechargedtoclientfundedwork2,includingcapitalbutexcludingLDRD 1,150 1,109 982 1,007 1,007

SupplementalData:IndirectFTEsforpermanentstaff(allnon‐directFTEs,toincludeLDRDandorganizationalburden3) 533 487 440 418 418

Denominator:TotalFTEs(subtotalofdirectandindirectFTEs) 1,684 1,596 1,422 1,425 1,425

DirectFTERatio(%):DirectFTEs/TotalFTEs 68% 69% 69% 71% 71%

1b.DirectRatio–Total(IncludesTemporaryEmployees)  Numerator:Sameasprecedingmetric+LimitedTermEmployees(LTE),PostDoc,andStaffAugmentationDirectFTEs1 1,165 1,114 1,047 1,073 1,073

SupplementalData:IndirectFTEsfortotalstaff(includesLDRDandorganizationalburden4)includingTemporaryEmployees(LTE,PostDoc,StaffAugmentation)

544 492 450 427 427

Denominator:TotalFTEs(subtotalofdirectandindirectFTEs) 1,710 1,605 1,497 1,500 1,500

DirectFTERatio(%):TotalDirectFTEs/TotalFTEs 68% 69% 70% 72% 72%

2a.TotalOverhead/TotalLabCost  Numerator:Totaloverheadcost,whichincludesinstitutionaloverhead,LDRDandorganizationalburdenstotheextentthisoverheadisallocatedtoclientfundedwork.2

$110,654 $107,458 $108,240 $114,079 $114,079

SLACAnnualLaboratoryPlan Submitted1May2015 Page41of47

FY2012

FY2013

FY2014

FY2015Est.

FY2016Est.

Denominator:Totallabcostincludesallcostchargedtoclientfundedwork2(operatingandcapital).Includessubcontractsandprocurements4andlineitemconstructioncosts.

$369,995 $358,384 $389,200 $411,358 $411,358

TotalOverhead/TotalLabCost(%): 30.0% 30.0% 27.8% 27.7% 27.7%2b.TotalOverhead/TotalLabOperatingCostNumerator:Sameasprecedingmetric. $110,654 $107,458 $108,240 $114,079 $114,079Denominator:Sameasprecedingmetric,butexcludelineitemconstructioncosts. $345,574 $337,722 $320,705 $301,843 $301,843

TotalOverhead/TotalLabOperatingCost(%): 32.0% 31.8% 33.8% 37.8% 37.8%2c.TotalOverhead/TotalInternalLabOperatingCostNumerator:Sameasprecedingmetric. $110,654 $107,458 $108,240 $114,079 $114,079Denominator:Sameasprecedingmetric,butexcludesubcontractsandprocurements4chargedtoclientfundedwork2. $242,768 $238,563 $259,968 $241,509 $241,509

TotalOverhead/TotalInternalLabOperatingCost(%) 45.6% 45.0% 41.6% 47.2% 47.2%3.FringeRate  Numerator:Totalcostofemployeebenefits(includingstatutorybenefits),notincludingpaidabsences. $51,052 $48,957 $47,867 $49,289 $51,847

Denominator:Totalbasesalarycost. $171,642 $168,432 $165,831 $161,074 $166,711

FringeRate(%): 30.4% 29.5% 29.2% 30.6% 31.1%4.LaborMultiplieronaDOEOperatingFundedProject  BaseSalaryof$100K:Includesleave/absencecosts $100K $100K $100K $100K FullyBurdenedSalaryCost5 $218 $217 $220 $222LaborMultiplier:Dividefullyburdenedsalarycostby$100.0K 2.2 2.2 2.2 2.2 5a.FullyBurdenedPersonYear–Staff(ExcludesTemporaryEmployees)Numerator:TotalOriginalCostTransactions($K)fromInstitutionalCostReport6(ICR)Exhibit1–OriginalCostReporting,excludingOtherProcurements,Subcontracts,andTaxes

