slide sode 45

Upload: jovan-merida-rubio

Post on 07-Mar-2016

223 views

Category:

Documents


0 download

DESCRIPTION

ODe45 como usarlo

TRANSCRIPT

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    Captulo 1: Ecuaciones diferenciales ordinarias

    Metodos Numericos Avanzados

    3 de noviembre de 2005

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    Utilizacion de la rutina ode45 de MatlabEjercicios

    Contenidos

    Ensamblaje de navesUtilizacion de la rutina ode45 de MatlabEjercicios

    Osciladores no linealesEl plano de fases

    Modelos de propagacion del SIDALa ecuacion logsticaModelo mas complejo: 4 tipos de poblacion

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    Utilizacion de la rutina ode45 de MatlabEjercicios

    Metodo de Euler

    Ejemplo mas simple de los llamados Metodos Taylor

    y = f (x , y) y(x + h) = y(x) + y (x)h + O(h2)

    Se reemplaza y por f (x , y):

    yk+1 = yk + hf (xk , yk)

    Si continuamos calculando terminos con el polinomio de Taylorpodemos obtener metodos mas precisos con el coste de tener quecalcular las derivadas parciales de f .

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    Utilizacion de la rutina ode45 de MatlabEjercicios

    Metodo de Runge-Kutta

    Se evita calcular las derivadas de f mediante mas evaluaciones dela funcion:

    y (x) = f (x , y)y (x) = fx + fyy = fx + fy f

    y = hf +h2

    2(fx + fy f ) + O(h

    3)

    =h

    2f +

    h

    2(f + hfx + hfy f ) + O(h

    3)

    f + h(fx + fy f ) = f (x + h, y + hf ) + O(h2)

    F1 = f (x , y) F2 = f (x + h, y + hF1)

    yk+1 = yk +h

    2(F1 + F2)

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    Utilizacion de la rutina ode45 de MatlabEjercicios

    Ecuacion para la trayectoria de la nave

    x (t) = s(t)(X (t) x(t)),y (t) = s(t)(Y (t) y(t)),z (t) = s(t)(Z (t) z(t)).

    s(t) = k

    X (t)2 + Y (t)2 + Z (t)2

    (X (t) x(t))2 + (Y (t) y(t))2 + (Z (t) z(t))2

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    Utilizacion de la rutina ode45 de MatlabEjercicios

    Pasos de la resolucion numerica

    I Definir una funcion para la trayectoria circular de la nave.

    I Utilizar el comando ode45(funcion,tspan,y0).I Visualizacion: estatica o dinamica.

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    Utilizacion de la rutina ode45 de MatlabEjercicios

    Pasos de la resolucion numerica

    I Definir una funcion para la trayectoria circular de la nave.I Utilizar el comando ode45(funcion,tspan,y0).

    I Visualizacion: estatica o dinamica.

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    Utilizacion de la rutina ode45 de MatlabEjercicios

    Pasos de la resolucion numerica

    I Definir una funcion para la trayectoria circular de la nave.I Utilizar el comando ode45(funcion,tspan,y0).I Visualizacion: estatica o dinamica.

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    Utilizacion de la rutina ode45 de MatlabEjercicios

    Trayectoria de la nave

    function c=circulo(t)global w teta fi %fi es el angulo del eje de rotacion

    %respecto de e3

    %teta es el angulo sobre el plano xy del corte del

    %plano de rotacion con el xyt=t; w=1; fi=pi/3; teta=pi/4;x=cos(w*t).*cos(teta)-sin(w*t).*cos(fi)*sin(teta);y=cos(w*t).*sin(teta)+sin(w*t).*cos(fi)*cos(teta);z=sin(w*t).*sin(fi); c=[x; y ;z];

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    Utilizacion de la rutina ode45 de MatlabEjercicios

    Metodo de Runge-Kutta-Fehlberg

    I Utiliza dos metodos R-K para adaptar el paso

    I Es eficiente en el numero de evaluaciones.

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    Utilizacion de la rutina ode45 de MatlabEjercicios

    Metodo de Runge-Kutta-Fehlberg

    I Utiliza dos metodos R-K para adaptar el pasoI Es eficiente en el numero de evaluaciones.

