slides psbook2006 revised july2007

Upload: bubo28

Post on 03-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 Slides PSBook2006 Revised July2007

    1/243

    Copyright Ned Mohan 2006 1

    Ned MohanOscar A. Schott Professor of Power Electronics and SystemsDepartment of Electrical and Computer EngineeringUniversity of MinnesotaMinneapolis, MN 55455USA

    First Course on

    POWER SYSTEMS

  • 7/28/2019 Slides PSBook2006 Revised July2007

    2/243

    Copyright Ned Mohan 2006 2

    Bus-1 Bus-3

    Bus-2

    1m P 1e P

    2m P

    2e P

    P jQ+

    200 km

    150 km150 km

    A 345-kV Example System

  • 7/28/2019 Slides PSBook2006 Revised July2007

    3/243

    Copyright Ned Mohan 2006 3

    TOPICS IN POWER SYSTEMS

    Week Book Chapters Laboratory1 Chapter 1: Overview

    Chapter 2: Fundamentals

    Lab 1: Visit to a local substation; otherwise avirtual substation

    2 Chapter 3: Energy Sources Lab 2: Introduction to PSCAD/EMTDC ; 3- phase circuits, vars, power-factor correction

    3 Chapter 4: Transmission Lines Lab 3: Transmission Lines using PSCAD-

    EMTDC 4 Chapter 5: Power Flow Lab 4: Power Flow using MATLAB and

    PowerWorld

    5 Chapter 6: Transformers Lab 5: Including Transformers in Power Flowusing PowerWorld and MATLAB

    6 Chapter 7: HVDC, FACTS Lab 6: Power Converters and HVDC using PSCAD-EMTDC, HVDC in PowerWorld

    7 Chapter 8: Distribution Systems Lab 7: Power Quality using PSCAD-EMTDC

    8 Chapter 9: SynchronousGenerators

    Lab 8: Synchronous Generators and AVR using PSCAD-EMTDC .

    9 Chapter 10: Voltage Stability Lab 9: Voltage Regulation using PowerWorld

    10 Chapter 11: Transient Stability Lab 10: Transient Stability using MATLAB

    11 Chapter 12: InterconnectedSystems, Economic Dispatch

    Lab 11: AGC using Simulink , and EconomicDispatch using PowerWorld

    12 Chapter 13: Short-CircuitFaults, Relays, Circuit Breakers

    Lab 12: Transmission Line Faults using PowerWorld and MATLAB

    13 Chapter 14: Transient Over-Voltages, Surge Arrestors,Insulation Coordination

    Lab 13: Over-voltages and Surge Arrestorsusing PSCAD-EMTDC

  • 7/28/2019 Slides PSBook2006 Revised July2007

    4/243

    Copyright Ned Mohan 2006 4

    Chapter 1

    POWER SYSTEMS: A CHANGINGLANDSCAPE

  • 7/28/2019 Slides PSBook2006 Revised July2007

    5/243

    Copyright Ned Mohan 2006 5

    Fig. 1-1 Interconnected North American Power Grid [2].

    NATURE OF POWER SYSTEMS

  • 7/28/2019 Slides PSBook2006 Revised July2007

    6/243

    Copyright Ned Mohan 2006 6

    Fig. 1-2 NERC Interconnections [3]. Source: NERC.

    Control Areas

  • 7/28/2019 Slides PSBook2006 Revised July2007

    7/243

    Copyright Ned Mohan 2006 7

    Fig. 1-3 One-line diagram as an example.

    13.8 kVTransmissionline

    Generator

    Load

    Feeder

    Step upTransformer

    One-line Diagram

  • 7/28/2019 Slides PSBook2006 Revised July2007

    8/243

    Copyright Ned Mohan 2006 8

    CHANGING LANDSCAPE OF POWER SYSTEMS AND UTILITYDEREGULATION

    Fig. 1-4 Changing landscape [4]. Source: ABB.( )a ( )b( )a ( )b

  • 7/28/2019 Slides PSBook2006 Revised July2007

    9/243

    Copyright Ned Mohan 2006 9

    CHAPTER 2

    REVIEW OF BASIC

    ELECTRIC CIRCUITS ANDELECTROMAGNETICCONCEPTS

  • 7/28/2019 Slides PSBook2006 Revised July2007

    10/243

    Copyright Ned Mohan 2006 10

    Fig. 2-1 Convention for voltages and currents.

    i

    av

    +

    bv

    baabv

    +

    + i

    av

    +

    bv

    baabv

    +

    +

    Symbols andConventions

  • 7/28/2019 Slides PSBook2006 Revised July2007

    11/243

    Copyright Ned Mohan 2006 11

    Fig. 2-2 Phasor diagram.

    Imaginary

    Real

    I I =

    V V 0=

    positive

    angles

    Imagin ary

    Real

    I I =

    V V 0=

    positive

    angles

    Phasors

  • 7/28/2019 Slides PSBook2006 Revised July2007

    12/243

    Copyright Ned Mohan 2006 12

    Fig. 2-3 A circuit (a) in time-domain and (b) in phasor-domain; (c) impedance triangle.

    Im

    Z

    c jX

    R

    L jX

    Re0

    i(t )

    L

    R

    C

    +

    v( t )

    2V cos( t ) =V V 0=

    I

    L j L j X =

    R

    C 1

    j j X C

    =

    +

    ( )a ( )b ( )c

    Im

    Z

    c jX

    R

    L jX

    Re0

    Im

    Z

    c jX

    R

    L jX

    Re0

    i(t )

    L

    R

    C

    +

    v( t )

    2V cos( t ) =V V 0=

    I

    L j L j X =

    R

    C 1

    j j X C

    =

    +

    ( )a ( )b ( )c

    i(t )

    L

    R

    C

    +

    v( t )

    2V cos( t ) =

    i(t )

    L

    R

    C

    +

    v( t )

    2V cos( t ) =V V 0=

    I

    L j L j X =

    R

    C 1

    j j X C

    =

    +

    V V 0=

    I

    L j L j X =

    R

    C 1

    j j X C

    =

    +

    ( )a ( )b ( )c

    Phasor Analysis

  • 7/28/2019 Slides PSBook2006 Revised July2007

    13/243

    Copyright Ned Mohan 2006 13

    Fig. 2-4 Impedance network of Example 2-1.

    5 j

    0.1 j

    2 5 j

    0.1 j

    2

    Example of ImpedanceCalculation

  • 7/28/2019 Slides PSBook2006 Revised July2007

    14/243

    Copyright Ned Mohan 2006 14

    Fig. 2-5 Circuit of Example 2-2.

    0.3 0.5 j 0.2 j

    15 j 7.0

    +

    1V

    1 I

    m I 2 I

    Example of ImpedanceCalculation

  • 7/28/2019 Slides PSBook2006 Revised July2007

    15/243

    Copyright Ned Mohan 2006 15

    Figure 2-6 A generic circuit divided into two sub-circuits.

    ( ) ( ) ( ) p t v t i t =

    +

    Subcircuit 1 Subcircuit 2( )v t

    Power Flow

  • 7/28/2019 Slides PSBook2006 Revised July2007

    16/243

    Copyright Ned Mohan 2006 16

    Figure 2-7 Instantaneous power with sinusoidal currents and voltages.

    ( )i t ( )v t

    t

    ( ) p t averagepower

    0

    ( )i t

    ( )v t

    /

    t

    ( ) p t averagepower

    0

    ( )a ( )b( )i t ( )v t

    t

    ( ) p t averagepower

    0

    ( )i t

    ( )v t

    /

    t

    ( ) p t averagepower

    0

    ( )a ( )b

    Real and ReactivePower

  • 7/28/2019 Slides PSBook2006 Revised July2007

    17/243

    Copyright Ned Mohan 2006 17

    Fig. 2-8 (a) Circuit in phasor-domain; (b) phasor diagram; (c) power triangle.

    V

    I

    S P jQ= +

    +

    Subcircuit 1 Subcircuit 2

    vV V =

    i I I =

    Im

    Re

    Q

    P

    S Im

    Re

    ( a )

    ( b ) ( c )

    V

    I

    S P jQ= +

    +

    Subcircuit 1 Subcircuit 2

    vV V =

    i I I =

    Im

    Re

    Q

    P

    S Im

    Re

    ( a )

    ( b ) ( c )

    P, Q and VA by Phasors

  • 7/28/2019 Slides PSBook2006 Revised July2007

    18/243

    Copyright Ned Mohan 2006 18

    Fig. 2-9 Power factor correction in Example 2-5.

    +

    1V

    L P P =

    C jQ

    L L P jQ+13.963 j

    Example of Power Factor Correction

  • 7/28/2019 Slides PSBook2006 Revised July2007

    19/243

    Copyright Ned Mohan 2006 19

    Fig. 2-10 One-line diagram of a three-phase transmission and distribution system.

    Feeder

    Step upTransformer

    Generator

    Transmissionline

    13.8 kV

    Load

    One-line Diagram

  • 7/28/2019 Slides PSBook2006 Revised July2007

    20/243

    Copyright Ned Mohan 2006 20

    Fig. 2-11 Three-phase voltages in time and phasor domain.

    ( )bnv t

    t 0

    23

    ( )cnv t ( )anv t

    23

    120

    a b c

    positivesequence

    bnV

    cnV

    anV 120

    120

    ( )a

    ( )b

    Three-Phase Voltages

  • 7/28/2019 Slides PSBook2006 Revised July2007

    21/243

    Copyright Ned Mohan 2006 21

    Fig. 2-12 Balanced wye-connected, three-phase circuit.

    a I

    bnV cnV +

    c I

    L Z

    b I c b

    a

    n N

    anV +

    +

    a I

    bnV cnV

    +

    c I

    L Z

    b I c b

    a

    n N

    anV

    +

    +

    n I

    ( a ) (b)

    a I

    bnV cnV +

    c I

    L Z

    b I c b

    a

    n N

    anV +

    +

    a I

    bnV cnV +

    c I

    L Z

    b I c b

    a

    n N

    anV +

    +

    a I

    bnV cnV

    +

    c I

    L Z

    b I c b

    a

    n N

    anV

    +

    +

    n I

    ( a ) (b)

    Balanced Three-PhaseCircuit Analysis

  • 7/28/2019 Slides PSBook2006 Revised July2007

    22/243

  • 7/28/2019 Slides PSBook2006 Revised July2007

    23/243

    Copyright Ned Mohan 2006 23

    Fig. 2-14 Balanced three-phase network with mutual couplings.

    a AaA Z

    (Hypothetical)

    self Z

    self Z

    self Z

    mutual Z

    mutual Z

    mutual Z

    a

    b

    c

    A

    B

    C

    a I

    b I

    c I

    ( )a ( )b

    Balanced MutualCoupling

  • 7/28/2019 Slides PSBook2006 Revised July2007

    24/243

    Copyright Ned Mohan 2006 24

    Fig. 2-15 Line-to-line voltages in a three-phase circuit.

    o30

    anV

    bV abV

    cnV

    caV

    bcV

    bnV

    Line-Line Voltages

  • 7/28/2019 Slides PSBook2006 Revised July2007

    25/243

    Copyright Ned Mohan 2006 25

    Fig. 2-16 Delta-wye transformation.

    a I

    Z

    cb

    a

    Z

    a I

    bc I ca I

    ab I

    Z Z c b

    a

    ( b )( a )

    Z

    Z

    a I

    Z

    cb

    a

    Z

    a I

    bc I ca I

    ab I

    Z Z c b

    a

    ( b )( a )

    Z

    Z

    Wye-DeltaTransformation

  • 7/28/2019 Slides PSBook2006 Revised July2007

    26/243

    Copyright Ned Mohan 2006 26

    Fig. 2-17 Power transfer between two ac systems.

    sV RV

    +

    +

    I

    jX

    RV

    sV

    I

    ( )a

    ( )b

    jXI

    Power Flow in ACSystems

  • 7/28/2019 Slides PSBook2006 Revised July2007

    27/243

    Copyright Ned Mohan 2006 27

    Fig. 2-18 Power as a function of .

    max/ P P

    0

    0.5

    090 0180

    1.0

    Power-Angle Diagram

  • 7/28/2019 Slides PSBook2006 Revised July2007

    28/243

    Copyright Ned Mohan 2006 28

    Per Unit Quantities, , basebase base base

    base

    V R X Z

    I = (in ) (2-48)

    , , basebase base basebase

    I G B Y

    V = (in ) (2-49)

    ( ), ,base base base basebase P Q VA V I = (in Watt, VAR, or VA) (2-50)

    In terms of these base quantities, the per-unit quantities can be specified as

    actual valuePer-UnitValue =

    base value(2-51)

  • 7/28/2019 Slides PSBook2006 Revised July2007

    29/243

    Copyright Ned Mohan 2006 29

    Fig. 2-19 Energy Efficiency /o in P P = .

    in P o P

    loss P

    Power SystemApparatus

    Energy Efficiency of Apparatus

  • 7/28/2019 Slides PSBook2006 Revised July2007

    30/243

    Copyright Ned Mohan 2006 30

    Fig. 2-20 Amperes Law.

