solar cells based on cdte thin film and composite of organic and inorganic nano-scale materials

Upload: asemktb-asdi

Post on 06-Jul-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    1/135

    Solar  Cells  Based  on CdTe Thin  Film

    and Composite of Organic and Inorganic Nano-Scale Materials

    BY

    Hyeson JungB. S., Dongguk  University, S.  Korea,  1999M.S.,  Dongguk  University, S.  Korea, 2001

    THESIS

    Submitted as  partial fulfillment of  the requirementsfor the degree of  Doctor of  Philosophy in Electrical and Computer Engineering

    in the Graduate College of  theUniversity of  Illinois at Chicago, 2010

    Chicago,  Illinois

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    2/135

    UMI Number: 3431234

    All   rights reserved

    INFORMATION TO  ALL USERSThe quality of this reproduction is dependent upon the quality of  the copy submitted.

    In the unlikely event that the author  did not send a  complete manuscriptand there are missing pages, these will be noted. Also, if  material had to be  removed,

    a   note will  indicate  the  deletion.

    UMTDissertation Publishing

    UMI   3431234

    Copyright   2010   by ProQuest LLC.All rights reserved. This edition of  the work is protected against

    unauthorized copying under  Title 17,  United States Code.

    ProQuest®

    ProQuest  LLC

    789 East Eisenhower  ParkwayP.O.  Box  1346

    Ann Arbor, Ml 48106-1346

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    3/135

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    4/135

    This thesis is  dedicated to  my loving mother, Okmyung ChOi(Sl^1U),  and to  the

    memory of  my father, Goonsoo Jung^Z^r,  1945-2003), whose  great   love   and

    everlasting   support  accompanies  me from  my   childhood   to   now   and   beyond.

    m

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    5/135

    ACKNOWLEDGMENTS

    First of  all,   I   would   like   to express  my   gratitude   to  my   advisor  Prof.  Mitra

    Dutta   for   the   continuous   support   of my   Ph.   D   study   and   research,   for   her 

    knowledge,  encouragement, and patience. Without her advice not only for research

     but also for  life,   I could not have completed my Ph.  D study.

    Beside my advisor,   I  would   like to thank the rest of  my  thesis committee:

    Prof.   Michael  A.  Stroscio,   Prof. Michael   Trenary,   Prof.   Vitali   Metlushko,   and  Prof.

    Su Gupta, for their  informative and valuable comments.

    I  thank  my fellow members of  Nano   Research Laboratory: Ayan Kar, Yang

    Li,   Jinyong   Yang,   Clare Sun,   Takayuki   Yamanaka,   Milana  Vasudev,   Jun  Qian,Sushmita   Biswas,   Sicheng   Liao,   Donna   Wu,   Rade   Kuljic,   Banani   Sen,   Prof.

    Michael   A.   Stroscio,   and   Prof.   Mitra   Dutta   for   their  support   and   friendship.   My

    special thanks also go to  Dr.  Seyong An and  Mr. Bob Lajos at  Nano Core Facility

    (UIC),  Dr.  Ke-Bin  Low and  Dr.  Alan Nicholls at  Research Resource Center (UIC),

    and   Dr.   David   J.   Gosztola   and   Gary   P.   Wiederrecht at   Center   for   Nano

    Materials(Argonne National Laboratory) for their insightful advice for my research,

    iv

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    6/135

    ACKNOWLEDGMENTS  (continued)

    and   to   Prof.   P.   T.   Snee   in   the  Department   of   Chemistry   for   providing   the CdSe

     NQDs and  allowing  me to use  a  characterizing system.

    My sincere  thanks  also  goes  to Dr.   Sivaligam  Sivananthan   and  Dr.  Sung-

    shik  Yoo,  who are  alumni   of  the  UIC,   for  encouraging me  to  start  Ph.   D   program,

    and for giving me  career  guidance.

    Last but not the  least,   I  would   like to  thank  my family: my mother  Okmyung

    Choi,   little   sister   Hehsoon   Jung,   brother-in-law Yongsoo   Hong,   and   little  brother 

    Yongkyu Jung, for  supporting me spiritually throughout my  life.

    I  offer  my regards and  blessings to all of those who supported  me in  any

    respect during the completion of  my study.

    ?

    HS

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    7/135

    TABLE OF CONTENTS

    CHAPTER    PAGE

    1.   INTRODUCTION   1

    1.1.  Motivation   11.2. Objectives   4

    2. SOLAR  CELL FUNDAMENTALS   5

    2.1. History of  photovoltaic   52.2. Type of  solar  cells   72.3. Physics of  photovoltaic cells   10

    3. EXPERIMENTS   16

    3.1. Material deposition   163.2. Diagnostic techniques   18

    4. POLYCRYSTALLINE CdTe SOLAR  CELL   23

    4.1. Background   234.2. Prior  work/Literature research   264.3. CdTe/CdS structure fabrication   284.4. CdCI2 vapor  process   394.5.  Characterization of  solar  cells   41

    4.6. Demonstration   454.7. Tandem solar  cells   47

    Vl

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    8/135

    TABLE OF CONTENTS (continued)

