sm015/2 matematik 2018/2019Β Β· 2018. 11. 3.Β Β· sm015/2 matriculation programme examination chow...

26
SM015/2 MATEMATIK 2018/2019 Matriculation Programme Examination

Upload: others

Post on 24-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • SM015/2

    MATEMATIK

    2018/2019

    Matriculation Programme Examination

  • SM015/2 MATRICULATION PROGRAMME EXAMINATION

    CHOW CHOON WOOI

    2

    2018/2019

    a) Given 𝑧1 = 2 + 3𝑖 and 𝑧2 = 4 βˆ’ 4𝑖. Express (𝑧2)

    (𝑧1Μ…Μ… Μ…)+ [(

    𝑖3

    βˆ’π‘§2)] in Cartesian form.

    b) Solve

    a. (27

    125)2

    x (25

    9)4π‘₯

    = (9

    25)π‘₯βˆ’3

    x (625

    81)2

    b. 1

    4βˆ’2π‘₯β‰₯

    8

    π‘₯

    c) a) The first three terms of a geometric series are (3𝑐 βˆ’7

    2) , (3𝑐 βˆ’ 2) π‘Žπ‘›π‘‘ 6.

    Determine the value of 𝑐. Hence, find the seventh term of this series.

    b) Expand (3

    2π‘₯2 βˆ’ 1)

    3

    d) a) Given the matrix [1 3 4

    π‘Ž + 2𝑏 3 24 π‘Ž + 𝑏 9

    ] such that 𝑀11 = 7 and 𝐢12 = βˆ’1,

    calculate the values of a and b.

    b) Let 𝐴 = [1 3 41 3 24 10 9

    ] , 𝐡 = [7 13 βˆ’6βˆ’1 βˆ’7 2βˆ’2 2 0

    ] π‘Žπ‘›π‘‘ 𝐢 = (112)

    i. Find determinant of 𝐴 by expanding first column.

    ii. Evaluate (𝐴2 βˆ’ 𝐡𝑇)𝐢.

    e) a) Given 𝑓(π‘₯) = (5π‘₯+1

    4π‘₯) and g(π‘₯) =

    √π‘₯+1βˆ’2

    π‘₯2βˆ’4. Find

    i. the domain of g(x).

    ii. β„Ž(π‘₯), 𝑖𝑓 (π‘“π‘œβ„Ž)(π‘₯) = π‘₯

    b) Given 𝑝(π‘₯) = 𝑙𝑛(3π‘₯ + 6) and π‘ž(π‘₯) =𝑒π‘₯

    3βˆ’ 2. Show that 𝑝(π‘₯)π‘Žπ‘›π‘‘ π‘ž(π‘₯) are

    inverses of each other.

  • SM015/2 MATRICULATION PROGRAMME EXAMINATION

    CHOW CHOON WOOI

    3

    2018/2019

    f) The polynomial 𝑃(π‘₯) = π‘₯4 + π‘Žπ‘₯3 βˆ’ 7π‘₯2 βˆ’ 4π‘Žπ‘₯ + 𝑏 has a factor (π‘₯ + 3) and

    remainder 60 when divided by (π‘₯ βˆ’ 3). Find the values of π‘Ž and 𝑏. Hence, factorise

    𝑃(π‘₯) completely.

    g) a) Express 12 cos πœƒ + 7 sin πœƒ in the form of Rcos(πœƒ βˆ’ 𝛼), where 𝑅 > 0 and

    0Β° ≀ 𝛼 ≀ 90Β°

    b) Hence, show that the maximum value of 1

    12cosπœƒ+7sinπœƒ+15 is

    1

    32(15 + √193).

    h) The function 𝑔(π‘₯) is defined by

    𝑔(π‘₯) =

    {

    2 , π‘₯ ≀ 2 π‘₯ βˆ’ 2

    √2π‘₯ βˆ’ 2, 2 < π‘₯ ≀ 8

    |8 βˆ’ π‘₯|

    π‘₯ βˆ’ 8, π‘₯ > 8

    Find

    a) limπ‘₯β†’2+

    𝑔(π‘₯)

    b) limπ‘₯β†’8+

    𝑔(π‘₯)

    i) a) Find the derivative of 𝑓(π‘₯) =6

    √π‘₯ using the first principle.

    b) Find the value of 𝑑𝑦

    𝑑π‘₯ when π‘₯ = 0 for each of the following:

    1. 𝑦 = ln(9 βˆ’ 2π‘₯)

    2. 𝑦 =π‘’βˆ’3π‘₯

    √3π‘₯+1

    j) Given 𝑓(π‘₯) =3π‘₯

    π‘₯2+9, where π‘₯ > 0. Find the coordinates of the stationary point and

    state it’s nature.