    3i

    2i

    1i H

    dl

    (a) (b) (c)

    3i

    2i

    1i H

    dl

    3i

    2i

    1i H

    dl

    (a) (b) (c)

    Electro-MagneticConcepts: Amperes Law

  • 7/28/2019 Slides PSBook2006 Revised July2007

    31/243

  • 7/28/2019 Slides PSBook2006 Revised July2007

    32/243

    Copyright Ned Mohan 2006 32

    Fig. 2-22 B-H characteristic of ferromagnetic materials.

    m B

    m H

    sat B

    o

    o

    m

    m B

    m H

    (a) (b)

    m B

    m H

    m B

    m H

    sat B

    o

    o

    m

    m B

    m H

    sat B

    o

    o

    m

    m B

    m H

    (a) (b)

    B-H Curves inFerromagnetic Materials

  • 7/28/2019 Slides PSBook2006 Revised July2007

    33/243

    Copyright Ned Mohan 2006 33

    Fig. 2-23 Toroid with flux m .

    m A

    m

    m A

    m

    Flux and Flux-Density

  • 7/28/2019 Slides PSBook2006 Revised July2007

    34/243

    Copyright Ned Mohan 2006 34

    Inductance

    Fig. 2-24 Coil inductance.

    2

    mm

    m m

    N L

    A

    =A

    m ( ) N

    m ( )m A( )m

    m Bm H m

    N A

    i

    2

    mm

    m m

    N L

    A

    =A

    m ( ) N

    m ( )m A( )m

    m Bm H m

    N A

    i

    (a) (b)

    m

    m m A

    i

    N

    m

    m m A

    i

    N

  • 7/28/2019 Slides PSBook2006 Revised July2007

    35/243

    Copyright Ned Mohan 2006 35

    Fig. 2-25 Rectangular toroid.

    h

    w r

    h

    w r

    Example of a Toroid

  • 7/28/2019 Slides PSBook2006 Revised July2007

    36/243

  • 7/28/2019 Slides PSBook2006 Revised July2007

    37/243

    Copyright Ned Mohan 2006 37

    Fig. 2-27 Example 2-11.

    ( )t ( )e t

    t 0

    ( )t ( )e t

    t 0

    Plot of time-varying Fluxand Voltage

  • 7/28/2019 Slides PSBook2006 Revised July2007

    38/243

    Copyright Ned Mohan 2006 38

    Fig. 2-28 Including leakage flux.

    (a) (b)

    i

    +

    e

    i

    +

    e

    i

    +

    e

    m

    l

    i

    +

    e

    m

    l

    Leakage Flux

  • 7/28/2019 Slides PSBook2006 Revised July2007

    39/243

    Copyright Ned Mohan 2006 39

    Fig. 2-29 Analysis including the leakage flux.

    ( )v t +

    R

    m

    l L( )i t

    ( )me t ( )e t +

    +

    ( )v t +

    R

    m

    l L( )i t

    ( )me t ( )e t +

    +

    l di

    Ldt

    ( )me t ( )e t

    +

    +

    + ( )i t

    m L

    l L

    l di

    Ldt

    ( )me t ( )e t

    +

    +

    + ( )i t

    m L

    l L

    (a) (b)

    Representation of LeakageFlux by LeakageInductance

  • 7/28/2019 Slides PSBook2006 Revised July2007

    40/243

    Copyright Ned Mohan 2006 40

    CHAPTER 3

    ELECTRIC ENERGY ANDTHE ENVIRONMENT

  • 7/28/2019 Slides PSBook2006 Revised July2007

    41/243

  • 7/28/2019 Slides PSBook2006 Revised July2007

    42/243

    Copyright Ned Mohan 2006 42

    Fig. 3-2 Electric power generation by various fuel types in the U.S. in 2005 [1].

    Power Generation byVarious Fuel Types in theU.S.

  • 7/28/2019 Slides PSBook2006 Revised July2007

    43/243

    Copyright Ned Mohan 2006 43

    Fig. 3-3 Hydro power (Source: www.bpa.gov ).

    H Generator

    Penstock

    Turbine

    Water

    Hydro Power Generation

  • 7/28/2019 Slides PSBook2006 Revised July2007

    44/243

    Copyright Ned Mohan 2006 44

    Fig. 3-4 Rankine thermodynamic cycle in coal-fired power plants.

    Steam at High pressure

    Pump

    Heat in

    Heat out

    TurbineBoiler

    Condenser

    Gen

    Rankine ThermodynamicCycle in Coal Plants

    Visit the following website for Power Plant Animations:http://www.cf.missouri.edu/energy/?fun=1&flash=ppmap

  • 7/28/2019 Slides PSBook2006 Revised July2007

    45/243

    Copyright Ned Mohan 2006 45

    Fig. 3-5 Brayton thermodynamic cycle in natural-gas power plants.

    Air in

    Compressor Turbine

    Exhaust

    Fuel in

    CombustionChamber

    Brayton Cycle in GasTurbines

  • 7/28/2019 Slides PSBook2006 Revised July2007

    46/243

    Copyright Ned Mohan 2006 46

    Fig. 3-6 (a) BWR and (b) PWR reactors [5].( )a ( )b

    Nuclear Power PlantTypes

    Visit the following websites for Nuclear Power Plant Animations:PWR: http://www.nrc.gov/reading-rm/basic-ref/students/animated-pwr.htmlBWR: http://www.nrc.gov/reading-rm/basic-ref/students/animated-bwr.html

  • 7/28/2019 Slides PSBook2006 Revised July2007

    47/243

    Copyright Ned Mohan 2006 47

    Fig. 3-7 Wind-resource map of the United States [6].

    Wind Resources in theU.S.

  • 7/28/2019 Slides PSBook2006 Revised July2007

    48/243

    Copyright Ned Mohan 2006 48

    Fig. 3-8 pc as a function of [7]; these would vary based on the turbine design.

    Coefficient of Performance

    Wind Generation using an

  • 7/28/2019 Slides PSBook2006 Revised July2007

    49/243

    Copyright Ned Mohan 2006 49

    Fig. 3-9 Induction generator directly connected to the grid [8].

    Utility

    InductionGenerator

    WindTurbine

    Wind Generation using an

    Induction Generator Connected Directly to the AC Grid

  • 7/28/2019 Slides PSBook2006 Revised July2007

    50/243

  • 7/28/2019 Slides PSBook2006 Revised July2007

    51/243

    Copyright Ned Mohan 2006 51

    Fig. 3-11 Power Electronics connected generator [10].

    Gen

    Utility

    Power Electronics Interface

    1Conv 2Conv

    Wind Generation using an ACGenerator Connected through Power Electronics

  • 7/28/2019 Slides PSBook2006 Revised July2007

    52/243

    Copyright Ned Mohan 2006 52

    Fig. 3-12 PV cell characteristics [11].

    Photovoltaics

  • 7/28/2019 Slides PSBook2006 Revised July2007

    53/243

    Copyright Ned Mohan 2006 53

    Fig. 3-13 Photovoltaic systems.

    IsolatedDC-DC

    Converter

    PWMConverter

    Max. Power- point Tracker

    Utility1

    IsolatedDC-DC

    Converter

    PWMConverter

    Max. Power- point Tracker

    Utility1

    Interfacing PV with ACGrid

  • 7/28/2019 Slides PSBook2006 Revised July2007

    54/243

    Copyright Ned Mohan 2006 54

    Fig. 3-14 Fuel cell v-i relationship and cell power [12].

    1.4 -

    1.2 -

    1 -

    0.8 -

    0.6 -

    0.4 -

    0.2 -

    0 - - 0

    - 200

    - 400

    - 600

    - 800

    - 1000

    - 1200

    |

    0|

    500|

    1000|

    1500|

    2000

    Maximum Theoretical Voltage

    Current Density ( iin mA/cm2 )

    ActivationLoss es

    O h m i c Lo s s e s

    MassTr anspor t

    Losse s

    OpenCircuitVoltage

    C e l

    l P o w e r

    ( P

    C i n m

    W )

    C e l

    l V o

    l t a g e

    ( V

    C i n

    V o

    l t s

    )

    - gE =2 F

    Cell Power P C = V C x i

    1.4 -

    1.2 -

    1 -

    0.8 -

    0.6 -

    0.4 -

    0.2 -

    0 -

    1.4 -

    1.2 -

    1 -

    0.8 -

    0.6 -

    0.4 -

    0.2 -

    0 - - 0

    - 200

    - 400

    - 600

    - 800

    - 1000

    - 1200

    - 0

    - 200

    - 400

    - 600

    - 800

    - 1000

    - 1200

    |

    0|

    500|

    1000|

    1500|

    2000|

    0|

    500|

    1000|

    1500|

    2000

    Maximum Theoretical Voltage

    Current Density ( iin mA/cm2 )

    ActivationLoss es

    O h m i c Lo s s e s

    MassTr anspor t

    Losse s

    OpenCircuitVoltage

    C e l

    l P o w e r

    ( P

    C i n m

    W )

    C e l

    l V o

    l t a g e

    ( V

    C i n

    V o

    l t s

    )

    - gE =2 F - gE =2 F

    Cell Power P C = V C x i

    Fuel Cells

  • 7/28/2019 Slides PSBook2006 Revised July2007

    55/243

    Copyright Ned Mohan 2006 55

    Fig. 3-15 Greenhouse effect [13].

    Greenhouse Effect

  • 7/28/2019 Slides PSBook2006 Revised July2007

    56/243

    Copyright Ned Mohan 2006 56

    Fig. 3-16 Resource mix at XcelEnergy [14].

    1

    12

    2

    3

    3445

    5

    6

    6

    1

    12

    2

    3

    3445

    5

    6

    6

    Resource mixXcelEnergy

  • 7/28/2019 Slides PSBook2006 Revised July2007

    57/243

    Copyright Ned Mohan 2006 57

    Fig. 3-17 Electric power industry fuel costs in the U.S. in 2005 [1].

    Fuel Costs in the U.S. in2005

  • 7/28/2019 Slides PSBook2006 Revised July2007

    58/243

    Copyright Ned Mohan 2006 58

    CHAPTER 4

    AC TRANSMISSION LINES

    AND UNDERGROUNDCABLES

  • 7/28/2019 Slides PSBook2006 Revised July2007

    59/243

    Copyright Ned Mohan 2006 59Fig. 4-1 500-kV transmission line (Source: University of Minnesota EMTP course).( )a ( )c

    ( )b

    ( )a ( )c

    ( )b

    Transmission Tower,Conductor and Bundling

  • 7/28/2019 Slides PSBook2006 Revised July2007

    60/243

    Copyright Ned Mohan 2006 60

    Fig. 4-2 Transposition of transmission lines.