$242,594 $241,724 $237,171 $230,105

Denominator:StaffDirectFTEs(asreportedinMetric1a) 1,150 1,109 982 1,007 FullyBurdenedPersonYear($K)StaffDirect: $211 $218 $242 $228 5b. Fully Burdened Person Year – Total (IncludesTemporaryEmployees)Numerator:Sameasprecedingmetrics $242,594 $241,724 $237,171 $230,105 Denominator:TotalDirectFTEs(asreportedinMetric1b) 1,710 1,605 1,497 1,500 FullyBurdenedPersonYear($K)TotalDirect: 142 151 158 153 1.AnFTEiscalculatedasactualhourschargeddividedbytheexpectedhourstobechargedbyanormalemployeeduringayear.DirectFTEsreportedinmetric1ashouldagreewithBudgetOfficers’ConferenceMetricsSection2“RegularStaff”plus“BargainingUnit”.2.“Clientfundedwork”refersto“directcharges”/”directfundedwork.”3.Metric1bincludesLTE,PostDoc,andStaffAug.DirectFTEsandshouldagreewithBudgetOfficers’MetricsSection2“Subtotal‐DirectFTEs”4.“Organizationalburden”referstoanoverheadpoolthataccumulatesthecostofmanagingandoperatinganorganizationorgroupoforganizationsandisusuallyallocatedonarateestablishedspecificallyforrecoveringthecostoftheorganizationand/orgrouping.Itincludesspacecharges.5.The$100Kbasesalaryismultipliedbythefringebenefit(excludingleave),overhead(usinganaverageforallscientificdivisions),G&A,LDRD,IGPP/IGPE,fee,andetc,ratesbasedonSLAC’sburdeningmethodologyforaDOEoperatingfundedproject.Doesnotincludecompositerates,suchasspecialratesforlargeconstructionprojects.UsesfinalindirectratesforFY12,FY13,andFY14,currentforwardpricingratesforFY15,anddoesnotprovideaprojectionforFY16.6.FromannualInstitutionalCostReportsubmissiontoDOE,Exhibit1–OriginalCost.*FYs2012‐2014datareflectsactualcosts.FY15andFY16areestimates(adjustedforescalationusingafactorthatisappropriatetoSLAC).

MajorCostDriversSLAC’smajorcostdriversfallintothefollowingprimarycategories:

InfrastructureMissionReadiness:Asmentioned inSection6,with the increasingageof facilitieson siteand theambitious scientific agenda that they need to support, SLACmust invest in revitalizing the existing facilities andinfrastructuretomeetcurrentandemergingneeds.Thecostofmaintenancenaturallyincreasesasthesystemsage,andonce the systemsare replaced that costdecreases and the savings canbe reinvested to renew infrastructure.SLAC’s approach is to identify and revitalize the most critical infrastructure first, and currently our immediateprioritiesareaddressingelectricalandcoolingdistributionreliabilityrisks.

SLACAnnualLaboratoryPlan Submitted1May2015 Page42of47

TheSLIprogramhasbeen,andremains,criticaltoensurebothlaboratoryandconventionalinfrastructureinsupportofDOE‐SCprogramsatSLAC. Inaddition to thenewbuildings, SLI funding isused tohelpaddress the renewalofthesecriticalunderlyingutilitiesandinfrastructuresystems,whichareahighprioritygiventhatmanysuchsystemsareagingandpasttheirusefullife.

SLAC’sITinfrastructureisalsoaging,includingthedatacenterandnetworkingthroughoutthesite,andcriticalneedsareprioritizedandbalancedagainstother laboratoryprojectsduringeachbudgetcycle. Tohelpaddressourdatacenterneeds,theStanfordResearchComputingFacility,locatedattheSLACsite,nowaffordsamoderndatacenterfacilitywiththeabilitytoaccommodatefutureSLACscientificcomputinggrowth.ThisfacilityprovidesapowerusageefficiencyratingfordatacentersthatmeetsorexceedstheDOE’sminimumrequirementof1.4.SLAChasenteredintoanintra‐universityagreementwithStanfordfortheperiodJuly1,2014toSeptember30,2018,toallowSLACtorentspaceforserversandequipment.

NecessaryModernBusinessSystems:SLAChasmadesignificantprogressstrengtheningfinancialcontrols,andthiscontinuestobeahighpriority.SLACcompleteditsEnterpriseResourcePlanningupgradewiththeimplementationofthePeopleSoft9.2FinanceandSupplyChainManagementsystem,effectiveforFY15.ItintegrateswiththePeopleSoft9.2HumanCapitalManagementsystemthatwasimplementedearlierinFY14,andwithotherSLAC,StanfordorDOEsystems. SLAChasnow initiated aBusiness SystemArchitectureProject tounderstandandmapexistingbusinesssystems,identifyredundanciesandcreatearoadmaptothefuturestate.ThisprojectwillhelpSLACreducetheuseofmanual spreadsheets and shadow systems throughout the Laboratory. In addition, SLAC continues to addressoutdatedweb content and examine existing contentmanagement platforms tomore efficientlymanage electronicresources. SLAC also continues to mature its contractor assurance systems, strengthening internal oversight andbetterdefiningcriticalprocesses.SLACisimprovingtheplanning,managementandperformanceassessmentoftheLaboratory to reduce the need for external assessment and oversight, which is expected to result in reducedassociatedcosts.