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    Utilizacion de la rutina ode45 de MatlabEjercicios

    Visualizacion: Ejemplo de animacion en 3D

    clear all...p=plot3(estacion(1,1),estacion(2,1),estacion(3,1),...+g,EraseMode,none,MarkerSize,5);hold on;

    % poner EraseMode none para que se vea la estelaq=plot3(y(1,1),y(2,1),y(3,1),*r,...EraseMode,xor,MarkerSize,10);legend(nave,estacion)y=y; axis([-1.5 1.5 -1.5 1.5 -1.5 1.5])for i=2:length(t);set(p,XData,estacion(1,i),YData,estacion(2,i),...ZData,estacion(3,i))set(q,XData,y(1,i),YData,y(2,i),ZData,y(3,i))

    drawnow, end, hold off

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    Utilizacion de la rutina ode45 de MatlabEjercicios

    Ejercicio 1: Modelo de competencia

    I Definir una funcion competicion.m.

    I animar la solucion para visualizar los puntos de equilibrio.

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    Utilizacion de la rutina ode45 de MatlabEjercicios

    Ejercicio 1: Modelo de competencia

    I Definir una funcion competicion.m.I animar la solucion para visualizar los puntos de equilibrio.

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    Utilizacion de la rutina ode45 de MatlabEjercicios

    Ejercicio 2: Modelo de Robertson

    I Utilizar el comando subplot para comparar la evolucion delas distintas especies.

    I Comparar el numero de nodos de cada solucion.I Comparar el tiempo de resolucion de ambos metodos

    utilizando los comandos tic,toc o etime

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    Utilizacion de la rutina ode45 de MatlabEjercicios

    Ejercicio 2: Modelo de Robertson

    I Utilizar el comando subplot para comparar la evolucion delas distintas especies.

    I Comparar el numero de nodos de cada solucion.

    I Comparar el tiempo de resolucion de ambos metodosutilizando los comandos tic,toc o etime

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    Utilizacion de la rutina ode45 de MatlabEjercicios

    Ejercicio 2: Modelo de Robertson

    I Utilizar el comando subplot para comparar la evolucion delas distintas especies.

    I Comparar el numero de nodos de cada solucion.I Comparar el tiempo de resolucion de ambos metodos

    utilizando los comandos tic,toc o etime

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    El plano de fasesEl pendulo no linealEjercicio 1Ejercicio 2

    Contenidos

    Ensamblaje de navesUtilizacion de la rutina ode45 de MatlabEjercicios

    Osciladores no linealesEl plano de fases

    Modelos de propagacion del SIDALa ecuacion logsticaModelo mas complejo: 4 tipos de poblacion

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    El plano de fasesEl pendulo no linealEjercicio 1Ejercicio 2

    Sistema autonomo de dos ODEs

    x (t) = f (x(t), y(t))y (t) = g(x(t), y(t))

    dy

    dx=

    g(x , y)

    f (x , y)

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    El plano de fasesEl pendulo no linealEjercicio 1Ejercicio 2

    Sistema autonomo de dos ODEs

    x (t) = f (x(t), y(t))y (t) = g(x(t), y(t))

    dy

    dx=

    g(x , y)

    f (x , y)

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    El plano de fasesEl pendulo no linealEjercicio 1Ejercicio 2

    Sistema autonomo de dos ODEs

    x (t) = f (x(t), y(t))y (t) = g(x(t), y(t))

    dy

    dx=

    g(x , y)

    f (x , y)

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    El plano de fasesEl pendulo no linealEjercicio 1Ejercicio 2

    Ecuacion de segundo orden

    y = f (y , y ) y2 = y (t) y1 = y(t)

    y 1 = y2y 2 = f (y1, y2)

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    El plano de fasesEl pendulo no linealEjercicio 1Ejercicio 2

    Ecuacion de segundo orden

    y = f (y , y ) y2 = y (t) y1 = y(t)

    y 1 = y2y 2 = f (y1, y2)

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    El plano de fasesEl pendulo no linealEjercicio 1Ejercicio 2

    Ecuacion de pendulo

    y + sen(y) = 0 y 1 = y2, y 2 = sen(y1)

    I Definir la funcion del segundo miembro pend.mI Definir el intervalo temporal para las soluciones y fijar los

    datos iniciales.

    I Programa pendulo.m (script).

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    El plano de fasesEl pendulo no linealEjercicio 1Ejercicio 2

    Ecuacion de pendulo

    y + sen(y) = 0 y 1 = y2, y 2 = sen(y1)

    I Definir la funcion del segundo miembro pend.m

    I Definir el intervalo temporal para las soluciones y fijar losdatos iniciales.