  • SM015/2 MATRICULATION PROGRAMME EXAMINATION

    CHOW CHOON WOOI

    4

    2018/2019

    1. Given 𝑧1 = 2 + 3𝑖 and 𝑧2 = 4 βˆ’ 4𝑖. Express (𝑧2)

    (𝑧1Μ…Μ… Μ…)+ [(

    𝑖3

    βˆ’π‘§2)] in Cartesian form.

    SOLUTION

    𝑧1 = 2 + 3𝑖

    𝑧2 = 4 βˆ’ 4𝑖

    (𝑧2)

    (𝑧1Μ…)+ [(

    𝑖3

    βˆ’π‘§2)] =

    4 βˆ’ 4𝑖

    2 βˆ’ 3𝑖+ [(

    𝑖3

    βˆ’(4 βˆ’ 4𝑖))]

    =4 βˆ’ 4𝑖

    2 βˆ’ 3π‘–βˆ’

    𝑖3

    (4 βˆ’ 4𝑖)

    =(4 βˆ’ 4𝑖)(4 βˆ’ 4𝑖) βˆ’ 𝑖3(2 βˆ’ 3𝑖)

    (2 βˆ’ 3𝑖)(4 βˆ’ 4𝑖)

    =16 βˆ’ 16𝑖 βˆ’ 16𝑖 + 16𝑖2 βˆ’ 2𝑖3 + 3𝑖4

    8 βˆ’ 8𝑖 βˆ’ 12𝑖 + 12𝑖2

    =16 βˆ’ 16𝑖 βˆ’ 16𝑖 + 16(βˆ’1) βˆ’ 2(βˆ’π‘–) + 3(1)

    8 βˆ’ 20𝑖 + 12(βˆ’1)

    =16 βˆ’ 16𝑖 βˆ’ 16𝑖 βˆ’ 16 + 2𝑖 + 3

    8 βˆ’ 20𝑖 βˆ’ 12

    =3 βˆ’ 30𝑖

    βˆ’4 βˆ’ 20𝑖

    =(3 βˆ’ 30𝑖)

    (βˆ’4 βˆ’ 20𝑖).(βˆ’4 + 20𝑖)

    (βˆ’4 + 20𝑖)

    =βˆ’12 + 60𝑖 + 120𝑖 βˆ’ 600𝑖2

    16 βˆ’ 80𝑖 + 80𝑖 βˆ’ 400𝑖2

    =βˆ’12 + 60𝑖 + 120𝑖 βˆ’ 600(βˆ’1)

    16 βˆ’ 80𝑖 + 80𝑖 βˆ’ 400(βˆ’1)

    =588 + 180𝑖

    416

    𝑖 = βˆšβˆ’1

    𝑖2 = βˆ’1

    𝑖3 = βˆ’π‘–

    𝑖4 = 1

  • SM015/2 MATRICULATION PROGRAMME EXAMINATION

    CHOW CHOON WOOI

    5

    2018/2019

    =588

    416+180

    416𝑖

    =147

    104+45

    104𝑖

  • SM015/2 MATRICULATION PROGRAMME EXAMINATION

    CHOW CHOON WOOI

    6

    2018/2019

    2. Solve

    a. (27

    125)2

    x (25

    9)4π‘₯

    = (9

    25)π‘₯βˆ’3

    x (625

    81)2

    b. 1

    4βˆ’2π‘₯β‰₯

    8

    π‘₯

    SOLUTION

    a. (27

    125)2

    x (25

    9)4π‘₯

    = (9

    25)π‘₯βˆ’3

    x (625

    81)2

    (259 )

    4π‘₯

    (925)

    π‘₯βˆ’3 =(62581 )

    2

    (27125)

    2

    (259 )

    4π‘₯

    (259 )

    3βˆ’π‘₯ =

    [(53)

    4

    ]

    2

    [(35)

    3

    ]2

    [(53)

    2

    ]

    4π‘₯

    [(53)

    2

    ]

    3βˆ’π‘₯ =(53)

    8

    (35)6

    (53)

    8π‘₯

    (53)

    6βˆ’2π‘₯ =(53)

    8

    (53)

    βˆ’6

    (5

    3)8π‘₯βˆ’(6βˆ’2π‘₯)

    = (5

    3)8βˆ’(βˆ’6)

    (5

    3)10π‘₯βˆ’6

    = (5

    3)14

    (π‘Ž

    𝑏)𝑐

    = (𝑏

    π‘Ž)βˆ’π‘

    (9

    25)π‘₯βˆ’3

    = (25

    9)3βˆ’π‘₯

    π‘Žπ‘š

    π‘Žπ‘›= π‘Žπ‘šβˆ’π‘›

  • SM015/2 MATRICULATION PROGRAMME EXAMINATION

    CHOW CHOON WOOI

    7

    2018/2019

    10π‘₯ βˆ’ 6 = 14

    π‘₯ = 2

    b. 1

    4βˆ’2π‘₯β‰₯

    8

    π‘₯

    1

    4 βˆ’ 2π‘₯βˆ’8

    π‘₯β‰₯ 0

    π‘₯ βˆ’ 8(4 βˆ’ 2π‘₯)