WorkforceMissionReadiness:SLAChasmadeitaprioritytoensureahighcaliberoftalenttounderpinitsmissionandmissionsupportactivities.AsmentionedinSection7.0,SLAC’slocationposesparticularchallengestoattractingcritical skills because of the high cost of housing. To address this, SLAC continues to explore alternative housingsupportoptionswithDOEandStanford.InadditiontothecurrentandfutureworkforceneedsdescribedinSection7.0,leadershipdevelopmentandtrainingprogramsareunderway,andmanagementcontinuestomakeprogresswithsuccessionplanningtoidentifyanddevelopfutureleaders.

RevolutionaryContractExperiment:TheSecretaryofEnergyhasapprovedanovelcontractingexperimentbetweenStanfordandDOE.ThisexperimentwillattempttodevelopanewM&OcontractbetweenStanfordandDOEthatisbasedmainlyonStanfordoperatingpoliciesandprocedures,withmuchoftheoversightofSLACbeingperformedbycognizantstateandlocalagencies.Wherestateorlocalstandardsdonotexist,e.g.licensingofaccelerators,DOEornationalstandardswillbeused.TheultimategoalofthisexperimentistodetermineifanewM&OcontractmodelcanbedevelopedtodelivermoreR&DperdollarspentatSLACandtoimprovetheworkingenvironmentforSLACresearcherswithoutdegradingoperationalperformance.

DecisionsandTrade‐offsSLAChassubstantialchallengesinbringingitsinfrastructure,institutionalinformationandprocedures,andhumancapital into a state of mission readiness for current and future scientific programs. Through its annual planningprocess,theLaboratorydevelopsitsportfolioofactions—theLaboratoryAgenda—thatalignswithSLAC’sstrategicobjectives,identifiedhigh‐riskareas,andsafetyandcompliancerequirements.ThisplanningprocessisalsoinformedbyfrequentinteractionwiththeSLACSiteOfficeandtheSLACBoardofOverseers,andbytheprioritiesidentifiedandfeedbackprovidedannuallythroughtheDOEPerformanceEvaluationandManagementPlanprocess.Reflecting itscommitment to carry out the SLACmission safely, effectively, and efficiently, SLACmanagement decided to focusdiscretionaryresourcesonthefollowingmajorprioritiesinFY15:

● CompletesiteinfrastructureprojectsthatarecriticaltotheLCLS‐IIproject.● Complete the upgrade of institutional business systems to improve financial controls, business tools and

reportingcapabilitiestotheSLACcommunity.● Continuetoimprovethecybersecurityprogramtoreducerisk.● Buildinfrastructureforadditionallaboratoriesandcleanroomspace.● UpgradetheMagneticMeasurementFacilitytoaccommodatefuturegrowthandmaintainourcorecompetency.

SLACAnnualLaboratoryPlan Submitted1May2015 Page43of47

● IncreaseourstrategicinvestmentsinLDRDfrom$4.6Mto$7.5M.● Strengthenlaboratoryleadershipandcommunicationstrainingandsuccessionplanning.

SLACAnnualLaboratoryPlan Submitted1May2015 Page44of47

Appendix 1: Annual Strategic Partnership Projects Report Thefundinglevelfornon‐DOEfundedworkrequestedforFY16isapproximately$22MatSLAC.

Federal

SLACreceivesfundingforitsNationalInstitutesofHealth(NIH)activitieseitherdirectlyorthroughStanfordgrantsandsubcontracts.NIH‐fundedprogramsincludeongoingsupport fortheStructuralMolecularBiologyprogram(aneffortjointlycoordinatedwithDOE‐BER)andthefinalyearoftheJointCenterforStructuralGenomics,bothatSSRL.NIHhasalsoprovidedpartialsupportfordevelopingnewinstrumentationintheareaofnanocrystallographyusingLCLS,andfurtheropportunitieswillbeexploredaspartofthebiosciencestrategy.

SLAChasbeenfundedbytheDepartmentofDefense(DoD)throughtheDefenseAdvancedResearchProjectsAgency(DARPA)todevelopinnovativeX‐rayopticsandanewprojectoncompactneutronsources.SLAChasalsoproposedto DoD projects for producing, controlling and manipulating radiation in the terahertz regime, a relativelyunexploitedportionof theRF spectrumwithapplications that include coherent terahertzprocessingand imaging,ultrawide‐bandwidthandultrahigh‐capacitycommunications,andhigh‐resolutionradarimaging.