    I Programa pendulo.m (script).

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    El plano de fasesEl pendulo no linealEjercicio 1Ejercicio 2

    Ecuacion de pendulo

    y + sen(y) = 0 y 1 = y2, y 2 = sen(y1)

    I Definir la funcion del segundo miembro pend.mI Definir el intervalo temporal para las soluciones y fijar los

    datos iniciales.

    I Programa pendulo.m (script).

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    El plano de fasesEl pendulo no linealEjercicio 1Ejercicio 2

    Ecuacion de pendulo

    y + sen(y) = 0 y 1 = y2, y 2 = sen(y1)

    I Definir la funcion del segundo miembro pend.mI Definir el intervalo temporal para las soluciones y fijar los

    datos iniciales.

    I Programa pendulo.m (script).

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    El plano de fasesEl pendulo no linealEjercicio 1Ejercicio 2

    Efectos de friccion

    y + y + sen(y) = 0 y 1 = y2, y 2 = sen(y1) y2

    I Definir la funcion del segundo miembro pendf.mI Definir el intervalo temporal para las soluciones y fijar los

    datos iniciales.

    I Programa pendulof.m (script).

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    El plano de fasesEl pendulo no linealEjercicio 1Ejercicio 2

    Efectos de friccion

    y + y + sen(y) = 0 y 1 = y2, y 2 = sen(y1) y2

    I Definir la funcion del segundo miembro pendf.m

    I Definir el intervalo temporal para las soluciones y fijar losdatos iniciales.

    I Programa pendulof.m (script).

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    El plano de fasesEl pendulo no linealEjercicio 1Ejercicio 2

    Efectos de friccion

    y + y + sen(y) = 0 y 1 = y2, y 2 = sen(y1) y2

    I Definir la funcion del segundo miembro pendf.mI Definir el intervalo temporal para las soluciones y fijar los

    datos iniciales.

    I Programa pendulof.m (script).

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    El plano de fasesEl pendulo no linealEjercicio 1Ejercicio 2

    Efectos de friccion

    y + y + sen(y) = 0 y 1 = y2, y 2 = sen(y1) y2

    I Definir la funcion del segundo miembro pendf.mI Definir el intervalo temporal para las soluciones y fijar los

    datos iniciales.

    I Programa pendulof.m (script).

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    El plano de fasesEl pendulo no linealEjercicio 1Ejercicio 2

    Modelo depredador-presa

    I Utilizar los comandos meshgrid y contour para ver lascurvas de nivel de la solucion exacta.

    I Utilizar quiver para visualizar el plano de fases.I Valores de las constantes: a=0.2, b=0.005, c=0.15*b, d=0.3

    y realizar la grafica entre los lmites: [0 1000,0 100].

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    El plano de fasesEl pendulo no linealEjercicio 1Ejercicio 2

    Modelo depredador-presa

    I Utilizar los comandos meshgrid y contour para ver lascurvas de nivel de la solucion exacta.

    I Utilizar quiver para visualizar el plano de fases.

    I Valores de las constantes: a=0.2, b=0.005, c=0.15*b, d=0.3y realizar la grafica entre los lmites: [0 1000,0 100].

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    El plano de fasesEl pendulo no linealEjercicio 1Ejercicio 2

    Modelo depredador-presa

    I Utilizar los comandos meshgrid y contour para ver lascurvas de nivel de la solucion exacta.

    I Utilizar quiver para visualizar el plano de fases.I Valores de las constantes: a=0.2, b=0.005, c=0.15*b, d=0.3

    y realizar la grafica entre los lmites: [0 1000,0 100].

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    El plano de fasesEl pendulo no linealEjercicio 1Ejercicio 2

    Modelo depredador-presa con competicion

    I Utilizar los comandos meshgrid y quiver para visualizar lospuntos de equilibrio en el plano de fases.

    I Valores de c : 2,2.

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    El plano de fasesEl pendulo no linealEjercicio 1Ejercicio 2

    Modelo depredador-presa con competicion

    I Utilizar los comandos meshgrid y quiver para visualizar lospuntos de equilibrio en el plano de fases.

    I Valores de c : 2,2.