    1 D2 D

    3 D

    1 cycle

    ( )a ( )b

    a

    b

    c

    Transposition

  • 7/28/2019 Slides PSBook2006 Revised July2007

    61/243

    Copyright Ned Mohan 2006 61

    Fig. 4-3 Distributed parameter representation on a per-phase basis.

    line

    neutral (zeroimpedance)

    line R L

    C

    Distributed Parameters

    Calculation of

  • 7/28/2019 Slides PSBook2006 Revised July2007

    62/243

    Copyright Ned Mohan 2006 62

    Fig. 4-4 (a) Cross-section of ACSR conductors, (b) skin-effect in a solid conductor.

    D

    T J

    towards center surface( )a ( )b

    Calculation of Transmission LineResistance: Skin Effect

    Calculation of

  • 7/28/2019 Slides PSBook2006 Revised July2007

    63/243

    Copyright Ned Mohan 2006 63

    Fig. 4-5 Flux linkage with conductor-a.

    ( )a ( )b ( )c

    Dr ai bi

    ci

    r ai x dx

    a b

    c

    a b

    c

    D

    D

    bidx

    xa

    b

    c

    Calculation of Transmission LineInductance

  • 7/28/2019 Slides PSBook2006 Revised July2007

    64/243

    Copyright Ned Mohan 2006 64

    Fig. 4-6 Electric field due to a charge.

    x

    q1 21 x

    2 x

    Electric Field Due toTransmission Line Voltage

    Calculation of Transmission Line

  • 7/28/2019 Slides PSBook2006 Revised July2007

    65/243

    Copyright Ned Mohan 2006 65

    Fig. 4-7 Shunt capacitances.

    aq bq

    cq

    a b

    c

    D

    aq bq

    cq

    a b

    c

    D a b

    c

    a b

    c

    ( )a ( )b

    C C

    C

    n

    hypotheticalneutral

    Calculation of Transmission LineCapacitance

    Typical Parameters for various

  • 7/28/2019 Slides PSBook2006 Revised July2007

    66/243

    Copyright Ned Mohan 2006 66

    Table 4-1

    Transmission Line Parameters with Bundled Conductors (except at 230 kV)at 60 Hz [2, 6]

    Nominal Voltage ( / ) R km ( / ) L km ( / )C km

    230 kV 0.055 0.489 3.373

    345 kV 0.037 0.376 4.518500 kV 0.029 0.326 5.220

    765 kV 0.013 0.339 4.988

    ypVoltage Transmission Lines

    Calculating Transmission

  • 7/28/2019 Slides PSBook2006 Revised July2007

    67/243

    Copyright Ned Mohan 2006 67

    Fig. 4-8 A 345-kV, single-conductor per phase, transmission system.

    Calculating TransmissionLine Parameters usingEMTDC

  • 7/28/2019 Slides PSBook2006 Revised July2007

    68/243

    Copyright Ned Mohan 2006 68

    Fig. 4-9 Distributed per-phase transmission line ( G not shown).

    +

    ( ) RV s

    +

    ( )S V s

    +

    ( ) xV s

    0 x

    ( ) R I s( )S I s R sL

    1 sC

    ( ) x I s

    Distributed-Parameter Representation

  • 7/28/2019 Slides PSBook2006 Revised July2007

    69/243

    Copyright Ned Mohan 2006 69

    Fig. 4-10 Per-phase transmission line terminated with a resistance equal to c Z .

    +

    S V

    S I j L

    1 j

    C

    c Z

    +

    0 R RV V =

    0 x

    S V RV

    ( )a ( )b

    R I

    Voltage Profile under SIL

  • 7/28/2019 Slides PSBook2006 Revised July2007

    70/243

  • 7/28/2019 Slides PSBook2006 Revised July2007

    71/243

    Copyright Ned Mohan 2006 71

    Table 4-3

    Loadability of Transmission Lines [6]

    Line Length (km) Limiting Factor Multiple of SIL

    0 - 80 Thermal > 3

    80 - 240 5% Voltage Drop 1.5 - 3240 - 480 Stability 1.0 1.5

    Loadability of Transmission Lines

  • 7/28/2019 Slides PSBook2006 Revised July2007

    72/243

    Copyright Ned Mohan 2006 72

    Fig. 4-11 Long line representation.

    +

    ( )S V s

    ( )S I s+

    ( ) RV s

    ( ) R I s series Z

    2 shunt Y

    2 shunt Y

    Long-LineRepresentation

    Transmission Line

  • 7/28/2019 Slides PSBook2006 Revised July2007

    73/243

    Copyright Ned Mohan 2006 73

    Fig. 4-12 Per-phase transmission line representation based on length.

    +

    S V

    S I

    +

    RV

    R I series Z

    2 shunt Y

    2 shunt Y

    +

    S V

    S I

    +

    RV

    R I line j L

    2

    line

    jC

    2line

    jC

    line R

    ( )a ( )b ( )c

    +

    S V

    S I

    +

    RV

    R I line j L line R

    Representations

  • 7/28/2019 Slides PSBook2006 Revised July2007

    74/243

    Copyright Ned Mohan 2006 74

    Fig. 4-13 Underground cable.

    Underground Cables

  • 7/28/2019 Slides PSBook2006 Revised July2007

    75/243

    Copyright Ned Mohan 2006 75

    CHAPTER 5

    POWER FLOW IN

    POWER SYSTEMNETWORKS

  • 7/28/2019 Slides PSBook2006 Revised July2007

    76/243

  • 7/28/2019 Slides PSBook2006 Revised July2007

    77/243

    Copyright Ned Mohan 2006 77

    Table 5-1 Per-Unit Values in the Example System

    Line Series Impedance Z in (pu) Total Susceptance B in (pu)

    1-2 12 (5.55 56.4) Z j= + = (0.0047 0.0474) j+ pu 675Total B = = (0.8034) pu

    1-3 13 (7.40 75.2) Z j= + = (0.0062 0.0632) j+ pu 900Total B = = (1.0712) pu

    2-3 23 (5.55 56.4) Z j= + = (0.0047 0.0474) j+ pu 675Total B = = (0.8034) pu

    Transmission Lines inExample Power System

  • 7/28/2019 Slides PSBook2006 Revised July2007

    78/243

    Copyright Ned Mohan 2006 78

    Fig. 5-2 Example system of Fig. 5-1 for assembling Y-bus matrix.

    Bus 1 Bus 3

    Bus 2

    1 I

    2 I

    3 I

    13 Z

    12 Z 23 Z 1V 3V

    2V

    Calculating Y-Bus in theExample Power System

  • 7/28/2019 Slides PSBook2006 Revised July2007

    79/243

  • 7/28/2019 Slides PSBook2006 Revised July2007

    80/243

    Copyright Ned Mohan 2006 80

    Fig. 5-4 Power-Flow results of Example 5-4.

    01 1 0V pu=

    02 1.05 -2.07V pu=

    03 0.978 -8.79V pu=

    ( )0.69 - 1.11 j pu

    ( )2.39 0.29 j pu+

    ( )2.68 1.48 j pu+

    ( )5.0 1.0 j pu+1 1 (3.08 - 0.82) P jQ j pu+ =

    2 2 ( 2.0 2.67) P jQ j pu+ = +

    Power Flow Results in theExample Power System

  • 7/28/2019 Slides PSBook2006 Revised July2007

    81/243

    Copyright Ned Mohan 2006 81

    CHAPTER 6

    TRANSFORMERS IN POWER SYSTEMS

  • 7/28/2019 Slides PSBook2006 Revised July2007

    82/243

    Copyright Ned Mohan 2006 82

    Fig. 6-1 Principle of transformers, beginning with just one coil.

    +

    1e1 N

    m +

    1e1 N

    m mi+

    1em L

    mi+

    1em L

    (a) (b)

    Transformer Principle:Generation of Flux

  • 7/28/2019 Slides PSBook2006 Revised July2007

    83/243

    Copyright Ned Mohan 2006 83

    Fig. 6-2 B-H characteristics of ferromagnetic materials.

    m B

    m H

    m B

    m H

    sat B

    o

    o

    m

    m B

    m H

    sat B

    o

    o

    m

    m B

    m H

    (a) (b)

    Core in Transformers

  • 7/28/2019 Slides PSBook2006 Revised July2007

    84/243

    Copyright Ned Mohan 2006 84

    Fig. 6-3 Transformer with the open-circuited second coil.

    +

    mi+

    1e m L

    IdealTransformer

    1 N 2 N

    2e

    +

    mi+

    1e m L

    IdealTransformer

    1 N 2 N

    2e

    +

    1e1 N

    m

    2e

    2 N

    +

    +

    1e1 N

    m

    2e

    2 N

    +

    (a) (b)

    Flux Coupling

    Transformer with Load

  • 7/28/2019 Slides PSBook2006 Revised July2007

    85/243

    Copyright Ned Mohan 2006 85

    Fig. 6-4 Transformer with load connected to the secondary winding.

    +

    1e1 N

    m

    2e

    2 N

    +

    ( )1i t

    ( )2i t

    +

    1e1 N

    m

    2e

    2 N

    +

    ( )1i t

    ( )2i t

    ( )2i t ( )1i t

    +

    mi+

    1e m L

    Ideal

    Transformer

    1 N 2 N

    2e

    ( )2i t ( )2i t ( )1i t

    +

    mi+

    1e m L

    Ideal

    Transformer

    1 N 2 N

    2e

    ( )2i t

    (a) (b)

    Connected to theSecondary

  • 7/28/2019 Slides PSBook2006 Revised July2007

    86/243

    Copyright Ned Mohan 2006 86

    Fig. 6-5 Transformer equivalent circuit including leakage impedances and core losses.

    '

    2 I 1 I

    +

    mi+

    1 E m jX

    Ideal Transformer

    1 N 2 N

    2 E

    2 I 1

    Rl1 jX 2 Rl2 jX

    2V

    +

    1V

    +

    Real Transformer

    he R

    '

    2 I 1 I

    +

    mi+

    1 E m jX

    Ideal Transformer

    1 N 2 N

    2 E

    2 I 1

    Rl1 jX 2 Rl2 jX

    2V

    +

    1V

    +

    Real Transformer

    he R

    Transformer Model

  • 7/28/2019 Slides PSBook2006 Revised July2007

    87/243

    Copyright Ned Mohan 2006 87

    Fig. 6-6 Eddy currents in the transformer core.

    m

    circulatingcurrents

    im

    circulatingcurrents

    i

    m

    circulatingcurrents

    m

    circulatingcurrents

    (a) (b)

    Eddy Current andHysteresis Losses

  • 7/28/2019 Slides PSBook2006 Revised July2007

    88/243

    Copyright Ned Mohan 2006 88

    Fig. 6-7 Simplified transformer model.

    +

    pV

    +

    sV

    p I s I p Z s Z

    1: n

    pn sn

    +

    sV

    Transformer SimplifiedModel

    Transferring Leakage

  • 7/28/2019 Slides PSBook2006 Revised July2007

    89/243

    Copyright Ned Mohan 2006 89Fig. 6-8 Transferring leakage impedances across the ideal transformer of the model.

    +

    pV +

    sV

    p I s I ps Z

    1: n

    pn sn

    +

    pV

    +

    sV

    p I s I sp Z 1: n

    pn sn

    ( )a

    ( )b

    Impedances from One Sideto Another

  • 7/28/2019 Slides PSBook2006 Revised July2007

    90/243

    Copyright Ned Mohan 2006 90

    Fig. 6-9 Transformer equivalent circuit in per unit (pu).

    +

    (pu) pV +

    (pu) sV

    (pu) I (pu) I (pu)tr Z

    Transformer EquivalentCircuit in Per Unit

    Connection of Transformer d

  • 7/28/2019 Slides PSBook2006 Revised July2007

    91/243

    Copyright Ned Mohan 2006 91

    Fig. 6-10 Winding connections in a three-phase system.( )a ( )b

    Windings

    Including Nominal Turns-R i T f i

  • 7/28/2019 Slides PSBook2006 Revised July2007

    92/243

    Copyright Ned Mohan 2006 92

    Fig. 6-11 Including nominal-voltage transformers in per-unit.