TheNationalScienceFoundation(NSF)isapartnerwithDOEontheLSST,andprovidesSPPfundingtoSLACfordatamanagementsystems.

Non‐Federal

SLAC’s non‐federally sponsored SPP programs cover the Japanese participation, through KEK, at SLAC under theU.S./Japanagreement inHEPresearch. Japanese involvement includessupportoftheFGSTandvariousacceleratorR&DprogramsrelatedtotheInternationalLinearCollider.

AsaleadinglabinRFR&D,SLACprovidesklystronsandRFcomponentstomanyinternationalandU.S.laboratories.Withitsuniquehigh‐powertestfacilities,SLAChasanSPPagreementinplacewithCPIInc.totesthigh‐powerX‐bandklystronsthatCPIInc.isundercontracttodelivertoCERN.

SLACpartnerswithbiopharmacompanies todevelopnew instrumentationand capabilities for synchrotron‐basedstructuralbiologyandtoacceleratedevelopmentofnewpharmaceuticals.ThesedevelopmentsalsodirectlyenhancecapabilitiesthatstrengthenSSRL’sroleasanationaluserfacility.

SLACiscollaboratingwithanumberof industrialpartnersthroughtheSmallBusinessInnovationResearch(SBIR)program, developing novel photocathodes for high‐brightness photoinjector guns and for improved linac electronbeamdynamicsforimprovedFELperformance.

SLACalsoreceivescontributionsfrominternationalcollaborations,privatefoundationsandStanfordinanumberofotherareasthatsupportourstrategicplanandcorecompetencies.

2015 Annual Laboratory Plan 

SLACAnnualLaboratoryPlan Submitted1May2015 Page45of47

Appendix 2: Proposed Line Item Investments

ProposedLineItemInvestmentSummary

SiteOffice SSO(SLACSiteOffice)

Name(Acronym) PhotonScienceLaboratoryBuilding(PSLB)

TotalEstimatedCostLowEnd $47,500K(w/oOPC):$55,000K(WithOPC)

TotalEstimatedCostHighEnd $49,500K(W/OOPC):$57,000K(WithOPC)

ProjectedScopeElements Constructionof thePhotonScienceLaboratoryBuildingtoprovideacentralizedmodernlaboratory and/or office space with the necessary performance capabilities andaccommodategrowthintheexistingphotonscienceprogram.Thisstructurewillinclude50,000grosssquarefeet(gsf)ofmodernlaboratoryandofficespace.

SupportofDOEStrategicGoals Goal 2: The Science and Engineering Enterprise‐Extend our knowledge of the naturalworld;delivernewtechnologiestoadvanceourmission;andprioritizescientificfacilitiestoensureoptimalbenefitfromfederalfacilities.

Goal4:ManagementandOperationExcellence‐Improvecontractandprojectmanagement

CapabilityGap Constructionofadditionalmodernlaboratoryfacilitiesisneededtomaintainournation’sglobal position in the forefront of science and technology by providing a centralizedmodernlaboratoryspacewiththenecessaryperformancecapabilitiesinwhichtogrowtheexistingphotonscienceprogram.

AlignmentwithLabCoreCapabilities Thelaboratoryfacilitythatthisprojectwilldeliver,leveragingthecapabilitiesoftwoofthecountry’s world‐class light sources, Linac Coherent Light Source (LCLS) and StanfordSynchrotronRadiationLightSource,aswellas theStanfordPULSEandSIMES institutes,willenableexpansionofthephotonscienceprogramatSLAC.

MissionReadiness ThegrowthinSLAC’sphotonscienceresearchprogramisoutpacingitsexistinglaboratoryspace. This investmentwill supportSLAC’smultidisciplinaryscientific initiativesrelatedto chemical, materials and biological sciences and energy research. This building willhouse 15,000 square feet of state‐of‐the‐art laboratory facilities and approximately 100scientistsandengineers.

ImpactifNotFunded Withoutthisinvestment,SLACwillbeunabletoexpanditsphotonscienceprogram.Thisfailure to providemodern facilities suitable for collocated and coordinated functionalitylimitsSLAC’sabilitytosuccessfullyaddressanddeliveronitslong‐termstrategicmission.