    π‘₯(4 βˆ’ 2π‘₯)β‰₯ 0

    π‘₯ βˆ’ 32 + 16π‘₯

    π‘₯(4 βˆ’ 2π‘₯)β‰₯ 0

    17π‘₯ βˆ’ 32

    π‘₯(4 βˆ’ 2π‘₯)β‰₯ 0

    π‘ͺπ’“π’Šπ’•π’Šπ’„π’‚π’ 𝒗𝒂𝒍𝒖𝒆:

    π‘₯ =32

    17 π‘₯ = 0 π‘₯ = 2

    π‘₯ (βˆ’βˆž, 0) (0,32

    17) (

    32

    17, 2) (2,∞)

    17π‘₯ βˆ’ 32 - - + +

    (4 βˆ’ 2π‘₯) + + + -

    π‘₯ - + + +

    17π‘₯ βˆ’ 32

    π‘₯(4 βˆ’ 2π‘₯) β—‹+ - β—‹+ -

    π‘†π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘›: {π‘₯: π‘₯ < 0 βˆͺ32

    17≀ π‘₯ < 2}

  • SM015/2 MATRICULATION PROGRAMME EXAMINATION

    CHOW CHOON WOOI

    8

    2018/2019

    3. a) The first three terms of a geometric series are (3𝑐 βˆ’7

    2) , (3𝑐 βˆ’ 2) π‘Žπ‘›π‘‘ 6.

    Determine the value of 𝑐. Hence, find the seventh term of this series.

    b) Expand (3

    2π‘₯2 βˆ’ 1)

    3

    SOLUTION

    a) Geometric series

    (3𝑐 βˆ’7

    2) , (3𝑐 βˆ’ 2) π‘Žπ‘›π‘‘ 6

    𝑇2𝑇1=𝑇3𝑇2

    3𝑐 βˆ’ 2

    3𝑐 βˆ’72

    =6

    3𝑐 βˆ’ 2

    (3𝑐 βˆ’ 2)2 = 6(3𝑐 βˆ’7

    2)

    9𝑐2 βˆ’ 12𝑐 + 4 = 18𝑐 βˆ’ 21

    9𝑐2 βˆ’ 30𝑐 + 25 = 0

    (3𝑐 βˆ’ 5)(3𝑐 βˆ’ 5) = 0

    𝑐 =5

    3

    π‘Ž = 3𝑐 βˆ’7

    2

    = 3(5

    3) βˆ’

    7

    2

  • SM015/2 MATRICULATION PROGRAMME EXAMINATION

    CHOW CHOON WOOI

    9

    2018/2019

    =3

    2

    π‘Ÿ =6

    3𝑐 βˆ’ 2

    =6

    3(53) βˆ’ 2

    = 2

    𝑇7 = π‘Žπ‘Ÿ6

    = (3

    2) (2)6

    = 96

    b) (32π‘₯2 βˆ’ 1)

    3= (

    30) (

    3π‘₯2

    2)3(βˆ’1)0+ (

    31) (

    3π‘₯2

    2)2(βˆ’1)1+ (

    32) (

    3π‘₯2

    2)1(βˆ’1)2 + (

    33) (

    3π‘₯2

    2)0(βˆ’1)3

    = (1)(27π‘₯6

    8) (1) + (3) (

    9π‘₯4

    4) (βˆ’1) + (3) (

    3π‘₯2

    2) (1) + (1)(1)(βˆ’1)

    =27

    8π‘₯6 βˆ’

    27

    4π‘₯4 +

    9

    2π‘₯2 βˆ’ 1

  • SM015/2 MATRICULATION PROGRAMME EXAMINATION

    CHOW CHOON WOOI

    10

    2018/2019

    i. a) Given the matrix [1 3 4

    π‘Ž + 2𝑏 3 24 π‘Ž + 𝑏 9

    ] such that 𝑀11 = 7 and 𝐢12 = βˆ’1,

    calculate the values of a and b.

    b) Let 𝐴 = [1 3 41 3 24 10 9

    ] , 𝐡 = [7 13 βˆ’6βˆ’1 βˆ’7 2βˆ’2 2 0

    ] π‘Žπ‘›π‘‘ 𝐢 = (112)

    i. Find determinant of 𝐴 by expanding first column.

    ii. Evaluate (𝐴2 βˆ’ 𝐡𝑇)𝐢.