    345/500 kV 500/345 kV

    500 kV Bus 3Bus 1

    Ratio Transformer inPower Flow Studies

    A T f

  • 7/28/2019 Slides PSBook2006 Revised July2007

    93/243

    Copyright Ned Mohan 2006 93

    Fig. 6-12 Auto-transformer.

    +

    1V

    +

    2V

    1 I

    1n2n

    ( )a

    2 I

    +

    1V

    ( )1 2V V +

    1 I

    1n

    2n2 I

    ( )1 2 I I +

    +

    2

    V

    ( )b

    +

    Auto-Transformer

    Phase-Shift Due to Wye-D l T f

  • 7/28/2019 Slides PSBook2006 Revised July2007

    94/243

    Copyright Ned Mohan 2006 94

    Fig. 6-13 Phase-shift in -Y connected transformers.

    ( )c

    +

    AV

    +

    aV

    03012:

    3 jn e n

    ( )a

    a

    bc

    A

    B

    C ( )b

    aV AV

    1n

    2n

    Delta Transformers

    Phase-Shift Control byT f

  • 7/28/2019 Slides PSBook2006 Revised July2007

    95/243

    Copyright Ned Mohan 2006 95

    Fig. 6-14 Transformer for phase-angle control.

    a

    bc

    a

    b

    c

    ( )a ( )b

    aV

    bV cV

    abV

    bcV

    caV

    ( )c

    aV

    bV

    cV

    a bV

    b cV

    c aV

    aV

    a

    bc

    a

    b

    c

    a

    bc

    a

    b

    c

    ( )a ( )b

    aV

    bV cV

    abV

    bcV

    caV

    ( )c

    aV

    bV

    cV

    a bV

    b cV

    c aV

    aV

    Transformers

    Three-Winding Auto-T f

  • 7/28/2019 Slides PSBook2006 Revised July2007

    96/243

    Copyright Ned Mohan 2006 96

    Fig. 6-15 Three-winding auto-transformer.

    H

    L T H

    L

    T

    ( ) H Z

    ( ) L Z

    ( )T Z

    1n

    2n

    3n

    ( )a( )b

    a

    bc

    A

    B

    C

    a a

    a

    A

    C

    H

    L T H

    L

    T

    ( ) H Z

    ( ) L Z

    ( )T Z

    1n

    2n

    3n

    ( )a( )b

    a

    bc

    A

    B

    C

    a a

    a

    A

    C

    Transformers

    General Representation of A t d Ph Shift

  • 7/28/2019 Slides PSBook2006 Revised July2007

    97/243

    Copyright Ned Mohan 2006 97

    Fig. 6-16 General representation of an auto-transformer and a phase-shifter.

    +

    1V

    1: t

    1 I 2 I

    +

    2V

    +

    2V t

    1/Y Z =A A

    Auto- and Phase-ShiftTransformers

    PU Representation of Off-Nominal T rns Ratio

  • 7/28/2019 Slides PSBook2006 Revised July2007

    98/243

    Copyright Ned Mohan 2006 98

    Fig. 6-17 Transformer with an off-nominal turns-ratio or taps in per unit; t is real.

    +

    1V

    1/Y Z =A A

    1: t

    1 I 2 I

    +

    2V

    ( )a ( )b

    11 Y

    t

    A

    2

    1 1Y

    t t

    A

    /Y t A+

    1V

    +

    2V

    1 I 2 I

    11 Y

    t

    A

    2

    1 1Y

    t t

    A

    /Y t A+

    1V

    +

    2V

    1 I 2 I

    Nominal Turns-RatioTransformers

    Example of Off-Nominal Turns-Ratio

    Transformers

  • 7/28/2019 Slides PSBook2006 Revised July2007

    99/243

    Copyright Ned Mohan 2006 99

    Fig. 6-18 Transformer of Example 6-3.

    +

    1V

    0.1 j pu

    1: t

    1 I 2 I

    +

    2V

    ( )a ( )b

    1 0.909Y j pu=

    2 0.826Y j pu=

    0.11 s Z j pu=

    +

    1V

    +

    2V

    1 I 2 I

    Transformers

    CHAPTER 7

  • 7/28/2019 Slides PSBook2006 Revised July2007

    100/243

    Copyright Ned Mohan 2006 100

    HIGH VOLTAGE DC (HVDC)

    TRANSMISSION SYSTEMS

    Symbols and Capabilitiesof Power SemiconductorD i

  • 7/28/2019 Slides PSBook2006 Revised July2007

    101/243

    Copyright Ned Mohan 2006 101

    Fig. 7-1 Power semiconductor devices.

    Thyristor IGBT MOSFETIGCT(a)

    101 102 103 104

    102

    104

    106

    108

    T h y r i s

    t o r

    IGBT

    MOSFET

    P o w e r

    ( V A )

    Switching Frequency (Hz)

    IGCT

    (b)

    Thyristor IGBT MOSFETIGCT(a)

    Thyristor IGBT MOSFETIGCT(a)

    101 102 103 104

    102

    104

    106

    108

    T h y r i s

    t o r

    IGBT

    MOSFET

    P o w e r

    ( V A )

    Switching Frequency (Hz)

    IGCT

    (b)

    101 102 103 104

    102

    104

    106

    108

    T h y r i s

    t o r

    IGBT

    MOSFET

    P o w e r

    ( V A )

    Switching Frequency (Hz)

    IGCT

    101 102 103 104

    102

    104

    106

    108

    T h y r i s

    t o r

    IGBT

    MOSFET

    P o w e r

    ( V A )

    Switching Frequency (Hz)

    IGCT

    (b)

    of Power Semiconductor Devices

    Power Semiconductor Devices and Applications

  • 7/28/2019 Slides PSBook2006 Revised July2007

    102/243

    Copyright Ned Mohan 2006 102

    Figure 7-2 Power semiconductor devices: (a) ratings (source: Siemens), (b) variousapplications (source: ABB).

    ( )a

    Device blocking voltage [V]

    D e v

    i c e c u r r e n

    t [ A ]

    10 410 310 210 1

    10 4

    10 3

    10 2

    10 1

    10 0

    HVDCTraction

    Motor Drive

    Power Supply

    Auto-motive

    Lighting

    FACTS

    Device blocking voltage [V]

    D e v

    i c e c u r r e n

    t [ A ]

    10 410 310 210 1

    10 4

    10 3

    10 2

    10 1

    10 0

    Device blocking voltage [V]

    D e v

    i c e c u r r e n

    t [ A ]

    10 410 310 210 1

    10 4

    10 3

    10 2

    10 1

    10 0

    HVDCTraction

    Motor Drive

    Power Supply

    Auto-motive

    Lighting

    FACTS

    ( )b( )a

    Device blocking voltage [V]

    D e v

    i c e c u r r e n

    t [ A ]

    10 410 310 210 1

    10 4

    10 3

    10 2

    10 1

    10 0

    HVDCTraction

    Motor Drive

    Power Supply

    Auto-motive

    Lighting

    FACTS

    Device blocking voltage [V]

    D e v

    i c e c u r r e n

    t [ A ]

    10 410 310 210 1

    10 4

    10 3

    10 2

    10 1

    10 0

    Device blocking voltage [V]

    D e v

    i c e c u r r e n

    t [ A ]

    10 410 310 210 1

    10 4

    10 3

    10 2

    10 1

    10 0

    HVDCTraction

    Motor Drive

    Power Supply

    Auto-motive

    Lighting

    FACTS

    ( )b

    Devices and Applications

    HVDC System

  • 7/28/2019 Slides PSBook2006 Revised July2007

    103/243

    Copyright Ned Mohan 2006 103

    Fig. 7-3 HVDC system one-line diagram.1 AC 2 AC

    HVDC Line

    HVDC System

    HVDC Systems: Voltage-Link and Current Link

  • 7/28/2019 Slides PSBook2006 Revised July2007

    104/243

    Copyright Ned Mohan 2006 104

    Fig. 7-4 HVDC systems: (a) Current-Link, and (b) Voltage-Link.

    AC1 AC2

    +

    AC1 AC2AC1 AC2AC1 AC2

    +

    AC1 AC2AC1 AC2AC1 AC2AC1 AC2

    ( )a ( )b

    Link and Current-Link

    HVDC Projects in NorthAmerica

  • 7/28/2019 Slides PSBook2006 Revised July2007

    105/243

    Copyright Ned Mohan 2006 105

    Fig. 7-5 HVDC projects, mostly current-link systems, in North America [source: ABB]

    3100MW

    1920MW

    200MW

    200MW

    200MW

    200MW

    200MW

    210MW

    150MW

    200MW

    600MW

    1000MW500MW

    1000MW

    36MW

    312MW

    370MW

    320MW

    100MW

    200MW

    350MW

    330MW

    1620MW

    2000MW

    2000MW

    690MW

    2250MW

    2138MW

    3100MW

    1920MW

    200MW

    200MW

    200MW

    200MW

    200MW

    210MW

    150MW

    200MW

    600MW

    1000MW500MW

    1000MW

    36MW

    312MW

    370MW

    320MW

    100MW

    200MW

    350MW

    330MW

    1620MW

    2000MW

    2000MW

    690MW

    2250MW

    2138MW

    America

    Current-Link HVDCSystem

  • 7/28/2019 Slides PSBook2006 Revised July2007

    106/243

    Copyright Ned Mohan 2006 106

    Fig. 7-6 Block diagram of a current-link HVDC system.

    System

    Thyristors

  • 7/28/2019 Slides PSBook2006 Revised July2007

    107/243

    Copyright Ned Mohan 2006 107

    Fig. 7-7 Thyristors.

    K

    A

    G

    P

    N

    P

    N

    A

    G

    pn1

    pn2

    pn3

    K

    (a) (b)

    K

    A

    GK

    A

    G

    P

    N

    P

    N

    A

    G

    pn1

    pn2

    pn3

    K

    P

    N

    P

    N

    A

    G

    pn1

    pn2

    pn3

    K

    (a) (b)

    Thyristors

    Primitive Thyristor Circuits

  • 7/28/2019 Slides PSBook2006 Revised July2007

    108/243

    Copyright Ned Mohan 2006 108

    Fig. 7-8 Thyristor circuit with a resistive load and a series inductance.

    ( )b

    t

    t

    t

    0

    0

    0

    d vd V

    sv si

    Gi

    0t =

    ( )a

    si

    s L+

    +

    d v sv R

    ( )b

    t

    t

    t

    0

    0

    0

    d vd V

    sv si

    Gi

    0t =

    ( )b

    t

    t

    t

    0

    0

    0

    d vd V

    sv si

    Gi

    0t =

    ( )a

    si

    s L+

    +

    d v sv R( )a

    si

    s L+

    +

    d v sv R

    Circuits

    Three-Phase Thyristor Converter

  • 7/28/2019 Slides PSBook2006 Revised July2007

    109/243

    Copyright Ned Mohan 2006 109

    Fig. 7-9 Three-phase Full-Bridge thyristor converter.

    (a)

    d i

    6

    5

    4 2

    1 3

    cnv +

    +

    +anv

    bnv s L

    ai

    +

    +anv ai

    d I +

    d v

    N

    P

    1

    3

    5

    46

    2

    (b)

    n n

    (a)

    d i

    6

    5

    4 2

    1 3

    cnv +

    +

    +anv

    bnv s L

    ai

    +

    +anv ai

    d I +

    d v

    N

    P

    1

    3

    5

    46

    2

    (b)

    n n

    +

    d v

    (a)

    d i

    6

    5

    4 2

    1 3

    cnv +

    +

    +anv

    bnv s L

    ai

    +

    +anv ai

    d I +

    d v

    N

    P

    1

    3

    5

    46

    2

    (b)

    n n

    (a)

    d i

    6

    5

    4 2

    1 3

    cnv +

    +

    +anv

    bnv s L

    ai

    +

    +anv ai

    d I +

    d v

    N

    P

    1

    3

    5

    46

    2

    (b)

    n n

    +

    d v

    Converter

    Three-Phase DiodeRectifier Waveforms

  • 7/28/2019 Slides PSBook2006 Revised July2007

    110/243

    Copyright Ned Mohan 2006 110

    Fig. 7-10 Waveforms in a three-phase rectifier with 0 s

    L = and 0 = .

    t 0

    cvbvav

    (a)

    ai

    0o120

    o60t

    bi

    0

    ci

    0

    N v

    P v

    (c)t

    doV

    LL2V d v

    0(b)

    t

    t

    t 0

    cvbvav

    (a)

    ai

    0o120

    o60t

    bi

    0

    ci

    0

    N v

    P v

    (c)t

    doV

    LL2V d v

    0(b)

    t

    t

    Rectifier Waveforms

    Three-Phase Thyristor Converter Waveforms withzero AC-Side Inductance

  • 7/28/2019 Slides PSBook2006 Revised July2007

    111/243

    Copyright Ned Mohan 2006 111Fig. 7-11 Waveforms with 0 s L = .

