soils in fire-prone ecosystems where does all the charcoal …...-347 13c nmr 15n nmr 19 recovery:...

56
Soils in fire-prone ecosystems Where does all the charcoal go? Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Adva. Reina Mercedes, 10, 4012 Sevilla, Spain Heike Knicker

Upload: others

Post on 27-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Soils in fire-prone ecosystems –

    Where does all the charcoal go?

    Instituto de Recursos Naturales y Agrobiología de Sevilla,

    CSIC, Adva. Reina Mercedes, 10, 4012 Sevilla, Spain

    Heike Knicker

  • Pausas J.G. & Ribeiro E. 2013. The global fire-productivity relationship. Global Ecol. & Biogeogr. 22: 728-736

    Global Fire Map

  • September, 2004

    July 2004 Duration: 2 weeks Area: 26 000 ha (2.5 ha min-1)

    April, 2006

    Sierra de Aznalcollar Southern Spain

    The Impact of Fire on the Landscape

  • Long Term Impact?

    ….If Black Carbon has been produced since the last

    glacial maximum via biomass burning at the same rate

    as it is now produced, BC should account for 25 – 125% of the total

    soil organic carbon pool……

    (Masiello and Druffel, 2003)

    Where does all the charcoal go?

  • Post-fire runoff, Victorian Alps, Australia.

    Image courtesy of Rob Ferguson and Stefan Doerr

    Erosion with Post-Fire Runoff

  • Photo Greg Smith

    Deposition and Accumulation in Sediments

    DEPOSITS

    Photo Greg Smith

    Ozean

  • Recent Paddy Field: river sediment

    Ancient Paddy Field : flood deposits (3320 BP)

    Prehistoric Rice Field: loess (6280 BP)

    Parent Material: loess

    Burrying under Sediments (Fossil Paddy Soils, China, Yangtze River)

    (Cao et al., Naturwissenschaften, 93, 232-236, 2006)

  • Ditch around a Neolithic Settlement (Murr, Southern Germany)

    Schmid et al., Soil Science 166, 569-584, 2001

  • Charcoal as New Litter Layer

    Cambisol, Central Spain, 24 years after the last fire

    Cambisol, Central Spain,

    2 years after the last fire

    Incorporation into newly formed humus?

  • Former Charcoal Production Site Rio de Janeiro, Brazil

  • Burnt site 24 years after the last fire

    Unburnt site

    - Difference in color → Difference in chemistry and soil properties

    - Changes in C-concentration (depends on fire conditions)

    - C-sequestration potential of soils

    - Soil organic matter (SOM) quality

    Cambisol, Central Spain

    The Impact of Charcoal on Soil Organic Matter

  • Solid-State Nuclear Magnetic Resonance Spectroscopy

    non-degradative technique

    (Chemical shift)

    • Qualitative Information: Assignment of signals

    • Quantification: Signal intensity

    Alkyl O/N-Alkyl

    Aromatic Carboxyl

    200 100 0 300 -100 ppm

  • Solid-State Nuclear Magnetic Resonance (NMR) Spectroscopy

    Alkyl

    O/N-Alkyl

    Aromatic Carboxyl

    200 100 ppm

    0 300 -100

    Alkyl

    O/N-Alkyl

    Aromatic Carboxyl

    200 100 ppm

    0 300 -100

    Unburnt Cambisol (Aznalcollar, Spain)

    Burnt (3 weeks) Cambisol (Aznalcollar)

    • Considerable difference between “natural” and “pyrogenic” SOM

    • Identification of PyOM by aromatic C content

    (unburnt soils < 25%)

  • (according to Sergides et al., 1987)

    Common Model for Black Carbon (Soot)

    O

    O

    O

    O

    O

    O

    O

    C = O

    CH3 O

    C O

    O C

    O HOCH2

    C O

    O

    O

    O

    O

    C

    O

    C

    (CH2)13 OH

    CH3 CH

    C

    C H C

    H

    0.29 nm

    C O C

    O

    O

    O O

    O

    O H

    O

    H - C - H

    H - C - H O

    C C O O

    O HO

    C O C

    O

    O O

    C C O O

    H - C - H H - C - H

    H/C = 0.48

    Barbeque charcoal

    ?