    CHAPTER    PAGE

    5.  Quantum confinement in  PbSe nanowire   50

    5.1. Background   505.2. Quantum confinement in  nanowires   515.3.  Growth  of  the PbSe   nanowire   53

    5.4. Measurement of  effective energy levels   605.5. Calculation of  effective energy levels   63

    6.   ENERGYTRANSFER  IN  THE  COMPOSITE   68

    6.1  Background   686.2. Colloid quantum dots   696.3. Photosystem   1   716.4.  Energy transfer  mechanisms   73

    6.5.  Energy transfer  measurement in the composite system   766.6. Current-Voltage measurement of the composite   92

    7.   Conclusion   97

    APPENDIX 99

    CITED LITERATURE   105

    VITA   112

    vii

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    9/135

    LIST  OF TABLES

    PAGE

    ADVANTAGEAND disadvantage of   photovoltageOF PHOTOVOLTAIC SOLAR  CELL   4

    development and  COMMERCIALIZATION OF PV  cell   .   7

    SUMMARY OF  CdS/CdTe PROCESSES AT  MAJORITYRESEARCH  PALCES   28

    SUMMARY OF PROCESSES AND MATERIALS   30

    PERFORMANCE OF  CdS/CdTe SOLAR CELLS   44

    PROCESS  IMMPROVEMENTS OF CdS/CdTe SOLAR CELLS   44

    FITTING  RESULTS FROM  FIGURE 36 AND 37   85

    Vili

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    10/135

    LIST  OF FIGURES

    FIGURE   PAGE

    1 .   The energy flow chart in the  United State in  2008. Source:Lawrence  Livermore National   Laboratory and the  Departmentof  Energy   3

    2.   Progress in  record efficiency of  PV solar  cell.  Source: TheUnited State Department of  Energy   9

    3.   Solar  cell fabrication cost vs. energy conversion efficiency   11

    4.   Schematic diagram of  ideal  photovoltaic cell and  itsequivalent circuit   13

    5.   Ideal J-V characteristics and figures of  merit of  a  p-n junctionsolar  cell   16

    6.   Non-ideal J-V characteristics of  a p-n junction solar  cell withseries resistance and shunt resistance;  and its  equivalentcircuit   16

    7.   Solar  spectral   irradiance and  ¡deal solar  cell efficiency (ASTMStandard   Extraterrestrial Spectrum Reference E-490-00 for AM   0 and ASTM G-173forAM  1.5:www.rredc.nrel.gov,   Idealsolar  cell efficiency reproduced from  Sze. T=300K)   25

    8.   Energy band diagram of  CdTe/CdS solar  cell   29

    9.   XPS results on  CdS thin film   (top) survey scan  (bottom) detailscans  of  Cd   and  S   33

    IX

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    11/135

    LIST OF  FIGURES (continued)

    FIGURE   EAGE

    1 0.   AFM image of  CdTe before/after CdCI2 treatment   36

    1 1 .   AFM ¡mage of  CdTe after post annealing at 425 0C for 20minutes   36

    12.   Cross-sectional view of  CdTe solar  cell  after  post annealing  at

    425 0C for  20 minutes   36

    13.   XPS results on  as-grown CdTe thin film (top) survey scan(bottom) detail scans of  Cd and Te   38

    14.   XPS results on CdTe solar  cell (top) survey scan (bottom)detail scans of  Cl and  Cu 39

    41

    1 5.   I-V measurement on samples without/with CdCI2 vapor 

     process

    16.   Schematic diagram of  CdCI2 vapor process system built in-house   4^

    1 7.   Energy conversion efficiency measurement results   43

    18.   Demonstration of  CdTe/CdS solarceli   47

    19.   Calculated band gaps of  PbSe nanowires and ideal solar  cellefficiency reproduced from Sze. T=300K 49

    20.   Illustration of  the density of  states (DOS) of  electronsreproduced from "Quantum Heterostructure   53

    ?

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    12/135

    LIST OF  FIGURES (continued)

    PAGE

    A picture of  3" PbSe film   55

    Schematic  illustration of  the sputtering process   55

    Surface view of  SEM   ¡mage of  grown PbSe nanowiresrevealed the form of  pyramids   57

    Sectional view of  SEM   image of  the perpendicularly grownnanowires  is shown.  The diameter  of  the  wires  is about

    200nm or  smaller  (-100 nm), approximately.  Some wires aremerged together    58

    The wires were grown in  the  direction of  < 1 1 1 >  orientation of rock-salt cubic structure according to x-ray diffraction

    spectrum   59

    Atomic   position map,   rock-salt   cubic  structure   inside   small box   59

    (a)FTIR   spectrum   and   (b)   PL   spectrum   of   the   PbSenanowires are presented.  Cut-off  wavelength (where  50 %  of maximum   transmittance)   at 2.5  µ??   and  PL  peak   at  2.45   µG?are  found,   despite  energy   band   gap   of  bulk   PbSe   crystal   is4.46 µG? at 300K 62

    XPS spectrum of  (a)Pb 4f  region and (b)Se 3d  region areobtained. Peak  fitting   indicated strong presence of  oxygen atthe PbSe nanowire surface   64

    Xl

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    13/135

    LIST OF  FIGURES (continued)

    FIGURE   PAGE

    29.   Schematic illustration  of  the Fermi-level pinning  at thenanowire surface due to  surface oxidization.   Because  of  the

    existence of  depletion space charge layer(W) at  the surface,the effective diameter(d) of  PbSe nanowires are   decreased,and  leads to  quantum confinement. The first electron  (En-Oand hole  (Em) quantum confinement levels above the

    conduction  energy band (Ec) and  below the valence energy band (Ev) are  marked. Triangular wires are  simplified intocylinders with diameter,  D. They are  not on scale   66

    30.   Bright field ¡mage and  fluorescence ¡mage of  CdTe NQDs .... 70

    31.   Absorption spectra of PSI   72

    32.   Photo emission spectra  of  PSI  with excitation 442  nm   72

    33.   Energy diagram of  energy transfer  in the CdSe NQDs+PSIcomposite system   75

    34.   Fluorescence  microscope ¡mages   of  CdSe   NQDs   and   CdSe NQDs/PSI system   75

    35.   (a)Photoluminescence of  CdSe NQDs(575 nm, square),PSI(682 nm,  circle),  and  NQD-PSI(solid   line) composite usingexcitation at 442  nm.   (b)Overlap between  PSI

    absorption(dashed   line) and   NQDs(solid line)   79

    XIl

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    14/135

    LIST OF  FIGURES (continued)