    0

    0

    0

    0

    t

    t

    t

    t

    anv bnv cnv Pnv

    Nnv

    A

    ai

    bi

    ci

    1

    4

    3

    66

    1

    5 5

    2

    4

    0

    0

    0

    0

    t

    t

    t

    t

    anv bnv cnv Pnv

    Nnv

    A

    ai

    bi

    ci

    1

    4

    3

    66

    1

    5 5

    2

    4

    Converter Waveforms withzero AC-Side Inductance

    Three-Phase Inverter Waveforms

  • 7/28/2019 Slides PSBook2006 Revised July2007

    112/243

    Copyright Ned Mohan 2006 112Fig. 7-12 Waveforms in the inverter mode.

    0

    0

    0

    0

    t

    t

    t

    t

    anv bnv cnv

    Pnv

    Nnv

    ai

    bi

    ci

    1

    4

    3

    6

    1

    5

    2

    4

    3

    2

    0

    0

    0

    0

    t

    t

    t

    t

    anv bnv cnv

    Pnv

    Nnv

    ai

    bi

    ci

    1

    4

    3

    6

    1

    5

    2

    4

    3

    2

    Waveforms

    DC-Side Voltage as aFunction of Delay Angle

  • 7/28/2019 Slides PSBook2006 Revised July2007

    113/243

    Copyright Ned Mohan 2006 113

    Fig. 7-13 Average dc-side voltage as a function of .( )b( )a

    00

    d V

    090 0160

    0180

    d V

    d I

    Rectifier

    d d P V I = = +

    Inverter d d P V I = =

    Function of Delay Angle

    Thyristor Converter Waveforms in thePresence of AC-SideI d

  • 7/28/2019 Slides PSBook2006 Revised July2007

    114/243

    Copyright Ned Mohan 2006 114

    Fig. 7-14 Waveforms with s L .

    0

    0

    t

    t

    anv bnv cnv Pnv

    Nnv

    u A

    ai 1

    4

    1

    4

    u

    0

    0

    t

    t

    anv bnv cnv Pnv

    Nnv

    u A

    ai 1

    4

    1

    4

    u

    Inductance

  • 7/28/2019 Slides PSBook2006 Revised July2007

    115/243

  • 7/28/2019 Slides PSBook2006 Revised July2007

    116/243

    ( )ai Y Y 12-Pulse Waveforms

  • 7/28/2019 Slides PSBook2006 Revised July2007

    117/243

    Copyright Ned Mohan 2006 117

    Fig. 7-17 Six-pulse and 12-pulse current and voltage waveforms [2].

    ( )a ( )b

    ( )ai Y

    HVDC SystemRepresentation for Control

  • 7/28/2019 Slides PSBook2006 Revised July2007

    118/243

    Copyright Ned Mohan 2006 118

    Fig. 7-18 A pole of an HVDC system.

    d i

    +

    1d v

    +

    2d vAC 1 AC 2AC 1 AC 2

    d R d L

    d i

    +

    1d v

    +

    2d vAC 1 AC 2AC 1 AC 2

    d R d L

    p

  • 7/28/2019 Slides PSBook2006 Revised July2007

    119/243

    A Voltage-Link HVDC

    System in NortheasternU.S.

  • 7/28/2019 Slides PSBook2006 Revised July2007

    120/243

    Copyright Ned Mohan 2006 120Fig. 7-20 Voltage-link HVDC transmission system [source: ABB].

    y

    Voltage-Link HVDCSystem Block Diagram

  • 7/28/2019 Slides PSBook2006 Revised July2007

    121/243

    Copyright Ned Mohan 2006 121

    Fig. 7-21 Block diagram of voltage-link HVDC system.

    AC1 AC2

    +

    AC1 AC2AC1 AC2AC1 AC2

    +

    1 1, P Q 2 2, P Q

    Phasor Diagram on the Ac-

    Side of the Voltage-LinkConverter

  • 7/28/2019 Slides PSBook2006 Revised July2007

    122/243

    Copyright Ned Mohan 2006 122

    Fig. 7-22 Block diagram of a voltage-link converter and the phasor diagram.

    +

    d V

    convv

    L

    busv Li

    +

    d V

    convv

    L

    busv Li

    +

    convV

    L I

    +

    busV

    + L L jX I

    ( )a ( )b ( )c

    L I

    L I

    L L jX I

    convV

    busV

    Representation of Voltage-

    Link Converter with IdealTransformers

  • 7/28/2019 Slides PSBook2006 Revised July2007

    123/243

    Copyright Ned Mohan 2006 123

    Fig. 7-23 Synthesis of sinusoidal voltages.

    +

    d V

    abc

    1: ad 1: bd 1: cd 1: ad

    ai

    d V

    dai

    +

    aN v

    ( )a ( )b

    Synthesis of AverageSinusoidal Voltages

  • 7/28/2019 Slides PSBook2006 Revised July2007

    124/243

    Copyright Ned Mohan 2006 124

    Fig. 7-24 Sinusoidal variation of turns-ratio ad .

    1

    0.5

    0

    d V

    0.5 d V

    0

    t

    t

    ad

    aN v

    ad

    aV

    Converter Output Voltages

    and Voltages across theLoad

  • 7/28/2019 Slides PSBook2006 Revised July2007

    125/243

    Copyright Ned Mohan 2006 125

    Fig. 7-25 Three-phase synthesis.

    a

    bc

    N

    2d V

    2d

    V 2

    d V

    av bv cvac-side

    ( )a

    d V

    0.5 d V

    0

    av

    t

    ( )a

    aN v bN v cN v

    Buck Boost

    Switching Power-Pole of Voltage-Link Converters

  • 7/28/2019 Slides PSBook2006 Revised July2007

    126/243

    Copyright Ned Mohan 2006 126

    Fig. 7-26 Realization of the ideal transformer functionality.

    aq

    +

    d V

    daiai

    a

    N

    +

    aN v

    (a) (b)

    +

    d V

    aq

    Buck Boost

    aq

    ai+

    aN v

    Switching in Sinusoidal

    Average VoltageWaveform

  • 7/28/2019 Slides PSBook2006 Revised July2007

    127/243

    Copyright Ned Mohan 2006 127

    Fig. 7-27 PWM to synthesize sinusoidal waveform.

    aN v

    0 t

    d V

    aN v

    aN v

    aN v

    0

    0 sT

    ( )a

    ( )b

    hV

    1 f s f 2 s f 3 s f

  • 7/28/2019 Slides PSBook2006 Revised July2007

    128/243

    Copyright Ned Mohan 2006 128

    CHAPTER 8

    Distribution System, Loads

    and Power Quality

  • 7/28/2019 Slides PSBook2006 Revised July2007

    129/243

  • 7/28/2019 Slides PSBook2006 Revised July2007

    130/243

    Lighting 19%

    Lighting 19%

    Lighting 19%

    Utility Load Distribution

  • 7/28/2019 Slides PSBook2006 Revised July2007

    131/243

    Copyright Ned Mohan 2006 131

    Fig. 8-3 Utility loads.

    Motors 51%HVAC 16%

    IT14%

    Lighting 19%

    Motors 51%HVAC 16%

    IT14%

    Lighting 19%

    Motors 51%HVAC 16%

    IT14%

    Lighting 19%

    36%Residential35%

    Commercial

    29%Industrial

    36%Resident ial35%

    Commercial

    29%Industrial

    ( )a ( )b

    Power Factor and Voltage

    Sensitivity of Power Systems Load

  • 7/28/2019 Slides PSBook2006 Revised July2007

    132/243

    Copyright Ned Mohan 2006 132

    Table 8-1 Power Factor and Voltage Sensitivity of Power Systems Load

    Type of Load Power Factor /a P V = /b Q V = Electric Heating 1.0 2.0 0

    Incandescent Lighting 1.0 1.5 0Fluorescent Lighting 0.9 1.0 1.0

    Motor Loads 0.8 0.9 0.05 0.5 1.0 3.0Modern Power-

    Electronics basedLoads

    1.0 0 0

    Voltage-Link System used

    in Power ElectronicsBased Loads

  • 7/28/2019 Slides PSBook2006 Revised July2007

    133/243

    Copyright Ned Mohan 2006 133

    Fig. 8-4 Voltage-link-system for modern and future power-electronics based loads.

    d V

    +

    Utility

    Load

    'ra I a I

    Induction Motor Per-PhaseDiagram

  • 7/28/2019 Slides PSBook2006 Revised July2007

    134/243

    Copyright Ned Mohan 2006 134

    Fig. 8-5 Per-phase, steady state equivalent circuit of a three-phase induction motor.

    +

    (at ) aV

    +

    ls j L

    ma I ma E

    raa s R

    '

    lr j L

    ' synr slip

    R

    m j L

    emT

    Torque-SpeedCharacteristics

  • 7/28/2019 Slides PSBook2006 Revised July2007

    135/243

    Copyright Ned Mohan 2006 135

    Fig. 8-6 Torque-speed characteristic of induction motor at various applied frequencies.

    1 f LoadTorque

    0

    2 f 3 f 4 f 5 f

    m 1 syn 1 slip 3 syn 3 slip

    input dc to HF acinput dc to HF ac

    Switch-Mode DC Power Supplies

  • 7/28/2019 Slides PSBook2006 Revised July2007

    136/243

    Copyright Ned Mohan 2006 136

    Fig. 8-7 Switch-mode dc power supply.

    60Hzac

    rectifier

    topology to convertdc to dc with isolation

    Feedback controller

    HF transformer

    OutputinV

    +

    *oV

    oV 60Hzac

    rectifier

    topology to convertdc to dc with isolation

    Feedback controller

    HF transformer

    OutputinV

    +

    *oV

    oV

    lll

    Uninterruptible Power Supplies (UPS)

  • 7/28/2019 Slides PSBook2006 Revised July2007

    137/243

    Copyright Ned Mohan 2006 137

    Fig. 8-8 Uninterruptible power supply.

    Rectifier Inverter Filter CriticalLoad

    EnergyStorage

    Rectifier Inverter Filter CriticalLoad

    EnergyStorage

    Rectifier Inverter Filter CriticalLoad

    EnergyStorage

    Feeder 1Feeder 1

    Static Power-Transfer Switch

  • 7/28/2019 Slides PSBook2006 Revised July2007

    138/243

    Copyright Ned Mohan 2006 138

    Fig. 8-9 Alternate feeder.

    Load

    Feeder 1

    Feeder 2

    Load

    Feeder 1

    Feeder 2

    CBEMA Curve Showing

    Acceptable Voltage-TimeRegion

  • 7/28/2019 Slides PSBook2006 Revised July2007

    139/243

    Copyright Ned Mohan 2006 139

    Fig. 8-10 CBEMA curve.

    +injv +injv

    Dynamic VoltageRestorers (DVR)

  • 7/28/2019 Slides PSBook2006 Revised July2007

    140/243

    Copyright Ned Mohan 2006 140

    Fig. 8-11 Dynamic Voltage Restorer (DVR).