    SOLUTION

    a) [1 3 4

    π‘Ž + 2𝑏 3 24 π‘Ž + 𝑏 9

    ]

    𝑀11 = |3 2

    π‘Ž + 𝑏 9|

    = 27 βˆ’ 2π‘Ž βˆ’ 2𝑏

    27 βˆ’ 2π‘Ž βˆ’ 2𝑏 = 7

    2π‘Ž + 2𝑏 = 20

    π‘Ž + 𝑏 = 10 ………………………….. (1)

    𝐢12 = (βˆ’1)1+2 |

    π‘Ž + 2𝑏 24 9

    |

    = (βˆ’1)[9π‘Ž + 18𝑏 βˆ’ 8]

  • SM015/2 MATRICULATION PROGRAMME EXAMINATION

    CHOW CHOON WOOI

    11

    2018/2019

    = βˆ’9π‘Ž βˆ’ 18𝑏 + 8

    βˆ’9π‘Ž βˆ’ 18𝑏 + 8 = βˆ’1

    9π‘Ž + 18𝑏 = 9

    π‘Ž + 2𝑏 = 1 ………………………….. (2)

    (2) βˆ’ (1)

    𝑏 = 1 βˆ’ 10 = βˆ’9

    π‘Ž + (βˆ’9) = 10

    π‘Ž = 19

    ∴ π‘Ž = 19, 𝑏 = βˆ’9

    bi)

    𝐴 = [1 3 41 3 24 10 9

    ] , 𝐡 = [7 13 βˆ’6βˆ’1 βˆ’7 2βˆ’2 2 0

    ] π‘Žπ‘›π‘‘ 𝐢 = (112)

    |𝐴| = (1) |3 210 9

    | βˆ’ (1) |3 410 9

    | + (4) |3 43 2

    |

    = (1)[27 βˆ’ 20] βˆ’ (1)[27 βˆ’ 40] + (4)[6 βˆ’ 12]

    = 7 + 13 βˆ’ 24

    = βˆ’4

  • SM015/2 MATRICULATION PROGRAMME EXAMINATION

    CHOW CHOON WOOI

    12

    2018/2019

    bii) (𝐴2 βˆ’ 𝐡𝑇)𝐢 = [(1 3 41 3 24 10 9

    )(1 3 41 3 24 10 9

    ) βˆ’ (7 βˆ’1 βˆ’213 βˆ’7 2βˆ’6 2 0

    )] (112)

    = [(20 52 4612 32 2850 132 117

    ) βˆ’ (7 βˆ’1 βˆ’213 βˆ’7 2βˆ’6 2 0

    )](112)

    = [(13 53 48βˆ’1 39 2656 130 117

    )](112)

    = (16290420

    )

  • SM015/2 MATRICULATION PROGRAMME EXAMINATION

    CHOW CHOON WOOI

    13

    2018/2019

    5. a) Given 𝑓(π‘₯) = (5π‘₯+1

    4π‘₯) and g(π‘₯) =

    √π‘₯+1βˆ’2

    π‘₯2βˆ’4. Find

    i. The domain of g(x).

    ii. β„Ž(π‘₯), 𝑖𝑓 (π‘“π‘œβ„Ž)(π‘₯) = π‘₯

    b) Given 𝑝(π‘₯) = 𝑙𝑛(3π‘₯ + 6) and π‘ž(π‘₯) =𝑒π‘₯

    3βˆ’ 2. Show that 𝑝(π‘₯)π‘Žπ‘›π‘‘ π‘ž(π‘₯) are

    inverses of each other.

    SOLUTION

    𝑓(π‘₯) = (5π‘₯ + 1

    4π‘₯)

    g(π‘₯) =√π‘₯+1βˆ’2

    π‘₯2βˆ’4

    5ai) π·π‘œπ‘šπ‘Žπ‘–π‘› π‘œπ‘“ 𝑔(π‘₯)

    π‘₯ + 1 β‰₯ 0 and π‘₯2 βˆ’ 4 β‰  0

    π‘₯ β‰₯ βˆ’1 and π‘₯ β‰  Β±2

    ∴ 𝐷𝑓: [βˆ’1,2) βˆͺ (2,∞)

    5π‘Žπ‘–π‘–) (π‘“π‘œβ„Ž)(π‘₯) = π‘₯

    𝑓[β„Ž(π‘₯)] = π‘₯

    [5β„Ž(π‘₯) + 1

    4β„Ž(π‘₯)] = π‘₯

    5β„Ž(π‘₯) + 1 = 4π‘₯β„Ž(π‘₯)

    5β„Ž(π‘₯) βˆ’ 4π‘₯β„Ž(π‘₯) = βˆ’1

    β„Ž(π‘₯)[5 βˆ’ 4π‘₯] = βˆ’1

  • SM015/2 MATRICULATION PROGRAMME EXAMINATION

    CHOW CHOON WOOI

    14

    2018/2019

    β„Ž(π‘₯) =βˆ’1

    5 βˆ’ 4π‘₯

    5b) Given 𝑝(π‘₯) = 𝑙𝑛(3π‘₯ + 6) and π‘ž(π‘₯) =𝑒π‘₯

    3βˆ’ 2

    𝑝[π‘ž(π‘₯)] = 𝑙𝑛 [3 (𝑒π‘₯

    3βˆ’ 2) + 6]