    FIGURE   PAGE

    36.   Fluorescence decay of  (a)NQDs sample and   (b)NQDs in  thecomposite sample in  short time scale. A negative absorptionchange (??)  means transient bleaching  of  NQDs. In thecomposite,   bleaching  (negative  ??) is  switched to  absorption(positive  ??) after  0.12 ps   81

    37.   Absorption decay of  (a)  NQDs only sample with excitation at477 nm  (b) NQDs of  the composite (c)  PSI  of  the compositewith excitation at  610 nm   (d) PSI  of  the composite withexcitation  at 477 nm. The square symbol  lines represent theexperimental measurements,  and the  solid  lines represent   84exponential decay fits

    38.   (a) Transient absorption spectra, at different times,  of  thecomposite of  NQDs and  PSI are shown. When excited  at 477

    nm,  both NQDs and  PSI are  excited,   (b) Each spectrum  in thefigure 4(a) is  represented at  different times separately in 4(b).. 87

    39.   Transient  absorption   spectra,   at  different times,   of  (a)   NQDsonly with   excitation   at 477  nm   (b)   PSI  of  the  composite withexcitation  at 610 nm, where only PSI   is excited   90

    40.   I-V  measurements on  the composite  CdSe  NQDs-PSI.   Biasapplied  was  from   -2V   to   2V,   and   then   back   to   -2V.   Currentincreased with light   91

    41.   Energy diagram of  a CdSeQD-PSI  composite system   92

    XlIl

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    15/135

    LIST OF  FIGURES (continued)

    PAGE

    Photoluminescence of  (A)  520 nm  QDs,   (B) 605 nm QDs,   (C)   94PS1, (D) 520  nm QD-PSI composite, and (E)  605  nm  QD-PSIcomposite, using excitation at 442  nm

    (a)   l-V  measurements  on   the pure  PSI   under  dark   and  lightcondition.  The data   clearly  showed   a   response   to   light.   Bias

    was   applied   from -2V   to   2V,   and   back   to   -2V.   (b)   l-Vmeasurement  plot on the  composite of  CdSe  QDs/PS1   under light condition and plot with pure PSI plot are presented   96

    FTIR   results   on   PbSe   nanowires before/after annealing   15sec at 400 °C   99

    Hall   coefficient and   carrier   concentration   of   (top)   as-grownPbSe and (bottom) oxidized PbSe film   101

    XlV

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    16/135

    LIST OF ABBREVIATIONS

    AFM   Atomic Force Microscope

    CBD   Chemical  Bath  Deposition

    CSS Closed Spaced Sublimation

    DOS   Density of  States

    FWHM   Full Width  at  Half  Maximum

    FRET   Fluorescence Resonance Energy Transfer 

    FTIR    Fourier  Transmittance  Infrared Spectroscopy

    HOMO   Highest Occupied  Molecular  Orbit

    HRT High Resistance TCO

    l-V   Current-Voltage Measurement

    LUMO   Lowest Unoccupied  Molecular  Orbit

     NQDs   Nanocrystalline Quantum  Dots

    MOCVD   Metal  Organic Chemical Vapor  Deposition

    OPA   Optical Parametric Amplifier

    PL   Photoluminescence

    xv

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    17/135

    LIST OF ABBREVIATIONS  (continued)

    PS   I   Photosystem   I

    PS   Il   Photosytem   Il

    PV   Photovoltaic

    VTD   Vapor  Transport Deposition

    QDs   Quantum dots

    RF   Radio Frequency

    SEM   Scanning  Electron Microscopy

    TCO   Transparent Conducting Oxide

    XPS   X-ray Photoelectron Spectroscopy

    XRD   X-ray  Diffraction

    XVl

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    18/135

    SUMMARY

    Solar   cells   based   on   polycrystalline   cadmium   telluride   (CdTe)   thin   film   and

    composite of  organic and  inorganic   nano-scale materials  has been  investigated   in

    this   research.   CdTe   solar   cells   were   fabricated, and   12 %   energy   conversion

    efficiency  achieved with first efforts from scratch.   As possible promising materials

    for   tandem solar  cells lead   selenide   (PbSe)  nanowires  were  studied.   In   addition,

    the   integration   of   photosystem   I   and   cadmium   selenide   (CdSe)   NQDs

    (nanocrystalline quantum dots) was explored for enhancement of  light harvesting  in

     photosynthesis for  solar  cells.

    The   CdTe   thin   film   solar   cell   structures were   grown   by   means   of   vacuum

    deposition   systems   followed   by  annealing   treatments.  A  new  cadmium   chloride

    (CdCI2) vapor  process was developed in-house. The structures were characterized

    using atomic force  microscope (AFM),   scanning electron microscopy  (SEM),  x-ray

     photoelectron   spectroscopy (XPS), and   l-V measurement.  Using four 3  cm  ? 3 cm

    CdTe/CdS  solar  cell,   an alarm  clock  and  a  toy dragon fly were operated.   For  very

    high efficiency (>20 %)  solar  cells, tandem solar  cell concept is

    xvii

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    19/135

    SUMMARY (continued)

     promising. The uses of  multiple solar cells of  different band gaps give rise to higher

    efficiency. One with the narrower band gap,  such  as PbSe nanowires,   combined

    with CdTe solar  cell   is suitable example.

    PbSe nanowires were  grown   by  magnetron   sputtering   on   silicon   with   silicon

    dioxide   (Si02/Si)   substrates,   and characterized  by SEM,  x-ray  diffraction   (XRD),

    Fourier Transform Infrared spectroscopy (FTIR), photoluminescence (PL) and  XPS.