    Power ElectronicInterface

    Load sv

    +

    injv

    Power ElectronicInterface

    LoadPower ElectronicInterface

    Load sv

    +

    injv

    Voltage RegulatingTransformers

  • 7/28/2019 Slides PSBook2006 Revised July2007

    141/243

    Copyright Ned Mohan 2006 141

    Fig. 8-12 Three-Phase Voltage Regulator (Courtesy of Siemens) [5].

    STATCOM

  • 7/28/2019 Slides PSBook2006 Revised July2007

    142/243

    Copyright Ned Mohan 2006 142

    Fig. 8-13 STATCOM [4].

    Utility

    STATCOM

    jX

    Utility

    STATCOM

    jX

    i si si sLinear Load

  • 7/28/2019 Slides PSBook2006 Revised July2007

    143/243

    Copyright Ned Mohan 2006 143

    Figure 8-14 Voltage and current phasors in simple R-L circuit.

    s I

    sV

    v s

    +

    ( )a( )b

    s I

    sV

    v s

    +

    v s

    +

    ( )a( )b

    vv

    Waveforms Associated

    with Power Electronics-Based Load

  • 7/28/2019 Slides PSBook2006 Revised July2007

    144/243

    Copyright Ned Mohan 2006 144

    Figure 8-15 Current drawn by power electronics equipment without PFC.

    t

    ( )distortion s s1i i i=

    t 0/1

    s1ii s

    v s

    1T

    0

    ( )a

    ( )b

    t

    ( )distortion s s1i i i=

    t 0/1

    s1ii s

    v s

    1T

    0

    ( )a

    ( )b

    si I si

    I

    si I si

    I

    Example of DistortedCurrent

  • 7/28/2019 Slides PSBook2006 Revised July2007

    145/243

    Copyright Ned Mohan 2006 145

    1T

    t I 0

    s1i

    t 0

    I

    I

    /4I

    t

    distortioni

    0

    Figure 5-4 Example 5-1.

    ( )c

    ( )b

    ( )a

    1T

    t I 0

    s1i

    t 0

    I

    I

    /4I

    t

    distortioni

    0

    Figure 5-4 Example 5-1.

    ( )c

    ( )b

    ( )a

    Figure 8-16 Example 8-1.

    1T

    t I 0

    s1i

    t 0

    I

    I

    /4I

    t

    distortioni

    0

    Figure 5-4 Example 5-1.

    ( )c

    ( )b

    ( )a

    1T

    t I 0

    s1i

    t 0

    I

    I

    /4I

    t

    distortioni

    0

    Figure 5-4 Example 5-1.

    ( )c

    ( )b

    ( )a

    Figure 8-16 Example 8-1.

  • 7/28/2019 Slides PSBook2006 Revised July2007

    146/243

  • 7/28/2019 Slides PSBook2006 Revised July2007

    147/243

    sc I Z s Z s sc I Z s Z s Z s

    Short-Circuit Current

  • 7/28/2019 Slides PSBook2006 Revised July2007

    148/243

    Copyright Ned Mohan 2006 148

    +

    V s

    +

    V s

    (a) (b)

    Figure 5-6 (a) Utility supply; (b) short circuit current.

    +

    V s

    +

    V s

    +

    V s

    (a) (b)

    Figure 5-6 (a) Utility supply; (b) short circuit current.Figure 8-18 (a) Utility Supply, (b) Short-Circuit Current.

    Retail Price of Electricity inthe U.S.

  • 7/28/2019 Slides PSBook2006 Revised July2007

    149/243

    Copyright Ned Mohan 2006 149

    Fig. 8-19 Average retail price of electricity to ultimate customers [4].

  • 7/28/2019 Slides PSBook2006 Revised July2007

    150/243

    Copyright Ned Mohan 2006 150

    CHAPTER 9

    SYNCHRONOUS

    GENERATORS

    Steam at High pressure

    Application of Synchronous Generators

  • 7/28/2019 Slides PSBook2006 Revised July2007

    151/243

    Copyright Ned Mohan 2006 151

    Fig. 9-1 Synchronous generators driven by (a) steam turbines, and (b) hydraulic turbines.

    H Generator

    Penstock

    Turbine

    Water

    Pump

    Heat in

    Heat out

    TurbineBoiler

    Condenser

    Gen

    ( )a ( )b

    StatorStator

    Cross-section of Synchronous Generators

  • 7/28/2019 Slides PSBook2006 Revised July2007

    152/243

    Copyright Ned Mohan 2006 152

    Fig. 9-2 Machine cross-section.(a) (b)

    Air gap

    Stator

    Air gap

    Stator

    S S

    N N

    Synchronous Generator Structure

  • 7/28/2019 Slides PSBook2006 Revised July2007

    153/243

    Copyright Ned Mohan 2006 153

    Fig. 9-3 Machine structure.

    (a) (b) (c)

    S N S N

    S

    N N

    S

    N N S

    N

    S S

    N

    S

    axisb ax

    isb

    Sinusoidally-DistributedWindings

  • 7/28/2019 Slides PSBook2006 Revised July2007

    154/243

    Copyright Ned Mohan 2006 154

    Fig. 9-4 Three phase windings on the stator.

    axisa

    axisb

    axisc

    2 / 3

    2 / 3

    2 / 3

    bi

    ai

    ci

    axisa

    axisb

    axisc

    2 / 3

    2 / 3

    2 / 3

    bi

    ai

    ci 1

    234

    56

    7

    1'

    2 '

    3 ' 4 ' 5 '

    6 ' ai

    ai

    7 '

    1

    234

    56

    7

    1'

    2 '

    3 ' 4 ' 5 '

    6 ' ai

    ai

    7 '

    (a) (b)

  • 7/28/2019 Slides PSBook2006 Revised July2007

    155/243

    Synchronous Generator Rotor Field

  • 7/28/2019 Slides PSBook2006 Revised July2007

    156/243

    Copyright Ned Mohan 2006 156

    Fig. 9-6 Field winding on the rotor that is supplied by a dc current f I .

    a-axis

    N

    S

    syn

    +

    Voltage induced in the

    Stator Phase due toRotating Rotor Field

  • 7/28/2019 Slides PSBook2006 Revised July2007

    157/243

    Copyright Ned Mohan 2006 157

    Fig. 9-7 Current direction and voltage polarities; the rotor position shown inducesmaximum ae .

    a-axis

    N

    S syn

    ae

    +(at 0) f B t =

    G Im

    Representation of Induced

    Stator Voltage due toRotor Field

  • 7/28/2019 Slides PSBook2006 Revised July2007

    158/243

    Copyright Ned Mohan 2006 158

    Fig. 9-8 Induced emf af e due to rotating rotor field with the rotor.

    a-axis

    N

    S syn

    af e

    ( )a ( )b ( )c

    N

    S

    a-axisaf E

    Re

    syn

    axisb

    bi

    axi

    sb

    bi

    23

    je

    Im

    Armature Reaction Due toThree Stator Currents

  • 7/28/2019 Slides PSBook2006 Revised July2007

    159/243

    Copyright Ned Mohan 2006 159

    Fig. 9-9 Armature reaction due to phase currents.

    axisa

    axisc

    2 / 3

    2 / 3

    2 / 3 ai

    ci

    axisa

    axisc

    2 / 3

    2 / 3

    2 / 3 ai

    ci

    ( )a ( )b ( )c

    0 je

    43

    je

    a I

    Re

    (at 0) AR B t =G

    a-axis

    ,a AR E

    090

  • 7/28/2019 Slides PSBook2006 Revised July2007

    160/243

    generator d

    P stability limit

    steady state

    a I

    Power Out as a function of rotor Angle

  • 7/28/2019 Slides PSBook2006 Revised July2007

    161/243

    Copyright Ned Mohan 2006 161

    Fig. 9-11 Power output and synchronism.

    stability limitsteady state

    mode

    motoringmode

    0o90

    o90

    +

    oV V 0 = af af E E =

    T jX +

    ( )a

    ( )b

    e P e P

    ,maxe P

    Steady State StabilityLimit

  • 7/28/2019 Slides PSBook2006 Revised July2007

    162/243

    Copyright Ned Mohan 2006 162

    Fig. 9-12 Steady state stability limit.

    0 o90

    ( )a

    1 2

    e1 P e2 P

    m1 P m2 P

    ( )b

    0 o90

    o90 s a jX I

    s a jX I s a jX I

    af E af E af E

    o90 s a jX I

    s a jX I s a jX I

    af E af E af E

    Reactive Power Control byField Excitation

  • 7/28/2019 Slides PSBook2006 Revised July2007

    163/243

    Copyright Ned Mohan 2006 163

    Fig. 9-13 Excitation control to supply reactive power.

    {aq I

    aq I

    o90

    a I a I

    a I aV

    aV

    aV

    ( )a ( )b ( )c

    {aq I

    aq I

    o90

    a I a I

    a I aV

    aV

    aV

    ( )a ( )b ( )c

    SynchronousCondenser

  • 7/28/2019 Slides PSBook2006 Revised July2007

    164/243

    Copyright Ned Mohan 2006 164

    Fig. 9-14 Synchronous Condenser.

    Synchronous

    Condenser

    phase-controlledrectifier field winding

    Automatic VoltageRegulation (AVR)

  • 7/28/2019 Slides PSBook2006 Revised July2007

    165/243

    Copyright Ned Mohan 2006 165

    Fig. 9-15 Field exciter for automatic voltage regulation (AVR).

    acinput

    slip rings

    Generator

    ac regulator

    output

    Armature Reaction Flux inSteady State Leading toSynchronous Reactance

  • 7/28/2019 Slides PSBook2006 Revised July2007

    166/243

    Copyright Ned Mohan 2006 166

    Fig. 9-16 Armature reaction flux in steady state.

    Simulation of a Short-Circuit Assuming aConstant-Flux Model

  • 7/28/2019 Slides PSBook2006 Revised July2007

    167/243

    Copyright Ned Mohan 2006 167

    Fig. 9-17 Armature (a) and field current (b), after a sudden short circuit [source: 4].

    ( )a ( )b

    ++

    ' s a jX I +

    a I

    Im

    af E

    s a jX I 'af E

    Representation for Steady State,Transient Stability and Fault Analysis

  • 7/28/2019 Slides PSBook2006 Revised July2007

    168/243

    Copyright Ned Mohan 2006 168

    Fig. 9-18 Synchronous generator modeling for transient and sub-transient conditions.

    ( )b( )a

    '

    ''

    af

    af

    af

    E

    E

    E

    '' s a

    s a

    jX I jX I

    a E

    Re

    a I

    a E

    ' s a jX I

    '' s a jX I

    ''af E

    CHAPTER 10

  • 7/28/2019 Slides PSBook2006 Revised July2007

    169/243

    Copyright Ned Mohan 2006 169

    VOLTAGE REGULATION

    AND STABILITY IN

    POWER SYSTEMS

    R R P jQ+S V RV

    L jX S S P jQ+ S S P jQ

    + R R P jQ+ L jX

    + +

    A Radial System

  • 7/28/2019 Slides PSBook2006 Revised July2007

    170/243

    Copyright Ned Mohan 2006 170

    Fig. 10-1 A radial system.

    Load

    (a) (b)

    S V RV

    I

    L jX I S V S S

    P jQ+

    +

    L jX I

    +

    Voltages and CurrentPhasors with Both-SideVoltages at 1 PU

  • 7/28/2019 Slides PSBook2006 Revised July2007

    171/243

    Copyright Ned Mohan 2006 171

    Fig. 10-2 Phasor diagram and the equivalent circuit with 1puS RV V = = .(a)

    I

    RV

    / 2

    (b)

    S V

    RQ R P RV

    + ++(1pu)

    S V (1pu)

    RV R P SIL

  • 7/28/2019 Slides PSBook2006 Revised July2007

    173/243

    B

    Q

    Synchronous Generator Reactive Power SupplyCapability

  • 7/28/2019 Slides PSBook2006 Revised July2007

    174/243

    Copyright Ned Mohan 2006 174

    Fig. 10-5 Reactive power supply capability of synchronous generators.