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    La ecuacion logsticaModelo mas complejo: 4 tipos de poblacion

    Contenidos

    Ensamblaje de navesUtilizacion de la rutina ode45 de MatlabEjercicios

    Osciladores no linealesEl plano de fases

    Modelos de propagacion del SIDALa ecuacion logsticaModelo mas complejo: 4 tipos de poblacion

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    La ecuacion logsticaModelo mas complejo: 4 tipos de poblacion

    Ejemplo

    Un modelo simplificado: La tasa de infectados es proporcional alnumero de interacciones entre la poblacion sana y la enferma:

    A(t) = c(P A(t))A(t)

    P es la poblacion total, A(t) es el numero de afectados por laenfermedad en el instante t.P A(t) representa el numero de individuos sanos dentro de lapoblacion en el instante t.Si P = 50000, A(0) = 100, se puede calcular c a partir de algundato emprico A(10) = 1000. c = 4,6416 106. Para infectar a lamitad de la poblacion haran falta aproximadamente 27 semanas.

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    La ecuacion logsticaModelo mas complejo: 4 tipos de poblacion

    Hipotesis

    I El flujo de nuevos individuos susceptibles de ser contagiadoses constante.

    I Los individuos susceptibles pueden convertirse en infecciosos omorir de muerte natural.

    I Los individuos infecciosos pueden morir de muerte natural,desarrollar el SIDA o convertirse en no infecciosos.

    I La gente con SIDA puede morir de SIDA o de muerte natural.

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    La ecuacion logsticaModelo mas complejo: 4 tipos de poblacion

    Hipotesis

    I El flujo de nuevos individuos susceptibles de ser contagiadoses constante.

    I Los individuos susceptibles pueden convertirse en infecciosos omorir de muerte natural.

    I Los individuos infecciosos pueden morir de muerte natural,desarrollar el SIDA o convertirse en no infecciosos.

    I La gente con SIDA puede morir de SIDA o de muerte natural.

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    La ecuacion logsticaModelo mas complejo: 4 tipos de poblacion

    Hipotesis

    I El flujo de nuevos individuos susceptibles de ser contagiadoses constante.

    I Los individuos susceptibles pueden convertirse en infecciosos omorir de muerte natural.

    I Los individuos infecciosos pueden morir de muerte natural,desarrollar el SIDA o convertirse en no infecciosos.

    I La gente con SIDA puede morir de SIDA o de muerte natural.

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    La ecuacion logsticaModelo mas complejo: 4 tipos de poblacion

    Hipotesis

    I El flujo de nuevos individuos susceptibles de ser contagiadoses constante.

    I Los individuos susceptibles pueden convertirse en infecciosos omorir de muerte natural.

    I Los individuos infecciosos pueden morir de muerte natural,desarrollar el SIDA o convertirse en no infecciosos.

    I La gente con SIDA puede morir de SIDA o de muerte natural.

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    La ecuacion logsticaModelo mas complejo: 4 tipos de poblacion

    Tipos de poblacion

    I X representa a los individuos susceptibles de desarrollar elSIDA.

    I Y representa a los individuos infecciosos, capaces de contagiarel HIV.

    I Z representa al numero de individuos seropositivos noinfecciosos.

    I A representa a los individuos que han desarrollado el SIDA.

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    La ecuacion logsticaModelo mas complejo: 4 tipos de poblacion

    Tipos de poblacion

    I X representa a los individuos susceptibles de desarrollar elSIDA.

    I Y representa a los individuos infecciosos, capaces de contagiarel HIV.

    I Z representa al numero de individuos seropositivos noinfecciosos.

    I A representa a los individuos que han desarrollado el SIDA.

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    La ecuacion logsticaModelo mas complejo: 4 tipos de poblacion

    Tipos de poblacion

    I X representa a los individuos susceptibles de desarrollar elSIDA.

    I Y representa a los individuos infecciosos, capaces de contagiarel HIV.

    I Z representa al numero de individuos seropositivos noinfecciosos.

    I A representa a los individuos que han desarrollado el SIDA.

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    La ecuacion logsticaModelo mas complejo: 4 tipos de poblacion

    Tipos de poblacion

    I X representa a los individuos susceptibles de desarrollar elSIDA.

    I Y representa a los individuos infecciosos, capaces de contagiarel HIV.

    I Z representa al numero de individuos seropositivos noinfecciosos.

    I A representa a los individuos que han desarrollado el SIDA.

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    La ecuacion logsticaModelo mas complejo: 4 tipos de poblacion

    Parametros

    I tasa de reclutamiento de individuos susceptibles.

    I tasa de muerte natural.I probabilidad de infectarse a partir de una pareja aleatoria.I c numero de parejas que tiene un individuo por unidad de

    tiempo (ano).