2015 Annual Laboratory Plan 

SLACAnnualLaboratoryPlan Submitted1May2015 Page46of47

Acronyms ALD AssociateLaboratoryDirectorAOA AmmoniaoxidizingarchaeaARPA‐E AdvancedResearchProjectsAgency–EnergyARPES Angle‐resolvedPhotoemissionSpectroscopyARRA AmericanRecoveryandReinvestmentActASTA AcceleratorStructureTestAreaATLAS AToroidalLHCApparatusBAPVC BayAreaPhotovoltaicConsortiumBER Biological&EnvironmentalResearchBES BasicEnergySciencesBSY BeamswitchyardCD CriticalDecisionCDMS CryogenicDarkMatterSearchCERN EuropeanOrganizationforNuclearResearchCMB CosmicMicrowaveBackgroundCryoEM Cryo‐electronmicroscopyCS ChemicalScienceDAQ DataacquisitionDARPA DefenseAdvancedResearchProjectsAgencyDESC DarkEnergyScienceCollaborationDLA DirectLaserAccelerationDoD DepartmentofDefenseDOE DepartmentofEnergyDHHS DepartmentofHealthandHumanServicesDHS DepartmentofHomelandSecurityEERE EnergyEfficiencyandRenewableEnergyEFRC EnergyFrontierResearchCenterESTB EndStationTestBeameV ElectronvoltEXO EnrichedXenonObservatoryFACET FacilityforAdvancedAcceleratorExperimentalTestsFEH FarExperimentalHallFEL Free‐ElectronLaserFES FusionEnergyScienceFGST FermiGamma‐raySpaceTelescopefs FemtosecondFTE FullTimeEquivalentGCEP GlobalClimateandEnergyProjectGeV GigaelectronvoltGHz GigahertzGPP ProgrammaticGeneralPlantProjectsHED HighEnergyDensityHEP HighEnergyPhysicsHz HertzICCB InstitutionalChangeControlBoardIGPP InstitutionalGeneralPlantProjectsIR InteractionregionJCAP JointCenterforArtificialPhotosynthesisJCESR JointCenterforEnergyStorageResearchKEK HighEnergyAcceleratorResearchOrganization,inJapankeV KiloelectronvoltKIPAC KavliInstituteforParticleAstrophysicsandCosmologykV KilovoltLAT LargeAreaTelescopeLBNE Long‐BaselineNeutrinoExperimentLCLS LinacCoherentLightSourceLDRD LaboratoryDirectedResearchandDevelopmentLHC LargeHadronColliderLSST LargeSynopticSurveyTelescopeLZ LUX‐ZEPLINExperimentmA MilliampsMEC MatterinExtremeConditions

2015 Annual Laboratory Plan 

SLACAnnualLaboratoryPlan Submitted1May2015 Page47of47

MeV MegaelectronvoltMFX MacromolecularFemtosecondCrystallographyMHz MegahertzmJ MillijouleMS MaterialsScienceN NitrogenNASA NationalAeronauticsandSpaceAdministrationNERSC NationalEnergyResearchScientificComputingcenterNIGMS NationalInstituteofGeneralMedicalSciencesNIH NationalInstitutesofHealthNLCTA NextLinearColliderTestAcceleratornm NanometerNNSA NationalNuclearSecurityAdministrationns NanosecondNSF NationalScienceFoundationONR OfficeofNavalResearchPAL PohangAcceleratorLaboratoryPIE PrecourtInstituteforEnergyPPA Particlephysicsandastrophysicsps PicosecondPSLB PhotonScienceLaboratoryBuildingPULSE PhotonUltrafastLaserScienceandEngineeringPW PetawattPWFA PlasmaWakefieldAccelerationQCD QuantumChromodynamicsR&D ResearchandDevelopmentRIXS ResonantInelasticX‐rayScatteringRF RadioFrequencyRPV ReplacementPlantValueRSB ResearchSupportBuildingSC OfficeofScienceSIMES StanfordInstituteforMaterialsandEnergyScienceSLAC SLACNationalAcceleratorLaboratorySLI ScienceLaboratoryInfrastructureSMB StructuralMolecularBiology(SSRLProgram)SPEAR StanfordPositronElectronAcceleratingRing,nowSPEAR3SPP StrategicPartnershipProjectsSRCF ScientificResearchComputingFacilitySSRL StanfordSynchrotronRadiationLightsourceSTEM Science,Technology,Engineering,andMathematicsSUNCAT SUNCATCenterforInterfaceScienceandCatalysisSuperCDMS SuperCryogenicDarkMatterSearch(CDMS)SUSB ScientificUserSupportBuildingTeV TeraelectronvoltTHz TerahertzTID TechnologyandInnovationDirectorateTIMES TheoryInstituteforMaterialsandEnergyScienceTW TerawattUED UltrafastElectronDiffractionUEM UltrafastElectronMicroscopyWFO WorkforOthersWIMP WeaklyInteractingMassiveParticleX‐rayFEL X‐rayFreeElectronLaser