    A

    C

    0 P

    +

    Th jX +

    I

    I

    ThjX IThV

    Th jX I +

    Effect of Current Power Factor on Bus Voltage

  • 7/28/2019 Slides PSBook2006 Revised July2007

    175/243

    Copyright Ned Mohan 2006 175

    Fig. 10-6 Effect of leading and lagging currents due to the shunt compensating device.

    ThV

    busV

    (a)

    busV

    jX I V

    busV

    I

    Th jX I

    ThV

    (b)

    busV

    1 I

    busV

    Static Var Compensators (SVC)

  • 7/28/2019 Slides PSBook2006 Revised July2007

    176/243

    Copyright Ned Mohan 2006 176

    Fig. 10-7 V-I characteristic of SVC.

    1 j C

    C I

    0C I

    ( )a ( )b

    busV

    L I

    busV busv

    Li

    i

    Thyristor ControlledReactors (TCR)

  • 7/28/2019 Slides PSBook2006 Revised July2007

    177/243

    Copyright Ned Mohan 2006 177

    Fig. 10-8 Thyristor-Controlled Reactor (TCR).

    ( )a ( )c

    0 L I

    090

    090 >

    ( )b

    Li

    busV

    I busV bus

    V A B

    C

    1V

    1V

    2V 2V

    Linear Range

    Voltage Control by SVCand TCR Combination

  • 7/28/2019 Slides PSBook2006 Revised July2007

    178/243

    Copyright Ned Mohan 2006 178

    Fig. 10-9 Parallel combination of SVC and TCR.

    1 j C

    C I

    ( )a

    L I L I

    ( )b ( )c I 0 0 I inductivecapacitive inductivecapacitive

    1g

    V

    convV conv I

    + jXI

    +

    d V

    +

    V

    +

    convV

    conv I

    + conv jXI

    STATCOM

  • 7/28/2019 Slides PSBook2006 Revised July2007

    179/243

    Copyright Ned Mohan 2006 179

    Fig. 10-10 STATCOM.

    busV conv jXI busV

    conv

    ( )a ( )b

    Linear Range

    busV

    STATCOM V-ICharacteristic

  • 7/28/2019 Slides PSBook2006 Revised July2007

    180/243

    Copyright Ned Mohan 2006 180

    Fig. 10-11 STATCOM VI characteristic.

    conv I 0 inductivecapacitive

    g

    Thyristor-ControlledSeries Capacitor (TCSC)

  • 7/28/2019 Slides PSBook2006 Revised July2007

    181/243

    Copyright Ned Mohan 2006 181

    Fig. 10-12 Thyristor-Controlled Series Capacitors (TCSC) [source: Siemens Corp.].( )a ( )c( )b

    CHAPTER 11

  • 7/28/2019 Slides PSBook2006 Revised July2007

    182/243

    Copyright Ned Mohan 2006 182

    TRANSIENT AND

    DYNAMIC STABILITY OF

    POWER SYSTEMS

    1V 0 B BV V = L X

    X1

    V E 0 BV +

    +

    +

    I '( )d tr j X X + / 2 L jX

    One-Machine Infinite-Bus

    System

  • 7/28/2019 Slides PSBook2006 Revised July2007

    183/243

    Copyright Ned Mohan 2006 183

    Fig. 11-1 Simple one-generator system connected to an infinite bus.

    ( )am P

    L X

    ( )be P

    post-faultPre-fault

    L X Bus 1 0 B BV V = e P

    Power-AngleCharacteristic in One-

    Machine Infinite-BusSystem

  • 7/28/2019 Slides PSBook2006 Revised July2007

    184/243

    Copyright Ned Mohan 2006 184

    Fig. 11-2 Power-angle characteristics.

    L X

    0

    m P

    0 1

    ( )a ( )b

    m P e P

    during-fault

  • 7/28/2019 Slides PSBook2006 Revised July2007

    185/243

  • 7/28/2019 Slides PSBook2006 Revised July2007

    186/243

    e P

    P P=C

    Pre-fault

    post-fault

    Rotor Oscillations After

    the Fault is Cleared

  • 7/28/2019 Slides PSBook2006 Revised July2007

    187/243

    Copyright Ned Mohan 2006 187

    Fig. 11-5 Rotor oscillations after the fault is cleared.

    e m P P

    01

    m 2

    D

    e P

    B

    Pre-fault

    post-fault

    Critical Clearing Angle

    using Equal-Area Criterion

  • 7/28/2019 Slides PSBook2006 Revised July2007

    188/243

    Copyright Ned Mohan 2006 188

    Fig. 11-6 Critical clearing angle.

    e m P P =

    0 0 crit

    A

    max 1

    20

    25

    30

    35

    40( )e P puPre-fault

    post-fault

    B

    Example using Equal-Area

    Criterion

  • 7/28/2019 Slides PSBook2006 Revised July2007

    189/243

    Copyright Ned Mohan 2006 189

    Fig. 11-7 Power angle curves and equal-area criterion in Example 11-2.

    0 20 40 60 80 100 120 140 160 1800

    5

    10

    15

    20

    e m P P =

    during fault

    p

    00 22.47 =

    0115.28m =075c =A

    A

    B

    Initial Power Flow'Calculate ande P E

    for each generator for 1,2,3....k =

    Transient StabilityCalculations in LargeNetworks

  • 7/28/2019 Slides PSBook2006 Revised July2007

    190/243

    Copyright Ned Mohan 2006 190

    Fig. 11-8 Block diagram of transient stability program for an n-generator case.

    , ,m k e k P P =

    ', and held constantm k k P E

    Electro-dynamicdifferentialEquations

    andk k

    ,e k P Phasor Calculations'using k k E (load may be assumedas a constant impedance)

    Bus-1 Bus-3

    1m P 1e P

    Example Power System for Transient Stability Analysis

  • 7/28/2019 Slides PSBook2006 Revised July2007

    191/243

    Copyright Ned Mohan 2006 191

    Fig. 11-9 A 345-kV test example system.

    Bus-2

    2m P

    2e P

    4 0 0

    5 0 0

    6 0 0

    7 0 0

    8 0 0

    Rotor Angle Swings in theExample Power SystemFollowing a Fault

  • 7/28/2019 Slides PSBook2006 Revised July2007

    192/243

    Copyright Ned Mohan 2006 192

    Fig. 11-10 Rotor-angle swings of 1 and 2 in Example 11-3.

    0 0 . 2 0 . 4 0 . 6 0 . 8 1 1 . 2 1 . 4 1 . 60

    1 0 0

    2 0 0

    3 0 0

    1 2

    Importance of Dynamic

    Stability

  • 7/28/2019 Slides PSBook2006 Revised July2007

    193/243

    Copyright Ned Mohan 2006 193

    Fig. 11-11 Growing Power Oscillations: Western USA/Canada system, Aug 10, 1996 [4].

    CHAPTER 12

    CONTROL OF

  • 7/28/2019 Slides PSBook2006 Revised July2007

    194/243

    Copyright Ned Mohan 2006 194

    INTERCONNECTED

    POWER SYSTEM AND

    ECONOMIC DISPATCH

    acinput

    phase-controlledrectifier field winding

    Generator output

    Automatic Voltage

    Regulation (AVR)

  • 7/28/2019 Slides PSBook2006 Revised July2007

    195/243

    Copyright Ned Mohan 2006 195

    Fig. 12-1 Field exciter for automatic voltage regulation (AVR).

    slip rings

    ac regulator

    Control Areas (Balancing

    Authorities)

  • 7/28/2019 Slides PSBook2006 Revised July2007

    196/243

    Copyright Ned Mohan 2006 196

    Fig. 12-2 (a) The Interconnections in North America, (b) Control Areas [Source: 2]

    ( )a ( )b

    Regulator

    TurbineGovernor

    Frequency

    -SupplementaryControl

    f

    f

    a

    b0 f

    G

    Steam-ValvePosition

    1

    R

    slope R=

    Load-Frequency Control

    and Regulation

  • 7/28/2019 Slides PSBook2006 Revised July2007

    197/243

    Copyright Ned Mohan 2006 197

    Fig. 12-3 Load-Frequency Control (ignore the supplementary control at present).

    m P e P Load P

    ( )a

    Turbine

    Control

    ( )b m P

    m P

    0

    G

    m P

    slope R

  • 7/28/2019 Slides PSBook2006 Revised July2007

    198/243

    Area 1 Area 2

    12 P 21 P

    12 jX

    Synchronizing Torquebetween Two Control Areas

  • 7/28/2019 Slides PSBook2006 Revised July2007

    199/243

    Copyright Ned Mohan 2006 199

    Fig. 12-5 Two control areas.

    +

    B1

    RSupplementaryController

    (frequency deviation) f

    Change in Steam Valve Position

    Automatic GenerationControl (AGC) and AreaControl Error (ACE)

  • 7/28/2019 Slides PSBook2006 Revised July2007

    200/243

    Copyright Ned Mohan 2006 200

    Fig. 12-6 Area Control Error (ACE) for Automatic Generation Control (AGC).

    +

    Governor

    (tie-line flow deviation) P

    (Area Control Error) ACE

    Change in Steam Valve Positionk s

    1m P 1e P 1 2 P

    1 3 P Bus-1 Bus-3

    Bus-2M

    M

    Area 2Area 1

    Load

    Two Control Areas in the

    Example Power System

  • 7/28/2019 Slides PSBook2006 Revised July2007

    201/243

    Copyright Ned Mohan 2006 201

    Fig. 12-7 Two control areas in the example power system with 3 buses.

    2m P

    2e P

    Power Flow on Tie-Linesbetween Two Control

    Areas Following a LoadChange

  • 7/28/2019 Slides PSBook2006 Revised July2007

    202/243

    Copyright Ned Mohan 2006 202

    Fig 12 9 El t i l q i l t f t i t ti

    12 jX 2 jX 1 jX +

    1 1 E

    +

    2 2 E

    Electrical Equivalent of

    Two Areas

  • 7/28/2019 Slides PSBook2006 Revised July2007

    203/243

    Copyright Ned Mohan 2006 203

    Fig. 12-9 Electrical equivalent of two area interconnection.

    Modeling of Two Control

    Areas with AGC+

    +

    +

    1 B1

    1 R

    1 s P 11

    1GT s + 11

    1S T s + 1 1 syn

    M s D +

    11m P

    1 Load P

    Regulator Governor Steam Turbine Area 1

    1 s

    1 K s1ACE 1v P 1

    11 sT s +

    1/ syn

  • 7/28/2019 Slides PSBook2006 Revised July2007

    204/243

    Copyright Ned Mohan 2006 204Fig. 12-10 Two-area system with AGC. Source: adapted from [6].

    +

    +

    +

    s

    1

    2 B2

    1 R

    2 s P 2m P

    Regulator Governor Steam Turbine Area 22 s

    2 Load P

    2

    2

    11GT s + 2

    11S T s + 2 2

    syn

    M s D

    +

    1 s

    1 2( ) 12T

    12 12 1 2( ) P T =

    2 K s

    2ACE2v P

    2

    11 sT s +

    +

    1/ syn

    0.5

    1

    1.5

    1m P

    2P

    Results of SimulinkModeling Following a Step

    Load Change in Control Area 1

  • 7/28/2019 Slides PSBook2006 Revised July2007

    205/243

    Copyright Ned Mohan 2006 205

    Fig. 12-11 Simulink results of the two-area system with AGC in Example 12-3.

    0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000-1

    -0.5

    0

    2m P

    12 P

    Economic Dispatch: Heat

    Rate of a Power Plant

    9 0

    10.0

    11.0

    MBTU-per-Hour MW

    At this point, to produce 40 MW

    Fuel Consumption = 400 MBTU-per-Hour

    Heat Rate

  • 7/28/2019 Slides PSBook2006 Revised July2007

    206/243

    Copyright Ned Mohan 2006 206

    Fig. 12-12 Heat Rate at various generated power levels.