    • Electrical conductivity disables NMR spectroscopy

    • Atomic H/C ratio is too low for biochars

    H/C < 0.2

  • H/C PyOM > H/CBC-Model

    (Knicker et al., 2005, Org. Geochem. 36, 1359-1377)

    Maximal cluster size for PyOM: 4-6 rings

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    Barbeque charcoal

    Charcoal after a forest fire

    Charcoal of peat

    Condensate, ash (BC-Model)

    Ato

    m. H

    /C

    H/C of Charcoals

  • High Variability of PyOM Composition

    Barbeque char

    Wood-PyOM (350°C, 12 min)

    200 100 0 300 -100 ppm

    Alkyl O/N-Alkyl

    Aromatic Carboxyl

    (Knicker et al., Geoderma, 2007)

    C / N (atom)

    142

    400

    Grass-PyOM (350°C, 4 min)

    Peat-PyOM (350°C, 3 min)

    200 100 0 300 -100 ppm

    Alkyl O/N-Alkyl

    Aromatic Carboxyl

    C / N (atom)

    33

    8

    • PyOM ≠ PyOM • Occurrence of “Black N”

  • Alkyl O/N-Alkyl

    Aromatic Carboxyl

    200 100 0 300 -100 ppm

    C recovery:

    79%

    Atm. H/C

    1.1

    0.8

    13

    172

    146

    130 114

    55

    22

    73 (C-a,b,g)

    115 115

    115

    135

    145

    148

    56

    C H 2 O H

    O

    R

    O C H 3

    8 min, 450°C 16

    30 s, 350°C

    0.6

    8 min, 350°C

    0 s, 350°C

    OH OH

    - Dehydroxylation

    - Demethylation

    - Cleavage of side chains

    0.8

    75%

    45% - Cleavage of ether bonds and dehydroxylation of ring - Formation of biphenyls

    (Knicker et al., 2008, Org.Geochem. 39, 935)

    Charring of Lignin (5-20% of Plant C)

  • Charring of Proteins (1-20% of Plant C)

    Casein:

    Recovery:

    C:

    29%

    450°C/4 min

    Alkyl O/N-Alkyl

    Aromatic Carboxyl

    200 100 0 ppm 300 -100

    Atomic C/N

    4.0

    N: 23%

    5.2

    Pyridine

    Nitrile Pyrrole

    Amide

    Amino

    * *

    0 -100 -400 ppm -200 -300

    -260

    -347

    13C NMR 15N NMR

    19

    Recovery:

    C:

    66%

    350°C/4 min

    N:

    51% 5.1

    22

    156

    -233

    HNOC-CH-R

    l

    NH2

    HNOC-R

    Knicker, H. (2010) Organic Geochemistry, 41, 947-950.

  • New Conceptual Model of PyOM

    135 N H

    R

    H N

    N N H

    2,5-Diketopiperazine

    H2 C O

    O

    157

    51 166

    51

    21

    153

    OH

    CH3

    115

    130

    4-Hydroxytoluene

    136

    123

    108

    117

    Pyrrole

    Imidazole

    Pyridine

    136

    123

    150

    Indole

    124

    121

    122

    111

    120

    139

    CH2 N

    H N

    N

    O O Benzofuran

    145 Pyranone

    152

    143

    117

    162

    122

    O 125

    123 128

    156 112

    OH

    OCH3

    OCH3

    OH

    Lignin backbone

    134

    141

    129

    137 148

    54

    156 115

    Benz (a) anthracene

    Lignin Cellulose

    Proteins

    Structure depends on:

    • source material • charring intensity

    Knicker et al. (2008) Organic Geochemistry 39, 935-939.

  • Alternative Concept for Char Structure

    - Char presents an heterogenous mixture of heteroaromatic structures (Knicker, 2007, Biogeochemistry 85, 91)

    - High potential for biotic oxidation

    Degradation by lignin-degraders ?

  • OH

    OH

    Pyrocatechol

    COOH

    OH

    OH

    Protocatechulic acids

    Benzene Benzoic acid

    COOH

    Anthracene

    Phenanthrene

    4-Hydroxytoluene

    CH2, Alkyl

    OH

    Benzoic acid

    COOH

    Naphthalene

    Salicylic acid

    COOH

    OH

    3-Hydroxy- benzoic acid

    COOH

    OH

    Anilic acid

    COOH

    NH2

    Ferulic acid

    CH

    OH

    OCH3

    CH

    COOH

    Vanillic acid

    COOH

    OH

    OCH3

    Phenol

    OH

    Biphenyl

    4-Hydroxy- benzoic acid

    OH

    CH2, Alkyl

    H

    CH2CHCOOH

    NH2

    Tryptophane

    N

    Biochemical Degradation of Aromatic Structures

  • Under oxic conditions char is relatively quickly oxidized

    161

    171

    Fresh

    Gras-PyOM

    PyOM

    after 7 weeks

    14%

    10%

    p p m 3 0 0 2 0 0 1 0 0 0 - 1 0 0

    Incubation time: 7 weeks

    Incubation of Grass PyOM

  • Alkyl O/N-Alkyl

    Aromatic C Carboxyl

    200 100 ppm

    0 300 -100

    Impact of Regeneration Time on SOM Composition (Pine, Cambisol, Central Spain)

    Control

    Burnt

    11 21 42 25

    Alkyl O/N-Alkyl

    Aromatic C Carboxyl

    13 28 37 22

    1 year

    24 years

    14 35 33 18

    (1982)

    (2005)

    C mg g-1

    63

    65

    59

    - Erosion? - Degradation?