    Closely packed  PbSe  nanowires  of  approximately   100  nm  diameter grew   in  the

      rock-salt cubic structure  orientation.  These large wires showed   a   large  blue

    shift   in   the luminescence   and   absorption   compared   to   the   bulk   crystal,

    demonstrating  quantum   confinement.   This   is attributed   to  a  strong   built-in   field

    due  to   surface   states,   band   bending   and   a   depletion   layer  which   confines   the

    carrier  states.

    In   natural   photosynthesis   process,   light   harvesting   complexes   (LHCs)   harvest

    light and pass excitation energy to photosystem   I (PSI) and  photosystem  Il  (PSII).

    In this study, we have used NQDs as an artificial LHC by integrating them with PSI

    xviii

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    20/135

    SUMMARY (continued)

    in  order  to extend their  spectral  range.   We have performed  PL and  ultrafast time-

    resolved absorption measurements to  investigate this process. Our  PL experiments

    showed that emission  from the  NQDs   is quenched,   and the   fluorescence  from PSI

    is enhanced. Transient absorption and  bleaching  results can be explained by  FRET

    (fluorescence   resonance transfer)  from   the  NQDs to  the  PSI. This  non-radiative

    energy   transfer  occurs   in   ~   6.5   ps.   Current-voltage   (l-V)  measurements   on   the

    composite  NQD-PSI   samples   demonstrate   a   clear   photoresponse.   This   exciting

     breakthrough provides a  basis for  design  of  novel   energy  harvesting  devices  such

    as solar  cells based  on  photosynthesis.

    XlX

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    21/135

    1.   INTRODUCTION

    1.1.   Motivation

    In   recent  years   there  has   been   much   interest   in   the  solar   cells  as   a   source   of 

    renewable   energy.   The   motivations   include   high   oil   prices,   problems   in   energy

     production and distribution,   but most of  to find   alternative sources  of  energy  rather 

    than   fossil   fuels. Figure   1   is   the   energy   flow  chart   in   the   United   States   in  2008.

    Overall,  most of  the energy  is  made from  burning fossil fuels  such  as  natural  gas,

    coal, and  petroleum.  The problems of  burning fossil fuels are well  known.  The fuel

    source   is   limited,   and  cause  pollution.   Besides,   in   the current   energy  distribution

    system, half of  the energy is  lost.

    About 40%  of total  fuel   source   is  used   to generate electricity,  and   it   is   the most

    critical   energy   form   these   days   Especially,   most   of   petroleum   is   used   to

    transportation.   For  alternatives,  many nuclear  fission  reactors  built  in   the  past,   but

    radioactive   residue disposal   and   accidents   are   big   concerns.   Hydro,   wind,

    geothermal, and solar technologies are also developed and contributed to  generate

    electricity.   Among   them,   solar energy   is   a   promising   technology   for   the   clean

    energy, yet the  percentage (0.09 %) is still low as shown in the figure   1 . As shown

    1

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    22/135

    2

    in   the table   I,   there  are  many  advantages   of  solar  cells   compared   to  other   fuel

    sources.1"2  Using   solar  cell   technology, electrical  power  can be  generated   in   sun

    light.   It is  clean with no emission or radioactivity. This fuel  source is   infinite.   It can

     be installed  quickly,   and   at nearly any  point   of   use,  which   reduces   loss  during

    transmission.  It does not require large amounts of  cooling water.  On the  other  hand,

    this   technology  depends   on weather.   It   is  still   more   expensive   than   fossil   fuels

     because  of  several  technical and   non  technical  issues.  The purpose  of  this thesis

    is to explore alternative,  novel solar  cells.

    This   research   is   composed   of   three   parts.  The   first   part   represents   solar  cell

    fabrication of  polycrystalline CdTe.  CdTe photo-voltaic cells were grown,  and  solar 

    cells   were   fabricated. The   second   part   of   this   research   studies   nanowires   for

     possible  promising  materials for tandem solar  cells.  PbSe  nanowires were grown,

    and   its   quantum confinement   effect   was   investigated.   In   the   third   part   of   the

    research,  enhancement of  light harvesting in  photosynthesis was investigated.  PSII

    has been replaced by NQDs which are integrated with PSI.  This study provides a

     basis for the design of  novel energy harvesting and  other  electronic devices based

    on  photosynthesis.

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    23/135

    ?

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    24/135

    4

    TABLE   I

    ADVANTAGEAND disadvantage of  photovoltage

     _____________ OF PHOTOVOLTAIC SOLAR  CELL

    Advantage Disadvantage

    •   Abundant and inexpensive resource   ·   Low density

    energy•   High public acceptance (no one wants a coal burning

     power plant in their  neighborhood)   ·  Weather 

    dependence•   Carbon free energy (no fossil fuels releasing CO2, SO2,

     NO2)   ·   Lack of  storage

    •   High reliability in modules ( >20years)

    •   Quick  installation

    •   Can be installed at  nearly any point-of-use (Stand alone

    system,  less transmission and distribution loss, space

    shuttle etc.)

    •   Daily output peak  may match local demand

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    25/135

    5

    1.2.   Objectives

    The objectives of  this study were:

    ¦   to   demonstrate   material   growth,   device   fabrication,   and energy

    conversion   efficiency   testing   of   polycrystalline   CdTe/CdS   thin   film

    solar  cells,

    ¦   to   study  quantum confinement effects   in   the   nanowires(PbSe)   for

     possible promising materials for tandem solar  cells,

    ¦   to explore an integration of  useful organic (CdSe QDs) and inorganic

    (PSI) characteristics for light harvesting enhancement of  solar  cells.