    [ ] P MW 0 20 40 60 80 100

    9.0

    Cost Curve and Marginal

    Cost of a Power Plant( )

    [$ / ]i iC P

    hour

    iC i P

    ( )

    [$ / ]

    i i

    i

    C P P

    MWh

  • 7/28/2019 Slides PSBook2006 Revised July2007

    207/243

    Copyright Ned Mohan 2006 207

    Fig. 12-13 (a) Fuel cost and (b) Marginal cost, as functions of the power output.

    [ ]i P MW 0

    [ ]i P MW 0

    ( )a ( )b

    0 0 0P P P

    1( )C P P

    2 ( )C P P

    3( )C P P

    P P P

    Load Sharing between

    Three Power Plants

  • 7/28/2019 Slides PSBook2006 Revised July2007

    208/243

    Copyright Ned Mohan 2006 208

    Fig. 12-14 Marginal costs for the three generators.

    P P P 1 P 2 P 3 P

    CHAPTER 13

    TRANSMISSION LINE

  • 7/28/2019 Slides PSBook2006 Revised July2007

    209/243

    Copyright Ned Mohan 2006 209

    FAULTS, RELAYING AND

    CIRCUIT BREAKERS

    a

    b

    c ai

    f

    bi

    i

    a

    b

    c a I

    f

    b I

    I

    Fault (Symmetric or Unsymmetric) on aBalanced Network

  • 7/28/2019 Slides PSBook2006 Revised July2007

    210/243

    Copyright Ned Mohan 2006 210

    Fig. 13-1 Fault in power system.

    g

    ci

    g

    c I

    ( )a ( )b

    1a I 1c I

    2a I 2b I

    a I

    c I 0c I

    0a I 0b I

    Symmetrical

    Components

  • 7/28/2019 Slides PSBook2006 Revised July2007

    211/243

    Copyright Ned Mohan 2006 211

    Fig. 13-2 Sequence components.

    2c I

    1b I

    b I

    1a E

    +

    1 Z

    +

    +

    +

    1aV 2aV 0aV 1a I 2a I 0a I

    2 Z 0 Z

    Sequence Networks: Per-Phase Representation of a

    Balanced Three-phaserepresentation

  • 7/28/2019 Slides PSBook2006 Revised July2007

    212/243

    Copyright Ned Mohan 2006 212

    Fig. 13-3 Sequence networks.

    a

    b

    c a I

    f

    b I

    I

    1a E

    +

    1 Z

    +

    1 0aV =

    1a I

    Three-Phase SymmetricalFault (ground may or mayno be involved)

  • 7/28/2019 Slides PSBook2006 Revised July2007

    213/243

    Copyright Ned Mohan 2006 213

    Fig. 13-4 Three-phase symmetrical fault.

    g

    c I

    ( )a

    ( )b

    1a E

    +

    +

    +

    2aV

    a

    b

    ca I

    f

    1 Z

    2 Z

    1a I

    2a I 3 f Z

    1aV

    Single-Line to Ground(SLF) Fault through a FaultImpedance

  • 7/28/2019 Slides PSBook2006 Revised July2007

    214/243

    Copyright Ned Mohan 2006 214

    Fig. 13-5 Single line to ground fault.

    ( )a

    ( )b

    +

    0aV g

    f Z

    0 Z

    0a I

  • 7/28/2019 Slides PSBook2006 Revised July2007

    215/243

    ab

    c

    g

    b I

    f

    c I 1a E

    +

    +1 Z

    1a I

    1aV

    +2 Z

    2a I

    2aV

    + 1 f a Z I

    Double-Line Fault (ground

    not involved)

  • 7/28/2019 Slides PSBook2006 Revised July2007

    216/243

    Copyright Ned Mohan 2006 216

    Fig. 13-7 Double line fault (ground not involved).

    ( )a ( )b

  • 7/28/2019 Slides PSBook2006 Revised July2007

    217/243

    Fig. 13-9 Neutral grounded through an impedance.( )a

    n Z

    ( )b

    +

    0aV

    0 Z

    0a I

    3 n Z

    Neutral Grounded through

    an Neutral Impedance)

  • 7/28/2019 Slides PSBook2006 Revised July2007

    218/243

    Copyright Ned Mohan 2006 218

    g g g p

    1 Load P pu=

    0 Load Q =Bus-1

    Bus-2

    Bus-31 0.12 gen X pu =

    2 0.12 gen X pu=

    0 0.06gen X pu=1 0.10tr X pu=

    0 10X pu=

    1 0.10 Line X pu=

    2 0.10 Line X pu=

    0 0.20 Line X pu=

    1 1.0 0V pu= 0

    3 0.98 11.79V pu=

    One-Line Diagram of a

    Simple System)

  • 7/28/2019 Slides PSBook2006 Revised July2007

    219/243

    Copyright Ned Mohan 2006 219

    Fig. 13-10 (a) One-line diagram of a simple power system and bus voltages.

    0 gen2 0.10tr X pu

    0 0.10tr X pu=

    i 13 11 i i i i f l l i 3 h f l b 2

    0.12 j pu

    1 1.0 0V pu=

    +

    +

    Load I

    fault I

    0.10 j pu 0.10 j pu

    E 0.9604 Load R pu=

    Thee-phase Fault on Bus-2

    in the Simple System

  • 7/28/2019 Slides PSBook2006 Revised July2007

    220/243

    Copyright Ned Mohan 2006 220

    Fig. 13-11 Positive-sequence circuit for calculating a 3-phase fault on bus-2.

    Single-Line to Ground(SLG) Fault in the SimpleSystem

    1 1.0 0V pu=

    +

    +

    0.10 j pu

    E 0.9604 Load R pu=

    0.12 j pu 0.10 j pu

    1aV

    +

    V

    +0.10 j pu0.12 j pu 0.10 j pu

    1a I

    2a I

    0V =

    +

    / 3 ( / 3)a fault I I =

  • 7/28/2019 Slides PSBook2006 Revised July2007

    221/243

    Copyright Ned Mohan 2006 221

    Fig. 13-12 Sequence networks for calculating fault current due to SLG fault on bus-2.

    0.9604 Load R pu=

    0.9604 Load R pu=

    2aV

    0aV

    +

    0.10 j pu0.06 j pu 0.20 j pu

    0a I

    0aV =

    1m P 1e P

    Bus-1Bus-3

    Bus-2

    An SLG Fault in the

    Example 3-Bus System

  • 7/28/2019 Slides PSBook2006 Revised July2007

    222/243

    Copyright Ned Mohan 2006 222

    Fig. 13-13 A SLG fault in the example 3-bus power system.

    2e P

    2m P

    Fig. 13-14 Protection equipment.

    CB

    R

    CT

    PT

    Protection in Power

    System

  • 7/28/2019 Slides PSBook2006 Revised July2007

    223/243

    Copyright Ned Mohan 2006 223

    CT

    Burden

    Current Transformers

    (CT)

  • 7/28/2019 Slides PSBook2006 Revised July2007

    224/243

    Copyright Ned Mohan 2006 224

    Fig. 13-15 Current Transformer (CT) [5].(a)

    (b)

    Capacitor-Coupled Voltage

    Transformers (CCVT)

  • 7/28/2019 Slides PSBook2006 Revised July2007

    225/243

    Copyright Ned Mohan 2006 225

    Fig. 13-16 Capacitor-Coupled Voltage Transformer (CCVT) [5].

    (a) (b)

    Fig 13 17 Differential relay

    CT

    CT

    CT

    Relay

    Differential Relays

  • 7/28/2019 Slides PSBook2006 Revised July2007

    226/243

    Copyright Ned Mohan 2006 226

    Fig. 13-17 Differential relay.

  • 7/28/2019 Slides PSBook2006 Revised July2007

    227/243

    Time

    instantaneous

    Ground Directional Over-Current Relays for GroundFaults

  • 7/28/2019 Slides PSBook2006 Revised July2007

    228/243

    Copyright Ned Mohan 2006 228

    Fig. 13-19 Ground directional over-current Relay.

    X

    R

    Impedance (Distance)

    Relays

  • 7/28/2019 Slides PSBook2006 Revised July2007

    229/243

    Copyright Ned Mohan 2006 229

    Fig. 13-20 Impedance (distance) relay.

    Microwave Terminal for Pilot Relays

  • 7/28/2019 Slides PSBook2006 Revised July2007

    230/243

    Copyright Ned Mohan 2006 230

    Fig. 13-21 Microwave terminal [5].

    Fig. 13-22 Zones of protection.

    Time

    A B C

    Zone 1: instantaneousZone 2: 20-25 cycles

    Zone 3: 1-1.5 sec

    Zones of Protection

  • 7/28/2019 Slides PSBook2006 Revised July2007

    231/243

    Copyright Ned Mohan 2006 231

  • 7/28/2019 Slides PSBook2006 Revised July2007

    232/243

    A B

    P jQ+

    Zone1Zone2

    Zone2

    Relaying in the 3-BusExample Power System

  • 7/28/2019 Slides PSBook2006 Revised July2007

    233/243

    Copyright Ned Mohan 2006 233

    Fig. 13-24 Relying in the example 3-bus power system.

  • 7/28/2019 Slides PSBook2006 Revised July2007

    234/243

    0 0 . 0 5 0 . 1 0 . 1 5 0 . 2- 1

    - 0 . 5

    0

    0 . 5

    1

    1 . 5

    2

    asymmetricsymmetric offset

    +

    ( ) sv t

    +

    ( )v t

    ( )i t

    R L

    ( )a ( )b

    0

    Illustration of CurrentOffset in R-L Circuits

  • 7/28/2019 Slides PSBook2006 Revised July2007

    235/243

    Copyright Ned Mohan 2006 235

    Fig. 13-26 Current in an RL circuit.

    ( ) ( )

    CHAPTER 14

    TRANSIENT OVER-VOLTAGES,

    SURGE PROTECTION AND

    INSULATION COORDINATION

  • 7/28/2019 Slides PSBook2006 Revised July2007

    236/243

    Copyright Ned Mohan 2006 236

    INSULATION COORDINATION

    Fig 14-1 Lightening current impulse

    [ ]t s

    0.5 peak I

    peak I i

    1t 2t

    Lightning Current

    Impulse

  • 7/28/2019 Slides PSBook2006 Revised July2007

    237/243

    Copyright Ned Mohan 2006 237

    Fig. 14-1 Lightening current impulse.

    Fig. 14-2 Lightening strike to the shield wire.( )a ( )b

    Lightening Strike to ShieldWire and Backflash

  • 7/28/2019 Slides PSBook2006 Revised July2007

    238/243

    Copyright Ned Mohan 2006 238

    Fig. 14-3 Over-voltages due to switching of transmission lines.( )b

    av

    bv

    cv

    L

    ( )a

    L

    L

    A B

    C

    500kV Line100 miles (open)

    Switching Surges

  • 7/28/2019 Slides PSBook2006 Revised July2007

    239/243

    Copyright Ned Mohan 2006 239

    Frequency Dependence of Transmission LineParameters

  • 7/28/2019 Slides PSBook2006 Revised July2007

    240/243

    Copyright Ned Mohan 2006 240

    Fig. 14-4 Frequency dependence of the transmission line parameters [Source: 2].

    Fig. 14-5 Calculation of switching over-voltages on a transmission line.

    Bus-1 Bus-3

    Calculation of SwitchingOver-Voltages on Line 1-3in the Example 3-BusPower System

  • 7/28/2019 Slides PSBook2006 Revised July2007

    241/243

    Copyright Ned Mohan 2006 241

    i

    0t

    pe ak V

    0.5 pe ak V

    1 .2 s 40 s

    Standard Voltage Impulseto Define Basic InsulationLevel (BIL)

  • 7/28/2019 Slides PSBook2006 Revised July2007

    242/243

    Copyright Ned Mohan 2006 242

    Fig. 14-6 Standard Voltage Impulse Wave to define BIL.

  • 7/28/2019 Slides PSBook2006 Revised July2007

    243/243