  • Respicond (25°C)

    soil

    Incubation vessel

    KOH

    CO2

    Multimeter

    Respiration Experiments

  • Re

    ma

    inin

    g C

    r (

    % o

    f C

    tota

    l)

    Incubation time (h)

    Cr (%) =Cf*e(-kf*t)+ CS*e

    (-ks*t)

    R2 =0.998

    0 2000 4000 6000 86

    88

    90

    92

    94

    96

    98

    100

    102

    Degradation rate constant

    Fast pool Slow pool

    Mean Residence Time (MRT): 1/k

    Respiration of a Soil without PyOM (7 month)

  • 200 100 ppm

    0 300 -100 200 100 ppm

    0 300 -100 200 100 ppm

    0 300 -100

    Alkyl O/N-Alkyl

    Aromatic C Carboxyl

    control

    (Leptosol 0-5 cm)

    oak

    pine

    pine, 2x

    Sierra de Aznalcóllar, S-Spain, After a Severe Fire, 2004

    (Knicker et al. 2013, Soil Biology and Biochemistry, 197-198, 43-50.

  • oak pine pine ( 2x)

    control pine 5 y

    41 42 38 12 29 ± 1

    92% 96% 95% 91% 94%

    “slow” Pool:

    Mean Residence Time (1/k) (years)

    years

    Knicker et al. 2013, Soil Biology and Biochemistry, 197-198, 43-50.

    • MRT of PyOM is only slightly higher than MRT of SOM

    • Charcoal as long-term C-sink?

  • 3

    7

    21

    35

    8

    27

    2 7

    21

    30

    7

    22

    0 1 5

    1 4

    Carbonyl Carboxyl/

    Amide

    Aromatics O - Alkyl N - Alkyl/OCH3 Alkyl

    0 days

    7 months

    difference

    Control

    Changes of PyOM/SOM during Degradation

    Knicker et al. 2013, Soil Biology and Biochemistry, 197-198, 43-50.

  • 4

    10

    39

    19

    5

    24

    3

    8

    34

    20

    5

    21

    1 2 5

    0 3

    Carbonyl Carboxyl/

    Amide

    Aromatic O - Alkyl N - Alkyl/

    OCH3

    Alkyl

    5 10

    49

    14

    4

    19

    4 8

    44

    18

    4

    17

    1 2

    5

    0 2

    Carbonyl Carboxyl/

    Amide

    Aromatic O - Alkyl N - Alkyl/

    OCH3

    Alkyl

    Pine

    Oak

    0 days

    7 months

    difference

    Changes of PyOM/SOM during Degradation

  • Tierra Negra Andaluza

    Vertisol: 1-2% Corg 14C-age: ≈ 5000 years (Prof. D. Faust, personal communication)

    Former management: After-harvest burning (since Roman times)

    Villamartín (Cádiz)

  • Tierra Negra Andaluza

    Utrera (Sevilla)

    200 100 0 300 -100 ppm

    Alkyl O/N-Alkyl

    Aromatic Carboxyl

    Carom:

    19%

    200 100 0 300 -100 ppm

    Alkyl O/N-Alkyl

    Aromatic Carboxyl

    Carom:

    28%

  • Alkyl O/N-Alkyl

    Aromatic Carboxyl

    200 100 ppm

    0 300 -100

    Briquette

    CORECarom 72% Ctot

    If source material is known CORECarom allows determination of PYOM by using a correction factor f

    Chemical Oxidation (60°C; K2Cr2O2+ H2SO4; 6 h):

    COREC

    88% Ctot

    200 100 ppm

    0 300 -100

    Alkyl O/N-Alkyl

    Aromatic Carboxyl

    Grass-PyOM

    CORECarom

    33% Ctot

    COREC

    39% Ctot

    200 100 ppm

    0 300 -100

    Alkyl O/N-Alkyl

    Aromatic Carboxyl

    Az3 (burnt)

    CORECarom 20% Ctot

    COREC

    32% Ctot

    Knicker, et al. 2007,Geoderma, 142, 178-196.