    I d tasa de muerte por SIDA.I tasa de seropositivos infecciosos que mutan a seropositivos

    no-infecciosos.

    I p proporcion de individuos que contraen el sida entre losinfecciosos.

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    La ecuacion logsticaModelo mas complejo: 4 tipos de poblacion

    Parametros

    I tasa de reclutamiento de individuos susceptibles.I tasa de muerte natural.

    I probabilidad de infectarse a partir de una pareja aleatoria.I c numero de parejas que tiene un individuo por unidad de

    tiempo (ano).

    I d tasa de muerte por SIDA.I tasa de seropositivos infecciosos que mutan a seropositivos

    no-infecciosos.

    I p proporcion de individuos que contraen el sida entre losinfecciosos.

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    La ecuacion logsticaModelo mas complejo: 4 tipos de poblacion

    Parametros

    I tasa de reclutamiento de individuos susceptibles.I tasa de muerte natural.I probabilidad de infectarse a partir de una pareja aleatoria.

    I c numero de parejas que tiene un individuo por unidad detiempo (ano).

    I d tasa de muerte por SIDA.I tasa de seropositivos infecciosos que mutan a seropositivos

    no-infecciosos.

    I p proporcion de individuos que contraen el sida entre losinfecciosos.

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    La ecuacion logsticaModelo mas complejo: 4 tipos de poblacion

    Parametros

    I tasa de reclutamiento de individuos susceptibles.I tasa de muerte natural.I probabilidad de infectarse a partir de una pareja aleatoria.I c numero de parejas que tiene un individuo por unidad de

    tiempo (ano).

    I d tasa de muerte por SIDA.I tasa de seropositivos infecciosos que mutan a seropositivos

    no-infecciosos.

    I p proporcion de individuos que contraen el sida entre losinfecciosos.

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    La ecuacion logsticaModelo mas complejo: 4 tipos de poblacion

    Parametros

    I tasa de reclutamiento de individuos susceptibles.I tasa de muerte natural.I probabilidad de infectarse a partir de una pareja aleatoria.I c numero de parejas que tiene un individuo por unidad de

    tiempo (ano).

    I d tasa de muerte por SIDA.

    I tasa de seropositivos infecciosos que mutan a seropositivosno-infecciosos.

    I p proporcion de individuos que contraen el sida entre losinfecciosos.

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    La ecuacion logsticaModelo mas complejo: 4 tipos de poblacion

    Parametros

    I tasa de reclutamiento de individuos susceptibles.I tasa de muerte natural.I probabilidad de infectarse a partir de una pareja aleatoria.I c numero de parejas que tiene un individuo por unidad de

    tiempo (ano).

    I d tasa de muerte por SIDA.I tasa de seropositivos infecciosos que mutan a seropositivos

    no-infecciosos.

    I p proporcion de individuos que contraen el sida entre losinfecciosos.

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    La ecuacion logsticaModelo mas complejo: 4 tipos de poblacion

    Parametros

    I tasa de reclutamiento de individuos susceptibles.I tasa de muerte natural.I probabilidad de infectarse a partir de una pareja aleatoria.I c numero de parejas que tiene un individuo por unidad de

    tiempo (ano).

    I d tasa de muerte por SIDA.I tasa de seropositivos infecciosos que mutan a seropositivos

    no-infecciosos.

    I p proporcion de individuos que contraen el sida entre losinfecciosos.

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

  • Ensamblaje de navesOsciladores no lineales

    Modelos de propagacion del SIDA

    La ecuacion logsticaModelo mas complejo: 4 tipos de poblacion

    X = X cX = A+ YN

    Y = cX (+ + p)YA = pY (d + )AZ = Y Z

    N(t) = X (t) + Y (t) + Z (t) + A(t)

    Valores de las constantes:

    X (0) = 90000, Y (0) = 10000, A(0) = 0, Z (0) = 0

    = 13333,3, d = 1,33, = 0,237, = 1/32, p = 0,3

    Metodos Numericos Avanzados Captulo 1: Ecuaciones diferenciales ordinarias

    Ensamblaje de navesUtilizacin de la rutina ode45 de MatlabEjercicios

    Osciladores no linealesEl plano de fasesEl pndulo no linealEjercicio 1Ejercicio 2

    Modelos de propagacin del SIDALa ecuacin logsticaModelo ms complejo: 4 tipos de poblacin