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    26/135

    2.  SOLAR  CELL FUNDAMENTALS

    2.1.   History of  photovoltaic

    Since 1839, large variety of  solar cells were introduced.1,3 The photovoltaic effect

    was   first   discovered   by   Edmund   Becquerel.   He   observed   that   metal   plates

    immersed   into   an electrolyte  produced  a   small  voltage and current.  The first  solid

    state  material  that  showed   photovoltaic (PV)   behavior  was  selenium with   platinum

    wire by Adams  and  Day in  1877. The first functional  and  intentionally  made  solar 

    cell  was by Fritts   in   1883.  He melted  selenium or copper  oxide or thallium sulfide

    into a thin sheet on a  metal plate,  and pressed a  gold leaf  film as the top  contact.   In

    1954,   researchers   at   Bell   lab   accidentally  discovered   that   the semiconductor   pn

     junction diodes generate a  voltage when the room  lights were on.  From mid   1950

    to  mid  1970,   R&D was focused   toward  space  application  such  as  satellite   power.

    Then,  there was  oil   crisis in  1973, which   initiated the  R&D on  solar  cells for  civilian

    applications. Silicon was the first to be  used for commercial solar  cells.   In the  early

    1980s, the solar-powered calculators and  wristwatches were sold by the Japanese

    companies.   The   first   solar   cells   power   plant   was   built   in   1982   in   the   state   of 

    California.   It took  about 15  years to cumulate electrical power- 100MW by the solar 

    6

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    27/135

    7

    TABLE   II

    DEVELOPMENTAND commercialization  OF PV  cell

    1839   Becqurel (FR) demonstrated the PV effect.

    1 877   Adams and Day (UK) observed the first PV in solid.

    1883   Fritts (US) showed large area solar  cell with rectifying metal contact.

    1 955   Hoffman electronics offers 2% efficient Si  PV cell  at $1 500/W

    1973   Worldwide  oil crisis

    1 974   Tyco (USA) grows 2.5 cm wide Si ribbon for PV

    1982   First 1  MW PV  power  plant using c-Si, CA,  USA

    1986   First a-Si thin film solar  power  module

    1994   GalnP/GaAs concentrator  multijunction >  30% (NREL, USA)

    1996   dye-sensitized solid/liquid cell achieved 11% (Switzerland)1997   Cumulative world wide PV  production reached  100 MW

    1998   Cu(lnGa)Se2 thin film solar  cell reached 19 %  (NREL, USA)

    1 999   Cumulative world wide PV  production reached   1 000 MW

    2008 Cumulative world wide PV  production reached 8775 MW*

    Source: *EERE News, U. S.   Department of  Energy, March 25, 2009

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    28/135

    8

    cells,   but   It   took   only   2   years   to   increase   it   to   10   times,   1   GW.   In   2008,   the

    cumulative  world   wide   PV   production   reached   closed   to   10   GW.   The   history   is

    summarized   in  table   II.

    2.2.  Type  of  solar  cells

    In figure 2,  the line graph shows the increase of  the energy conversion efficiency

    of   the   solar   cells   since   1975.   The   left   hand   vertical   axis   is   energy   conversion

    efficiency,  while the  horizontal axis shows the time in  years. The  solid lines (square

    markers)   represent   the   solar   cells   made   of   single   crystal   silicon.   The   solid   lines

    (circles)   represent   the so called   thin film  solar  cells which   are  made of  CdTe or

    CIGS  or  amorphous  silicon.  The two   lines from   the  lowest efficiency represent the

    so called organic cells.  The lines (triangles) represent the solar  cells made of  GaAs

    related   materials,   and they   are used   for   the   space   applications.   The   NREL,

     National  Renewable   Energy  Laboratory  has the  highest  efficiency   record  made  of 

    MBE grown GaAs related materials.

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    29/135

    9

    £3)   m

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    30/135

    10

    In  the reference 4,  Green summarize the  solar  cells into three groups as  shown   in

    figure 3.4  The  first-generation   solar  cell was a single crystal   solar  cell, which  has

     been commercialized the  most.  Recently with  high demand, the  price silicon wafers

    has increased  more than three times. Thus, the second-generation  less expensive

    solar   cells   are   desirable.   These   are   solar   cells  made   of   thin   film   of  amorphous

    silicon, CdTe,  and CIGS (CuInGaSe).  Since these are thin films, which require less

    material  than bulk wafers, they are less expensive than solar  cells  made of  silicon

    wafers.  However,   energy conversion efficiency of  polycrystalline cells is  lower than

    single crystal ones. The third-generation solar cells are tandem cells, organic cells

    and other cells including cells made of  nano-sized materials. The  solar  cells under 

    this group are still under research to  achieve high  efficiency and low cost.   In this

    study,  one type of  the second generation solar  cell, CdTe PV cells were fabricated

    and  tested.   Following   that  PbSe  nano-rods  were  grown  for future  nanomaterial

     based   solar  cells,   and   finally   the  study   of  energy transfer  from   inorganic  CdSe

    quantum   dots to   organic   photosystem   I  was carried  out   and  investigated   for the

    third and future generations of  PV cells.

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    31/135

    11

    USSOJWW   US$().20/W

    s   40

    USS0.50/W

    Thermodynamiclimit

    USS1.00/W

    Present   limit

    US$3 .50/W

    0   U)Q   200 300 400   500

    Cost. US$/m2

    Figure 3. Solar  cell fabrication cost vs. energy conversion efficiency

    2.3.   Physics of  photovoltaic cells

    There are many different types of  solar  cells, but the basic operation is explained

     by a p-n junction operation under solar radiation.5 When the cell   is exposed to the

    solar   spectrum,   a   photon   that   has   energy less than the   band   gap   makes   no

    contribution to the cell output. A photon that  has energy greater  than band  gap is

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    32/135

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    33/135

    ¦M-

    13

    '\J\J¥  + +

    + +

    + +

    If 

    +

    -o   V   o-

    Ev

    I = I(e1V/kT-ï)-IL

    Rl

    Figure 4. Schematic diagram of  ideal photovoltaic cell and its equivalent circuit

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    34/135

    14

    A   solar   cell   is   thus   a   p-n   junction   diode   without   any   external   voltage   applied.