  • Chemical Oxidation of Tierra Negra

    200 100 0 300 -100 ppm

    Alkyl O/N-Alkyl

    Aromatic Carboxyl

    Carom:

    19%

    200 100 0 300 -100 ppm

    Alkyl O/N-Alkyl

    Aromatic Carboxyl

    200 100 0 300 -100 ppm

    Alkyl O/N-Alkyl

    Aromatic Carboxyl

    Carom:

    32%

    200 100 0 300 -100 ppm

    Alkyl O/N-Alkyl

    Aromatic Carboxyl

  • 0 - 20 cm

    20 – 40 cm

    < 50 cm

    Aromatic

    Carom:

    28%

    29%

    18%

    200 100 0 300 -100 ppm

    Villamartín (Cádiz, S-Spain) Selective enrichment of PyOM

    Increase of aromaticity of SOM due to removal

    of fresh litter

    Tierra Negra Andalucia

  • 2 years 5 years

    22 years 1 years

    Chronosequence: Ceasing Biannual Burning (Planalto, Brazil)

    Time after last fire:

  • Soil

    (1 year after last fire)

    0-5 cm

    15-30 cm

    30-45 cm

    13C NMR Spectra of the A Horizon of a Leptsol from the Planalto (Brazil)

    Alkyl

    O/N-Alkyl

    Aromatic Carboxyl

    200 100 ppm

    0 300 -100

    • No clear indication for PyOM

    Fast degradation of PyOM?

    • Increase of aromatic C with depth

    •Translocation? •Selective enrichment? •Humification?

    Humic Leptosol

    (0-5 cm): 12.1%

    (15-30 cm): 6.4%

    (30-45 cm): 3.7%

  • PyOC Stocks in Comparison with non-PyOC (0-30 cm)

    2.0 1.7 1.6

    19.3

    20.1

    17.7

    14.8

    0

    5

    10

    15

    20

    25

    0 5 10 15 20 25

    PyOC

    Ctot

    7.4

    7.1 6.7

    4.5

    4.3 4.4

    3.5

    O-Alkyl

    Alkyl

    years

    kg

    m-2

    Burning leads to C increase

    C increase is due to addition of carbohydrates

    (input of unburnt necromass

    of dead roots)

    New litter input “masks” PyOM

  • 41.1

    27.8

    24.8

    21.3

    7.1

    CT: g kg-1

    Ap: 0-15 cm 30

    A2: 15-40 cm 39

    A3: 40-70 cm

    54

    A5: 100-150 cm

    58

    Bw1: 260-300 cm

    38

    ppm 50 100 150 200 250 0 -50

    16

    19

    19

    24

    18

    C/N

    PyOC in Soils under Cerrado (Viracopos)

    Velaso et al. submitted

    PyOM in subsoil as efficient C sink

  • PyOC in Soils under Cerrado

    Velasco-Molina et al. in preparation

    % clay silt sand

    C T

    -

    0.86 0.30 0.59

    carboxyl 0.52 0.16 - 0.55

    aryl 0.36 - 0.52 - 0.01

    O - alkyl - 0.46 0 .58 0.06

    N - alkyl - 0.42 0.50 0.07

    alkyl - 0.38 0.30 0.16

    - In addition to PyOM-mineral interaction other mechanism must occur - Accumulation due to low biochemical activity?

  • p p m 3 0 0 2 0 0 1 0 0 0 - 1 0 0

    Ah Sand: 91%

    E Sand: 95%

    BC (T) Clay: 52%

    C1 (T) Clay: 47%

    Residue after

    H2O-Extraction last burning:1999

    Sampling: 2002

    p p m 3 0 0 2 0 0 1 0 0 0 - 1 0 0

    C2 Clay: 19 % Sand: 68 %

    H2O-Extract

    C of Cbulk

    0.8%

    1.8%

    2.2%

    Planosol, Pantanal (Brazil)

  • • We have evidence for oxidation of the aromatic network On a larger time scale degradation processes may level out

    the differences between PyOM and SOM in the topsoil • Once oxidized, the increasing solubility allows leaching of

    PyOM to the deeper soil

    High PyOM content in subsoil as a typical feature of soils with frequent char input?

    Fire (biochar input) as soil forming factor?

    Conclusion: PyOM in Soils

  • PyOM

    N, P, Ca, K, Mg

    Litter

    Fate of PyOM in Soils

    Liming effect! Fertilization!

