sn1, sn2, 1

66
Organic Chemistry Chapter 8

Upload: muhsin-mukhtar-s-farm

Post on 20-Jul-2016

112 views

Category:

Documents


7 download

DESCRIPTION

SNI 1, SNI 2

TRANSCRIPT

Page 1: SN1, SN2, 1

Organic ChemistryChapter 8

Page 2: SN1, SN2, 1

Substitution and Elimination• If an sp3 C is bonded to electronegative

atom Substitution reactions and Elimination reactions are possible

This chapter is all about substitution

Page 3: SN1, SN2, 1

SN2 and SN1 Reactions

SN2 - Reaction – bonds break and form at the same time

example

SN1 - CX bond breaks, forming a C+ then reacts with a nucleophile

XC+

C + + X-

NuCC + + Nu:

SN1

SN2

Page 4: SN1, SN2, 1

Nucleophilic Substitution Reactions

Either mechanism depends on the:• structure of the alkyl halide• reactivity of the nucleophile• concentration of the nucleophile• The solvent in which the Rx is carried out• The leaving group

Page 5: SN1, SN2, 1

SN2 Mechanism

• It’s a Substitution Reaction (S)• It’s Nucleophilic (N)• It’s rate is second order (2)

– Called bimolecular (rate is dependent on 2 reactants)

• (Substitution Nucleophilic Bimolecular)

CH3Br + HO - CH3OH + Br-

methyl bromide methyl alcohol

Rate = k [RX] [Nu:](Because rate is dependent of BOTH RX and Nu: it is 2nd. order.)

Page 6: SN1, SN2, 1

SN2 Mechanism• SN2 Mechanism involves a “backside attack”

Page 7: SN1, SN2, 1

SN2 MechanismThe “backside attack” causes an Inversion of Configuration

Page 8: SN1, SN2, 1

Steric Hindrance

• Groups that block the path from the nucleophile to the electrophilic atom produce steric hindrance

• This results in a rate differences or no reaction at all

methyl halide ethyl halide isopropyl halide t-butyl halide

Page 9: SN1, SN2, 1

Steric Hindrance

• Activation Energy is higher due to steric hindrance…..

Page 10: SN1, SN2, 1

Substitution Reactions Depend on a Good Leaving Group

• R-F alkyl fluorides• R-Cl alkyl chlorides• R-Br alkyl bromides• R-I alkyl iodides• Alkyl Halides make good “leaving groups”

– They are easily displaced by another atom– They allow the Conversion of alkyl halides to other functional

groups

Page 11: SN1, SN2, 1

SN2 Mechanism

• The Leaving Groups also affects rate• RI reacts fastest, RF slowest

– Iodide is the best “leaving group”– Fluoride is the worst “leaving group”

(…reacting with the same alkyl halide under the same conditions)

Page 12: SN1, SN2, 1

SN2 Reactions

Page 13: SN1, SN2, 1

SN2 Reactions

Page 14: SN1, SN2, 1

SN2 Reactions• Reaksi S N 2 mungkin reversibel• Bandingkan kebasaan (kekuatan nukleofil)

untuk melihat gugus pergi yang lebih baik.– Basa kuat akan menggantikan basa lemah

• Jika kebasaan hampir sama, Rx akan reversibel

CH2CH3 Br + I- CH2CH3 I + Br-

Page 15: SN1, SN2, 1

SN2 ReactionsCompare basicity to see which is a better nucleophile.

Page 16: SN1, SN2, 1

F Cl Br I-

Bertambah jari-jari ion(Atom yg lebih besar mampu menyebarkan muatan negative lebih baik drpd atom kecil, penyebaran muatan menyababkan penstabilan)

HF HCl HBr HI

pKa 3,45 -7 -9 -9,5

Naiknya kuat asam

Page 17: SN1, SN2, 1

C N O F

Meningkatnya keelektronegatifan unsur

R3C-H R2N-H RO-H F-H

Naiknya kuat asamAnion asam sangat kuat merupakan basa lebih lemah, sebaliknya anion asam sangat lemah merupakan basa sangat kuatR3C- R2N- RO- F-

Naiknya kuat basa

Page 18: SN1, SN2, 1
Page 19: SN1, SN2, 1

SN1 Reactions• Reaction of t-butyl bromide with water should be

slow– water is a poor nucleophile– t-butyl bromide is sterically hinderedHowever– Reaction is a million times faster than with CH3Br

t-butyl bromide

CCH3

CH3

Br

CH3

+ H2O

t-butyl alcohol

CCH3

CH3

OH

CH3

+ HBr

(Maybe not an SN2 reaction!)