    Because  of  built-in   electrical   field   in   the   depletion   region,   lL,   a  photocurrent   flows

    even without external bias, (i.e. at zero bias), in the direction of  the electric field.

    The l-V behavior  for  an  ¡deal solar  cell is shown in  figure 5.  With   illumination, the

    excited   electrons   contribute   to   the   current  density,   which   is   Jsc,   the   short  circuit

    current.  Jsc is  equal to  the photocurrent density  JL.  This short circuit current is  the

    amount of  current generated by photons. Another important parameter  is the  Voc,

    open  circuit voltage.  This  parameter  is depends on   the built-in   potential,  which   is

    depends   on   the  material  properties.  The current   and voltage  which  deliver   the

    maximum   power   are   referred   as   the  maximum   power   current   density   Jm   and

    maximum power voltage Vm. A fill factor, FF, can  be defined by

    FF =J   VJ SCy  OC

      (3)

    and the energy conversion efficiency is  given by

    J   V

    ?~~?~   (4)in

    where   Pin   is   the   incident   solar   power   on   the   PV   cell.   To   increase   the   energy

    conversion   efficiency,  we   need   larger  short circuit current   and  larger  open   circuit

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    35/135

    15

    voltage.   To   increase   short   circuit   current,   basically,   we   need   more   excitedelectrons/holes   by   choosing   appropriate   materials   with   direct   band   gap   than

    indirect, designing  multi-junction cells and  so on.  To  increase open circuit voltage,

    fabrication  process needs to  be  improved to provide   strong  abrupt junctions with

    minimum  leakages.

    In   the case  of  non-ideal  solar  cell,   the  equivalent   circuit for  the   ideal  diode   l-V

    characteristics needs to be  modified by  adding the series resistance (Rs) and  shunt

    resistance (Rsh). This non-ideal  l-V characteristic allows us to  determine properties

    of  the PV cell. As shown   in figure 6, these series and shunt resistance  reduce the

    fill   factor,   and   result   in   poor  energy   conversion   efficiency.   Series resistance   is

    related   to   the non-ohmic   component  of  metal   contact.   Shunt   resistance   is   from

    leakage in  the  diodes.   In  other  words, observing   series resistance implies that the

    metal contact is  non-ohmic, and  shunt  resistance   reveals the  poor  condition of  the

     p-n   junction   of   the   PV   cells.   To   achieve   higher   energy   conversion   efficiency,

    selection   of   materials   and   processes   should   be   considered   carefully   to   obtain

    larger open circuit voltage,   larger short circuit current,  smaller series resistance,

    and smaller shunting  resistance.

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    36/135

    16

    Figure 5. Ideal J-V characteristics and figures of  merit of  a p-n junction solar cell

    Light.

    sh?   WV-

    L·   MR.

    \— ???t-

    s   *>   sh

    TV

    Jl

    R,

    Figure   6.   Non-ideal   J-V  characteristics   of  a   p-n   junction   solar   cell with   series

    resistance  and  shunt resistance;  and its  equivalent circuit

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    37/135

    3.  EXPERIMENTS

    3.1.  Material  deposition

    Three thin film deposition techniques are selected and utilized in this work based

    on accessibility of  source materials and  systems.

    Thermal  evaporation

    The   thermal   evaporation technique   is   one   of  vacuum   thin   film   deposition

    techniques. It consists with a heating unit (resistance heating), a source boat, and

    sample holder. The source material is vaporized by applied heat, and condensed

    on   the   sample   surface   and   vacuum   chamber  walls.   Relatively   low   vacuum

     pressures (~10"5 Torr) are used to avoid reaction between source material and air.

    In addition, in poor vacuum pressure, the deposition is not carried out because the

    mean free path of  vapor is  not enough. In this deposition technique, the deposited

    films are often non-crystalline since vaporized atoms reaching the  sample surface

    are low. Heating and vacuum pressure are deposition rate parameters. In this work,

    CdS thin films  were deposited   by thermal  evaporation. CdS evaporation  source

    (99.99%) was purchased from Cerac Inc. (Milwaukee, Wl).

    ?-beam evaporation (e-beam  evaporation)

    17

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    38/135

    18

    The  e-  beam evaporation   is  another vacuum   thin   film   deposition technique,similar to   thermal evaporation.   Systemically   only   difference   is   a heating   unit.

    Instead of  resistance heating, electron beam gun is used. Usually several KeV high

    energy electron beam bombard   the  source   in a   crucible.   Generally, the source

    materials are available with high purity quality, so higher vacuum pressure (~10"7

    Torr) is used  to obtain high   purity films.   In  this work, CdTe thin  films and goldcontacts were   deposited   by   e-beam   evaporation.   CdTe   e-beam   evaporation

    sources (99.999%) were purchased from Cerac Inc. and  Piasmaterials (Livemore,

    CA)

    RF magnetron sputtering

    The sputtering evaporation system   is, again, one of  vacuum thin film deposition

    system,  but its operation is more complicated.  Instead of  heating unit, RF power

    generate a plasma (argon in this work), and it bombards the source target. In some

    cases,  reactive gases used, therefore the plasma reacts with the source too.  By

    adding magnet in the target side,   it makes plasma  more  concentrated betweentarget  and   sample   surface.   PbSe  nanowires were grown   using  this technique.

    PbSe sputtering target (99.999%) was purchased Cerac Inc. (Milwaukee, Wl).

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    39/135

    19

    3.2.  Diagnostic  techniques

    Morphology, crystal structures, identification of  elements and compounds, optical

     band gap and photoconductivity of  materials were analyzed   by  means of  several

    techniques.