    “Masking” (Brazil, Planalto)

    Selective

    enrichment of

    PyOM (Andalusia)

    .

    leaching

    degradation

    oxidation

    Absorption to mineral phase, stabilization

    Accumulation (Pantanal)

    O2deficiency

    Knicker, H. , 2011,Quaternary International, 243, 251-263

  • The Ecological Role of Black Nitrogen?

  • Modell of Charred Proteins

    R

    H N

    N

    2,5-Diketopiperazine (C/N: 2:1)

    O

    O

    157

    51 166

    51

    4-Hydroxytoluene

    153

    OH

    CH3

    115

    130

    CH2

    H2 C

    21 N H

    108

    117

    Pyrrole (C/N: 4:1)

    -235

    135 N H

    Pyridine (C/N: 5:1)

    136

    123

    150

    Indole (8:1)

    124

    121

    122

    111

    120

    139

    N

    -245

    -90

    136

    123 Imidazole (C/N: 1.5:1)

    N

    H N

    -202

    -220 to

    -250

    13C chemical shift 15N chemical shift

    Knicker, H. (2010) Organic Geochemistry, 41, 947-950.

  • Relative Contribution of BN to BC

    Charring, 2 min, 350°C, oxic conditions

    Atomic C/N: 5.1 (casein-BC)

    0 -100 -400 ppm -200 -300

    Pyrrole

    BN ≈ 60% of Ct

    Charred grass

    Charred peat

    Atomic C/N

    8.5

    39.6

    BN ≈ 13% of Ct

  • Contribution of BN in Burnt Soils

    0 -100 -400 ppm -200 -300

    Pyrrole Amide

    1 year (33% char )

    Control (A horizon, Cambisol

    Central Spain)

    0 -100 -400 ppm -200 -300

    Pyrrole Amide

    24 years 20 % char

    C/N (w/w) 25

    24 years: 33% of char C = heteraromatic C (7% of Ctot)

    C/N 22

    1 year: 27% of char C = heteraromatic C (9% of Ctot)

  • Pot Experiments with 15N-PyOM

    125 g dry soil + 0.5 g seeds + 150 mg 15N-enriched PyOM.

    De la Rosa, J.M., Knicker, H. (2011). Soil Biology and Biochemistry, 2368-2373.

  • Plant Availability of PyOM -15N

    0 10 20 30 40 50 60 70

    10

    15Nadd present in grass (%)

    Incubation time (days)

    Plants can use 15N of PyOM

    De la Rosa, J.M., Knicker, H. (2011). Soil Biology and Biochemistry, 2368-2373.

  • Bioavailability of 15N-PyOM (15N NMR)

    0 -100 -400 ppm -200 -300

    Pyrrole Amide

    Soil +15N-PyOM 72 days

    Amides are newly formed from 15N-PyOM

    (20% of 15Ntot)

    15N-PyOM of grass

    De la Rosa, J.M., Knicker, H. (2011). Soil Biology and Biochemistry, 2368-2373.

  • Ah Sand: 91%

    E Sand: 95%

    Bt1 clay: 52%

    Bt2 Clay: 47%

    C Clay: 19 % Sand: 68 %

    200 100 0 300 -100 ppm

    0 -100 -400 ppm -200 -300

    Pyrrole

    13C 15N

    C/N = 5

    Residue after removal of DOM

    Almost all aromatic C is N-heteroaromatics

    Planosol, Pantanal (Brazil)

  • Conclusions (BN)

    • BN is quantitatively relevant in fire-affected soils

    • BN can be biochemically degraded, providing N for the build-up of new biomass

    • Peptides are precursors of Black Nitrogen

    • “BN” is an important and integral part of “BC”

  • PyOM

    N + P, Ca, K, Mg

    BN as a “Slow-release” Fertilizer for Providing N after Vegetation Fires

    Liming effect!

    Fertilization!

    leaching

    N

    SON cycle

    Need to use heterocyclic N after fires is in contrast to a high biochemical recalcitrance!

  • • PyOM ≠ PyOM

    • Behavoir of PyOM depends on source material and environmental conditions

    • Degradability of PyOM is related with its ecological function

    Low PyOM levels can be explained with:

    • Transport to the Ozean • Lower biochemical recalcitrance of PyOM than thought • Leaching and accumulation in deeper soils with low

    biological activity • DOM in rivers?

    • The role of BN as a post-fire fertilizer should not be

    underrated

    Conclusions (Summary)

  • Thanks to: - CITIUS (University of Sevilla) - MINECO (Spain) and FEDER (CGL2009-10557/CGL2012-

    37041) - IHSS for supporting the travel

    Thanks for Your Attention !!!