Page 20: SN1, SN2, 1

SN1 Reactions•

Page 21: SN1, SN2, 1

SN1 Mechanism• Rate determining step does not involve

nucleophile

Step 2

Step 1

Page 22: SN1, SN2, 1

SN1 Mechanism

Page 23: SN1, SN2, 1

SN1 Reactivity• Relative Reactivities in an SN1 Reaction

1o RX < 2o RX < 3o RX

Increasing Reactivity

Page 24: SN1, SN2, 1

SN1 Stereochemistry

• Because a planer carbocation is formed, nucleophilic attack is possible on both sides, so both isomers are possible

Page 25: SN1, SN2, 1

SN1 Stereochemistry

SN1 should yield racemic mixture but it doesn’tThis is due to the steric hindrance of the leaving group

Page 26: SN1, SN2, 1

Stereochemistry• As the leaving group goes (Marvin K) it

blocks the path of any incoming nucleophiles

Page 27: SN1, SN2, 1

SN1 vs SN2

Inversion of configuration

racemization withpartial inversion

Page 28: SN1, SN2, 1

What Makes SN1 Reactions work the best

• Good Leaving Group– The weaker the base, the less tightly it is held

(I- and Br- are weak bases)

• Carbocation– How stable is the resulting carbocation?

• 3o > 2o > 1o > methyl

Increasing Stability

Page 29: SN1, SN2, 1

What Doesn’t Matter In anSN1 Reactions

• The Nucleophile• It has NO EFFECT on rate of Rx!!!

• Solvolysis Reactions • (the nucleophile is also the solvent)

Page 30: SN1, SN2, 1

Carbocation RearrangementsSince a carbocation is the intermediate, you may see

rearrangements in an SN1 Rx

No rearrangements in an SN2 Rx

Page 31: SN1, SN2, 1

Carbocation Rearrangement

• Methyl Shift

Page 32: SN1, SN2, 1

Benzylic, Allylic, Vinylic,and Aryl Halides

• Benzylic and allylic halides can readily undergo SN2 unless they are 3o – (steric hindrance)

Page 33: SN1, SN2, 1

Benzylic, Allylic, Vinylic,and Aryl Halides

• Benzylic and allylic halides can also undergo SN1 (they form stable carbocations)

• Meskipun RX primer : benzilik , alilik BISA bereaksi S N 1!

Page 34: SN1, SN2, 1

Vinylic,and Aryl Halides

• Vinylic halides and aryl halides– tidak mengalami reaksi S N 1 atau S N 2

e- mengusir masuk Nucleophile

BrBr

Page 35: SN1, SN2, 1

SN1 vs SN2 Review

Page 36: SN1, SN2, 1

SN1 vs SN2

Methyl, 1o RX …2o RX …3o RX …

Vinylic, aryl RX …1o, 2o benzylic, allylic RX …

3o benzylic, allylic RX …

SN2 onlySN1 and SN2SN1 onlyneither SN1 nor SN2SN1 and SN2SN1 only

Page 37: SN1, SN2, 1

Role of the Solvent• So….• In an SN1 reaction, the reactant is RX. The

intermediate is charged and is STABILIZED by a POLAR solvent

A POLAR solvent increases the rate of reaction for an SN1 reaction.

(However, this is true only if the reactant is uncharged.)

Page 38: SN1, SN2, 1

Kemampuan mensolvasi ion ditentukan oleh polaritas molekul pelarut itu atau tetapan dielektriknya.Pelarut yang sangat polar mempunyai tetapan dielektrik tinggi.

Umumnya pelarut sangat polar (air) membantu menstabilkan karbokation dengan jalan solvasi = mendorong reaksi SN 1.Pelarut yang kurang polar (spt: aseton) tidak membantu ionisasi shg memilih reaksi SN 2 dan E 2.

Pelarut yg dapat mensolvasi anion (menstabilkan anion) akan mengurangi nukleofitasnya dan sebaliknya. δ+ δ+ _CH3CH2OH----Cl-----HOCH2CH3 : etanol dpt mensolvasi ion negatif.

DMF (dimetil formamida) dan DMSO tidak memiliki H yg mampu mensolvasi ion negatif.

HCON(CH3)2 CH3SOCH3

Page 39: SN1, SN2, 1
Page 40: SN1, SN2, 1

*

Page 41: SN1, SN2, 1

Role of the Solvent In SN2• In an SN2 reaction, one of the reactants is the

nucleophile (usually charged). • The POLAR solvent will usually stabilize the

nucleophile.

A POLAR solvent decreases the rate of reaction for an SN2 reaction.

(However, this is true only if the nucleophile is charged.)

Page 43: SN1, SN2, 1

Contohnya adalah air , metanol , etanol , asam format , fluorida hidrogen dan amonia .

karakteristik Umum pelarut protik:

•Bisa membentuk ikatan hidrogen •pelarut memiliki hidrogen asam (meskipun mereka mungkin asam sangat lemah) •pelarut dapat menstabilkan ion

kation oleh berbagi pasangan elektron bebas anion oleh ikatan hidrogen

Page 48: SN1, SN2, 1

Pelarut protik Polar

Asam formiat HC (= O) OH 101 ° C 58

n-Butanol CH 3-CH 2-CH 2-CH 2-OH 118 ° C 18

Isopropanol (IPA) CH 3-CH (-OH)-CH 3 82 ° C 18

n-Propanol CH 3-CH 2-CH 2-OH 97 ° C 20

Etanol (EtOH) CH 3-CH 2-OH 79 ° C 30

Methanol (MeOH) CH 3-OH 65 ° C 33

Asam asetat (AcOH) CH 3-C (= O) OH 118 ° C 6.2

Air Hoh 100 ° C 80

Page 49: SN1, SN2, 1

Polar Aprotic Solvents

• Polar Aprotic Solvents include:– DMF N,N-dimethylformamide– DMSO dimethylsulfoxide– HMPA hexamethylphosphoramide– THF Tetrahydrofuran– And even… acetone