    X-ray photoelectron  spectroscopy  (XPS)

    Since favorite  Albert  Einstein  discovered   photoelectric effect,   it   has influenced

    numerous  areas. XPS   is one of  them.  Kei Siegbahn  demonstrated  photoemission

    as   analytical   tool   in   1980s.   The   basic   operation   is   that   a   detector   collects

     photoemission from a sample surface after its exposure to x-rays.  By measuring

    emitted  electron's kinetic energy,   its  binding energy is  calculated, and elements at

    the sample surface can be identified. Usually, x-ray can penetrate only top -10 nm

    surface.   To   remove  surface  contaminations  or  oxide   layers,   sputtering   by argon

    gas  is  carried   out.  This technique   is   non-sample destructive,   and  very effective

    elemental,  chemical  analysis  of  any sample, which   is compatible with  ultra   high

    vacuum. Kratos Axis-165 XPS  system, which  equipped with  monochromatic x-ray

    source(AI  Ka) and concentric hemispherical analyzer, was used to  analyze CdS,

    CdTe materials, and the  PbSe nanowires.

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    40/135

    20

    Atomic force   microscope  (AFM)

    AFM   is   one  kind   of  scanning   probe  microscopes.   It   ¡mages   atomic   resolution

    sample surface by measuring the vertical and  horizontal deflection of  laser beam

    which   reflected  from  a cantilever.  Since it  is  measuring  atomic interaction  between

    the cantilever and   sample  surface,   unlike  measuring tunneling   current   in  case of 

    scanning tunneling microscope operated in ultra high vacuum,  it can be operated  in

    ambient  air or  even   in   liquids.   It is also a  non-sample destructive techniques,   but

    the  samples   have   to   cut   into   small   pieces   to  mount   in  AFM   sample   holder.   A

    PicoScan 2500 system was used to measure CdTe grain size.

    Scanning  electron microscope (SEM)

    The   Hitachi   S-3000N   SEM   system   equipped   with   a   tungsten   electron   source

    (accelerating voltage 0.3 - 30 kV), was used to image cross-sectional view of  CdTe.

    The sample was coated with 10 nm Pt film prior to imaging. We also obtained SEM

    images of  PbSe nanowires.

    Current-voltage measurement (l-V measurement)

    Photovoltaic  behavior  of  CdS/CdTe junction  was  characterized   using   a   current-

    voltage   (l-V)   measurement   system. The   system   consists   of   KEITHLEY   2400

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    41/135

    21

    source meter and two probes. To measure solar  cell's energy conversion efficiency,

    a light source was added,  and the  irradiance at the sample surface was calibrated

    using a   reference cell (p-Si solar  cell, VLSI  Standards,  Inc.,  San Jose, CA).  Photo-

    response of  PSI and composite of  NQDs and PSI was also measured.

    X-rav diffraction   (XRD)

    The crystallinity of  PbSe nanowires was analyzed by Siemens Diffracktometer D-

    5000 x-ray diffraction system (Cu radiation, graphite monochromator).

    Fourier  transmittance  infrared spectroscopy (FTIR)

    Thermo   Nicolet   Nexus   870   FTIR   system   (spectral   resolution:   0.125   cm"1,

    frequency range: 400-12000 cm"1,  detector: DTGS,  MBTB) was  used to measure

    transmittance   of   PbSe  nanowires. The  measurements  were   carried out   at   room

    temperature.

    Spectrofluorometer 

    Photoluminescence of  PbSe nanowires was  measured  using   Horiba Jobin Yvon

    FluoroLog  system. What is unique about this system is that it allows us  measure in

    infrared range to 3/zm. The probe range of  the system is  between 800 nm to 3/zm.

    Hall  measurement

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    42/135

    22

    Hall   measurement   with   the   van   der   Paw   technique   is   the   most   common

    measurement   technique to  determine the  sheet carrier density  by measuring Hall

    voltage   with   HP   4156B   Semiconductor  Parameter   analyzer,   where   four   indium

    contacts were made on  the samples to  be  measured.

    Fluorescence  image

    Both   bright   field   images   and   fluorescence   ¡mages   of   PSI   and   NQDs   were

    obtained  using  Nikon  Ellipse TE  2000-S microscope.  Three exciter (405  nm+45,

    460  nm±45,   545 nm±15),   two beamspliter  (470DCXR  and   475DCXRU),   and   six

    emitter (525  nm±10,  585  nm±10,  605 nm + 10, 610  nm+32, 655  nm+ 10 705  nm

    ±10) filters were available.

    Absorption   measurement

    The   absorption   measurements   were   carried   out   by   a Cary 300   UV-Vis

    spectrophotometer system at room temperature.

    Photoluminescence (PL)

    A   single-stage  ACTON   SpectraPro   2500   spectrometer   with   a   1200   g   mm-1

    grating  with  442   nm   line of  a   Kimmon  Helium-Cadmium   laser  at   an  initial   laser 

     power  of  80 mW was used.

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    43/135

    23

    Transient absorption measurement

    Transient   absorption   measurements   were   carried   out   at   the   Center   for

     Nanoscale   Materials,  Argonne   National Laboratory.   The   system   consists   of   a

    femtosecond  Ti:sapphire   oscillator  regeneratively   amplified   at   1.7   kHz.   A   small

    amount of  the output is used to generate the white light continuum probe, and the

    remaining 95%   pumps an   optical   parametric   amplifier   (OPA)   to   produce theexcitation  pulses. The OPA produces a tunable fs  output from the  UV  through to

    the infrared.  For these experiments,  the OPA was set  to  477 nm.  The two outputs

    then enter a transient absorption spectrometer (Helios, Ultrafast Systems), where

    the probe   is variably delayed relative to the pump on a mechanical delay line. The

     pump beam   is chopped at half  the repetition rate of  the laser so that an absorption

    change (??) can be measured as a function of  delay: AA=-[log(lp/lnp)].  Here  lp is

    the intensity of  the transmitted probe with the pump on, while lnp is the intensity of 

    the transmitted probe with no pump.  A spectrograph is used to  collect the spectral

    content of  the probe from 440  nm to 760  nm as  a  function of  delay. The data   is

    chirp corrected to within 100 fs over this spectral range. The excitation pulse with

    610 nm  was  also  used.