    = 𝑙𝑛[𝑒π‘₯ βˆ’ 6 + 6]

    = 𝑙𝑛[𝑒π‘₯]

    = π‘₯𝑙𝑛[𝑒]

    = π‘₯

    π‘ž[𝑝(π‘₯)] =𝑒𝑙𝑛(3π‘₯+6)

    3βˆ’ 2

    =3π‘₯ + 6

    3βˆ’ 2

    =3π‘₯ + 6 βˆ’ 6

    3

    = π‘₯

    𝑆𝑖𝑛𝑐𝑒 𝑝[π‘ž(π‘₯)] = π‘ž[𝑝(π‘₯)] = π‘₯, π‘‘β„Žπ‘’π‘Ÿπ‘’π‘“π‘œπ‘Ÿπ‘’ 𝑝(π‘₯)π‘Žπ‘›π‘‘ π‘ž(π‘₯)π‘Žπ‘Ÿπ‘’ π‘–π‘›π‘£π‘’π‘Ÿπ‘ π‘’π‘  π‘œπ‘“ π‘’π‘Žπ‘β„Ž π‘œπ‘‘β„Žπ‘’π‘Ÿ

  • SM015/2 MATRICULATION PROGRAMME EXAMINATION

    CHOW CHOON WOOI

    15

    2018/2019

    6. The polynomial 𝑃(π‘₯) = π‘₯4 + π‘Žπ‘₯3 βˆ’ 7π‘₯2 βˆ’ 4π‘Žπ‘₯ + 𝑏 has a factor (π‘₯ + 3) and

    remainder 60 when divided by (π‘₯ βˆ’ 3). Find the values of a and b. Hence, factorise

    𝑃(π‘₯) completely.

    SOLUTION

    𝑃(π‘₯) = π‘₯4 + π‘Žπ‘₯3 βˆ’ 7π‘₯2 βˆ’ 4π‘Žπ‘₯ + 𝑏

    𝑃(βˆ’3) = 0

    𝑃(3) = 60

    𝑃(βˆ’3) = (βˆ’3)4 + π‘Ž(βˆ’3)3 βˆ’ 7(βˆ’3)2 βˆ’ 4π‘Ž(βˆ’3) + 𝑏 = 0

    81 βˆ’ 27π‘Ž βˆ’ 63 + 12π‘Ž + 𝑏 = 0

    15π‘Ž βˆ’ 𝑏 = 18 ……………………. (1)

    𝑃(3) = (3)4 + π‘Ž(3)3 βˆ’ 7(3)2 βˆ’ 4π‘Ž(3) + 𝑏 = 60

    81 + 27π‘Ž βˆ’ 63 βˆ’ 12π‘Ž + 𝑏 = 60

    15π‘Ž + 𝑏 = 42 ……………………. (2)

    (2) βˆ’ (1)

    2𝑏 = 24

    𝑏 = 12

    15π‘Ž βˆ’ 12 = 18

    π‘Ž = 2

    ∴ π‘Ž = 2, 𝑏 = 12

  • SM015/2 MATRICULATION PROGRAMME EXAMINATION

    CHOW CHOON WOOI

    16

    2018/2019

    𝑃(π‘₯) = π‘₯4 + 2π‘₯3 βˆ’ 7π‘₯2 βˆ’ 8π‘₯ + 12

    44

    0

    124

    124

    124

    1284

    3

    1287

    3

    128723

    23

    2

    2

    23

    23

    34

    234

    xxx

    x

    x

    xx

    xx

    xx

    xxx

    xx

    xxxxx

    𝑃(π‘₯) = (π‘₯ + 3)(π‘₯3 βˆ’ π‘₯2 βˆ’ 4π‘₯ + 4)

    = (π‘₯ + 3)[π‘₯2(π‘₯ βˆ’ 1) βˆ’ 4(π‘₯ βˆ’ 1)]

    = (π‘₯ + 3)(π‘₯ βˆ’ 1)[π‘₯2 βˆ’ 4]

    = (π‘₯ + 3)(π‘₯ βˆ’ 1)(π‘₯ + 2)(π‘₯ βˆ’ 2)

  • SM015/2 MATRICULATION PROGRAMME EXAMINATION

    CHOW CHOON WOOI

    17

    2018/2019

    7. a) Express 12 cos πœƒ + 7 sin πœƒ in the form of Rcos(πœƒ βˆ’ 𝛼), where 𝑅 > 0 and

    0Β° ≀ 𝛼 ≀ 90Β°

    b) Hence, show that the maximum value of 1

    12cosπœƒ+7sinπœƒ+15 is

    1

    32(15 + √193).