Page 50: SN1, SN2, 1

Polar Aprotic Solvents

Polar Aprotic Solvents – do not H bond– solvate cations well– do NOT solvate anions (nucleophiles) well– good solvents for SN2 reactions

Page 51: SN1, SN2, 1

Polar Aprotic Solvents

• DMSO• DMF• Acetone• HMPA

Page 52: SN1, SN2, 1

Nucleophile Review

strong

weak

Br -, I-

HO-, CH3O-, RO-

CH3S-, RS -

CH3CO2-, RCO2

-

H2OCH3OH, ROHCH3CO2H, RCO2H

NH3, RNH2, R2NH, R3NCH3SH, RSH, R2S

EffectivenessNucleophile

moderate

CN-, N3-

Page 53: SN1, SN2, 1
Page 54: SN1, SN2, 1

SN1/SN2 Problems -1

• Predict the type of mechanism for this reaction, and the stereochemistry of each product

+

+ +OH

Cl

OCH3

CH3CHCH2CH3

CH3CHCH2CH3

CH3CHCH2CH3

CH3OH/H2O

HCl(R)-enantiomer

Page 55: SN1, SN2, 1

SN1/SN2 Problems -1

• Predict the type of mechanism for this reaction, and the stereochemistry of each product

+

+ +OH

Cl

OCH3

CH3CHCH2CH3

CH3CHCH2CH3

CH3CHCH2CH3

CH3OH/H2O

HCl(R)-enantiomer

Page 56: SN1, SN2, 1

SN1/SN2 Problems -2

• Predict the mechanism of this reaction

+

+

DMSOCH3

CH3

CH3CHCH2CN

CH3CHCH2Br Na+CN-

Na+Br-

Page 57: SN1, SN2, 1

SN1/SN2 Problems -2

• Predict the mechanism of this reaction

+

+

DMSOCH3

CH3

CH3CHCH2CN

CH3CHCH2Br Na+CN-

Na+Br-

Page 58: SN1, SN2, 1

SN1/SN2 Problems -3

• Predict the mechanism. If the starting material has the R configuration, predict the configuration of product

+

+

acetone

Br

SCH3

CH3CHCH2CH3 CH3S-Na+

CH3CHCH2CH3 Na+Br-

Page 59: SN1, SN2, 1

SN1/SN2 Problems -3

• Predict the mechanism. If the starting material has the R configuration, predict the configuration of product

+

+

acetone

Br

SCH3

CH3CHCH2CH3 CH3S-Na+

CH3CHCH2CH3 Na+Br-

Page 60: SN1, SN2, 1

SN1/SN2 Problems -4

• Predict the mechanism

+ acetic acidBr

OCCH 3

O

O

CH 3 COH

+ HBr

Page 61: SN1, SN2, 1

SN1/SN2 Problems -4

• Predict the mechanism

+ acetic acidBr

OCCH 3

O

O

CH 3 COH

+ HBr

Page 62: SN1, SN2, 1

SN1/SN2 Problems -5

• Predict the mechanism

+ toluene

Br-

(CH3)3PCH3(CH2)5CH2Br

CH3(CH2)5CH2-P(CH3)3+

Page 63: SN1, SN2, 1

SN1/SN2 Problems -5

• Predict the mechanism

+ toluene

Br-

(CH3)3PCH3(CH2)5CH2Br

CH3(CH2)5CH2-P(CH3)3+

Page 64: SN1, SN2, 1

64

• Negatively charged nucleophiles like HO¯ and HS¯ are used as salts with Li+, Na+, or K+ counterions to balance the charge. Since the identity of the counterion is usually inconsequential, it is often omitted from the chemical equation.

• When a neutral nucleophile is used, the substitution product bears a positive charge.

Alkyl Halides and Nucleophilic SubstitutionGeneral Features of Nucleophilic Substitution:

Page 65: SN1, SN2, 1

65

• Furthermore, when the substitution product bears a positive charge and also contains a proton bonded to O or N, the initially formed substitution product readily loses a proton in a BrØnsted-Lowry acid-base reaction, forming a neutral product.

• To draw any nucleophilic substitution product:Find the sp3 hybridized carbon with the leaving group.Identify the nucleophile, the species with a lone pair or bond.Substitute the nucleophile for the leaving group and assign charges (if necessary) to any atom that is involved in bond breaking or bond formation.

Alkyl Halides and Nucleophilic SubstitutionGeneral Features of Nucleophilic Substitution:

Page 66: SN1, SN2, 1

END