    SOLUTION

    7a) 12 cos πœƒ + 7 sin πœƒ = Rcos(πœƒ βˆ’ 𝛼)

    12 cos πœƒ + 7 sin πœƒ = 𝑅[cos πœƒ cos 𝛼 + sinπœƒ sin 𝛼]

    12 cos πœƒ + 7 sin πœƒ = Rcos πœƒ cos 𝛼 + Rsin πœƒ sin𝛼

    𝑅 cos 𝛼 = 12 ……………………… (1)

    𝑅 sin𝛼 = 7 ……………………… (2)

    (1)2 + (2)2

    𝑅2π‘π‘œπ‘ 2 𝛼 + 𝑅2𝑠𝑖𝑛2 𝛼 = 122 + 72

    𝑅2(π‘π‘œπ‘ 2 𝛼 + 𝑠𝑖𝑛2 𝛼) = 193c

    𝑅2(1) = 193

    𝑅 = √193

    (2) + (1)

    𝑅 sin𝛼

    𝑅 cos 𝛼=7

    12

    tan 𝛼 =7

    12

    𝛼 = 30.3Β°

    12 cos πœƒ + 7 sin πœƒ = √193 cos(πœƒ βˆ’ 30.3Β°)

  • SM015/2 MATRICULATION PROGRAMME EXAMINATION

    CHOW CHOON WOOI

    18

    2018/2019

    7b) 1

    12cosπœƒ+7sinπœƒ+15=

    1

    (√193cos(πœƒβˆ’30.3Β°))+15

    βˆ’1 ≀ cos(πœƒ βˆ’ 30.3Β°) ≀ 1

    βˆ’βˆš193 ≀ √193 cos(πœƒ βˆ’ 30.3Β°) ≀ √193

    βˆ’βˆš193 + 15 ≀ √193 cos(πœƒ βˆ’ 30.3Β°) + 15 ≀ √193 + 15

    1

    √193 + 15≀

    1

    √193 cos(πœƒ βˆ’ 30.3Β°) + 15≀

    1

    βˆ’βˆš193 + 15

    1

    √193 + 15≀

    1

    12 cos πœƒ + 7 sin πœƒ + 15≀

    1

    βˆ’βˆš193 + 15

    π‘‡β„Žπ‘’ π‘€π‘Žπ‘₯π‘–π‘šπ‘’π‘š π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 1

    12 cos πœƒ + 7 sin πœƒ + 15

    1

    βˆ’βˆš193 + 15=

    1

    (15 βˆ’ √193).(15 + √193)

    (15 + √193)

    =15 + √193

    225 + 15√193 βˆ’ 15√193 βˆ’ 193

    =15 + √193

    32

    =1

    32(15 + √193)

  • SM015/2 MATRICULATION PROGRAMME EXAMINATION

    CHOW CHOON WOOI

    19

    2018/2019

    8. The function 𝑔(π‘₯) is defined by

    𝑔(π‘₯) =

    {

    2 , π‘₯ ≀ 2 π‘₯ βˆ’ 2

    √2π‘₯ βˆ’ 2, 2 < π‘₯ ≀ 8

    |8 βˆ’ π‘₯|

    π‘₯ βˆ’ 8, π‘₯ > 8

    Find

    a) limπ‘₯β†’2+

    𝑔(π‘₯)

    b) limπ‘₯β†’8+

    𝑔(π‘₯)

    SOLUTION

    a) limπ‘₯β†’2+

    𝑔(π‘₯) = limπ‘₯β†’2+

    (π‘₯βˆ’2

    √2π‘₯βˆ’2)

    = limπ‘₯β†’2+

    (π‘₯ βˆ’ 2

    √2π‘₯ βˆ’ 2)(√2π‘₯ + 2

    √2π‘₯ + 2)

    = limπ‘₯β†’2+

    ((π‘₯ βˆ’ 2)(√2π‘₯ + 2)

    2π‘₯ + 2√2π‘₯ βˆ’ 2√2π‘₯ βˆ’ 4)

    = limπ‘₯β†’2+

    ((π‘₯ βˆ’ 2)(√2π‘₯ + 2)

    2π‘₯ βˆ’ 4)

    = limπ‘₯β†’2+

    ((π‘₯ βˆ’ 2)(√2π‘₯ + 2)

    2(π‘₯ βˆ’ 2))

    = limπ‘₯β†’2+

    [(√2π‘₯ + 2)

    2]

    =√2(2) + 2

    2

    = 2

  • SM015/2 MATRICULATION PROGRAMME EXAMINATION

    CHOW CHOON WOOI

    20

    2018/2019

    b) |8 βˆ’ π‘₯| = {8 βˆ’ π‘₯

    βˆ’(8 βˆ’ π‘₯)8 βˆ’ π‘₯ β‰₯ 08 βˆ’ π‘₯ < 0

    = {8 βˆ’ π‘₯

    βˆ’(8 βˆ’ π‘₯)π‘₯ ≀ 8π‘₯ > 8

    limπ‘₯β†’8+

    𝑔(π‘₯) = limπ‘₯β†’8+

    |8 βˆ’ π‘₯|

    π‘₯ βˆ’ 8

    = limπ‘₯β†’8+

    βˆ’(8 βˆ’ π‘₯)

    π‘₯ βˆ’ 8

    = limπ‘₯β†’8+

    π‘₯ βˆ’ 8

    π‘₯ βˆ’ 8

    = limπ‘₯β†’8+

    1

    = 1

  • SM015/2 MATRICULATION PROGRAMME EXAMINATION

    CHOW CHOON WOOI

    21

    2018/2019

    9. a) Find the derivative of 𝑓(π‘₯) =6

    √π‘₯ using the first principle.

    b) Find the value of 𝑑𝑦

    𝑑π‘₯ when π‘₯ = 0 for each of the following:

    i. 𝑦 = ln(9 βˆ’ 2π‘₯)

    ii. 𝑦 =π‘’βˆ’3π‘₯

    √3π‘₯+1

    SOLUTION

    a) 𝑓(π‘₯) =6

    √π‘₯

    𝑓(π‘₯ + β„Ž) =6

    √π‘₯ + β„Ž

    𝑓′(π‘₯) = limβ„Žβ†’0

    𝑓(π‘₯ + β„Ž) βˆ’ 𝑓(π‘₯)

    β„Ž

    = limβ„Žβ†’0

    6

    √π‘₯ + β„Žβˆ’6

    √π‘₯β„Ž

    = limβ„Žβ†’0

    (6

    √π‘₯ + β„Žβˆ’6

    √π‘₯) . (

    1

    β„Ž)

    = limβ„Žβ†’0

    (6√π‘₯ βˆ’ 6√π‘₯ + β„Ž

    √π‘₯√π‘₯ + β„Ž) . (

    1

    β„Ž)

    = limβ„Žβ†’0

    [6(√π‘₯ βˆ’ √π‘₯ + β„Ž)

    √π‘₯√π‘₯ + β„Ž] . (

    1

    β„Ž)

    = limβ„Žβ†’0

    [6(√π‘₯ βˆ’ √π‘₯ + β„Ž)(√π‘₯ + √π‘₯ + β„Ž)

    √π‘₯√π‘₯ + β„Ž(√π‘₯ + √π‘₯ + β„Ž)] . (

    1

    β„Ž)

    = limβ„Žβ†’0

    [6 (π‘₯ + √π‘₯√π‘₯ + β„Ž βˆ’ √π‘₯√π‘₯ + β„Ž βˆ’ (π‘₯ + β„Ž))

    √π‘₯√π‘₯ + β„Ž(√π‘₯ + √π‘₯ + β„Ž)] . (

    1

    β„Ž)

  • SM015/2 MATRICULATION PROGRAMME EXAMINATION

    CHOW CHOON WOOI

    22

    2018/2019

    = limβ„Žβ†’0

    [6(βˆ’β„Ž)

    √π‘₯√π‘₯ + β„Ž(√π‘₯ + √π‘₯ + β„Ž)] . (

    1

    β„Ž)

    = limβ„Žβ†’0

    [βˆ’6

    √π‘₯√π‘₯ + β„Ž(√π‘₯ + √π‘₯ + β„Ž)]

    =βˆ’6

    √π‘₯√π‘₯ + 0(√π‘₯ + √π‘₯ + 0)

    =βˆ’6

    √π‘₯√π‘₯(√π‘₯ + √π‘₯)

    =βˆ’6

    π‘₯(2√π‘₯)

    =βˆ’3

    π‘₯32

    bi) 𝑦 = ln(9 βˆ’ 2π‘₯)

    𝑑𝑦

    𝑑π‘₯=

    1

    9 βˆ’ 2π‘₯

    𝑑

    𝑑π‘₯(9 βˆ’ 2π‘₯)

    𝑑𝑦

    𝑑π‘₯=

    1

    9 βˆ’ 2π‘₯(βˆ’2)

    𝑑𝑦

    𝑑π‘₯=

    βˆ’2

    9 βˆ’ 2π‘₯

    π‘Šβ„Žπ‘’π‘› π‘₯ = 0

    𝑑𝑦

    𝑑π‘₯=

    βˆ’2

    9 βˆ’ 0

  • SM015/2 MATRICULATION PROGRAMME EXAMINATION

    CHOW CHOON WOOI

    23

    2018/2019

    = βˆ’2

    9

    bii) 𝑦 =π‘’βˆ’3π‘₯

    √3π‘₯+1

    𝑒 = π‘’βˆ’3π‘₯

    𝑒′ = βˆ’3π‘’βˆ’3π‘₯

    𝑣 = √3π‘₯ + 1 = (3π‘₯ + 1)12

    𝑣′ =1

    2(3π‘₯ + 1)βˆ’

    12𝑑

    𝑑π‘₯(3π‘₯ + 1)

    =3

    2(3π‘₯ + 1)12

    𝑑𝑦

    𝑑π‘₯=𝑣𝑒′ βˆ’ 𝑒𝑣′

    𝑣2

    =

    (3π‘₯ + 1)12(βˆ’3π‘’βˆ’3π‘₯) βˆ’ π‘’βˆ’3π‘₯ (

    3

    2(3π‘₯ + 1)12

    )

    [(3π‘₯ + 1)12]2

    π‘Šβ„Žπ‘’π‘› π‘₯ = 0;

    𝑑𝑦

    𝑑π‘₯=

    (0 + 1)12(βˆ’3𝑒0) βˆ’ 𝑒0 (

    3

    2(0 + 1)12

    )

    [(0 + 1)12]2

    =βˆ’3 βˆ’

    32

    1

    = βˆ’9

    2

  • SM015/2 MATRICULATION PROGRAMME EXAMINATION

    CHOW CHOON WOOI

    24

    2018/2019

    10. Given 𝑓(π‘₯) =3π‘₯

    π‘₯2+9, where π‘₯ > 0. Find the coordinates of the stationary point and

    state it’s nature.

    SOLUTION

    𝑓(π‘₯) =3π‘₯

    π‘₯2 + 9

    𝑒 = 3π‘₯

    𝑒′ = 3

    𝑣 = π‘₯2 + 9

    𝑣′ = 2π‘₯

    𝑓′(π‘₯) =𝑣𝑒′ βˆ’ 𝑒𝑣′

    𝑣2

    =(π‘₯2 + 9)(3) βˆ’ (3π‘₯)(2π‘₯)

    (π‘₯2 + 9)2

    =3π‘₯2 + 27 βˆ’ 6π‘₯2

    (π‘₯2 + 9)2

    =βˆ’3π‘₯2 + 27

    (π‘₯2 + 9)2

    𝑒 = βˆ’3π‘₯2 + 27

    𝑒′ = βˆ’9π‘₯

    𝑣 = (π‘₯2 + 9)2

    𝑣′ = 2(π‘₯2 + 9)𝑑

    𝑑π‘₯(π‘₯2 + 9)

    = 2(π‘₯2 + 9)(2π‘₯)

    = 4π‘₯(π‘₯2 + 9)

    𝑓"(π‘₯) =𝑣𝑒′ βˆ’ 𝑒𝑣′

    𝑣2

  • SM015/2 MATRICULATION PROGRAMME EXAMINATION

    CHOW CHOON WOOI

    25

    2018/2019

    =(π‘₯2 + 9)2(βˆ’9π‘₯) βˆ’ (βˆ’3π‘₯2 + 27)4π‘₯(π‘₯2 + 9)

    (π‘₯2 + 9)4

    =βˆ’9π‘₯(π‘₯2 + 9)2 βˆ’ 4π‘₯(βˆ’3π‘₯2 + 27)(π‘₯2 + 9)

    (π‘₯2 + 9)4

    𝐿𝑒𝑑 𝑓′(π‘₯) = 0

    βˆ’3π‘₯2 + 27

    (π‘₯2 + 9)2= 0

    βˆ’3π‘₯2 + 27 = 0

    3π‘₯2 = 27

    π‘₯2 = 9

    π‘₯ = Β±3

    𝑆𝑖𝑛𝑐𝑒 π‘₯ > 0 , π‘₯ = 3

    𝑾𝒉𝒆𝒏 𝒙 = πŸ‘

    𝑓(π‘₯) =3π‘₯

    π‘₯2 + 9

    =9

    9 + 9

    =1

    2

    (3,1

    2 ) 𝑖𝑠 π‘Ž π‘ π‘‘π‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘Ÿπ‘¦ π‘π‘œπ‘–π‘›π‘‘

  • SM015/2 MATRICULATION PROGRAMME EXAMINATION

    CHOW CHOON WOOI

    26

    2018/2019

    𝑓"(π‘₯) =βˆ’9π‘₯(π‘₯2 + 9)2 βˆ’ 4π‘₯(βˆ’3π‘₯2 + 27)(π‘₯2 + 9)

    (π‘₯2 + 9)4

    =βˆ’27(9 + 9)2 βˆ’ 12(βˆ’27 + 27)(9 + 9)

    (9 + 9)4

    =βˆ’27(9 + 9)2 βˆ’ 0

    (9 + 9)4

    < 0 (π‘€π‘Žπ‘₯)

    ∴ (3,1

    2 ) 𝑖𝑠 π‘Ž π‘šπ‘Žπ‘₯π‘–π‘šπ‘’π‘š π‘π‘œπ‘–π‘›π‘‘