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    44/135

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    45/135

    25

    Solar spectral irradiance

    E   2000 U

    e

    5

    .S¦?

    a.m

    AMO, 1353 W/m'relevant one

    for  satellite and space-vehicle

    AN1 1.5,  844W/nr average for terrestrial application

    1   2 3Wavelength   [µp?]

    Solar spectral irradiance & Ideal solar cell efficiency

    ?cf  

    ?

    £UJ

    CuInGaSe

    CdTe   CdS

    a-Si:H

    KlLiLi

    1500^

    C

    1000   1B

    a

    tfí

    0.0 0.5   1.0   1.5 2.0 2.5   3.0   3 .5 4.0Bandgap energy [eV]

    Figure 7.   Solar spectral irradiance and ideal solar cell efficiency (ASTM Standard

    Extraterrestrial Spectrum Reference E-490-00 for AM  0 and ASTM G-173 for AM

    1.5:www.rredc.nrel.gov, Ideal solar cell efficiency reproduced from Sze. T=300K)

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    46/135

    26

    van

    ety of  deposition techniques such as chemical bath deposition, chemical vapordeposition, closed-space sublimation, e-beam deposition, and so on .1 The record

    laboratory efficiency for CdTe solar cell has reached 16.7% at National Renewable

    Energy Laboratory, and the module efficiency reached in solar cells of  this material

    is 10.9% by BP Solarex.6 Single crystal CdTe has been well studied and used for

    gamma ray detectors, but the polycrystalline material technology is not developedas much as single crystal technologies because polycrystalline CdTe technology

    has not many application so far. The goal of  this work was to demonstrate CdTe

    thin film solar cell  fabrication and  to try  to understand the various factors  in the

    fabrication process to  identify and   improve what contributes to the  efficiency of 

    energy conversion process.

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    47/135

    27

    4.2. Prior work/Literature   research

    Thin   film   polycrystalline   CdTe   solar   cell   has   been developed   world wide,

    especially in  University of  South Florida (Tampa,  Florida), the  University of Toledo

    (Toledo,   Ohio),   Colorado State  University  (Fort Collins,  Colorado),  University  of 

    Delaware   (Newark,   Delaware),   and   National   Renewable   Energy   Laboratory

    (Golden, Colorado)   in  U.   S.   Although  they used  different processes to fabricate

    CdTe solar  cells,   the basic structure   is CdS/CdTe   p-n junction  on TCO  coated

    glasses, the so called a superstrate  configuration. The processes are summarized

    in the  table   III.

    We have demonstrated this superstrate configuration CdS/CdTe solar cell, from

    material deposition,  processing such  as  annealing,   doping,   cell  fabrication   and performed its energy conversion efficiency test.

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    48/135

    28

    Table

    SUMMARY OF CdS/CdTe PROCESSES AT MAJORITY RESEARCH PALCES

    Superstrate

    Transparentcontact

    HRT layer 

    CdS

    CdTe

    CdCI2

    University of  SouthFlorida78

    Borosilicate glass

    (Corning 7059)

    Sn02:F  by MOCVD

    ITO by  sputtering

    SnO2 by MOCVD

    SnO2 by  sputtering

    CBD(90nm-100nm)

    Back  contact

    CSS (5-6   w),

    Tsub=550   1C

    thermal  evaporation

    followed by  heat

    treatment @390   "C

    Bromine/methanol

    etch   for  7-10  sec

    Graphite doped with

    HgTe:Cu by  heat

    treatment @250   °CGraphite

    Mo

    University of 

    Toledo9, First Solar,BP  solar 

    Pilkington Tec-7, Tec-

    15

    ZnO:AI on  Corning

    1737 aluminosilicate

    glass

    Yes, no  details

    Sputtering

    Sputtering (2-4   ,um)

    Colorado School

    of  Mines,

    Colorado  State

    University,

     NREL1   10

    Pilkington Tec-7,

    Tec-15,

    Sn02/coming

    7059

    Cd2SnO2 or 

    Zn2Sn04 coating

     N/A

    CBD

    Vapor  process

    @375-400   °C

    Yes and  no,  no detail

    Cu/Au followed  by

    diffusion annealing at

    150-170   °C

    ZnTe:N/Au  or 

    ZnTe:Cu/Au  study

    CSS @ Tsub=570-

    625   °C

    University  of Delaware

    11-12

    TEC-15

     N/A

    CBD(

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    49/135

    29

    4.3.  CdTe/CdS  structure fabrication

    Figure  8 shows the   structure of  a CdS/CdTe solar  cell   and   its  corresponding

    energy   band  diagram.   Processes   and   purchased  materials   are  summarized   in

    table IV.  We first explored the TCO coated glasses. CdS was deposited by thermal

    deposition  technique. CdTe was deposited by e-beam, and the  film was annealed

    at high  temperature  under  CdCI2  vapor.  Cu  was   diffused   into  CdTe   film   by low

    temperature annealing. Finally, Au back contact was applied.

    -"W*   Glass   Sn02   CdS

    3.7  eV2.4 eV

    CdTe

    1  .45 eV

    Au

    "Ë7" _Ef_ 

    Ev

    Figure 8. Energy band diagram of  CdTe/CdS solar cell

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    50/135

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    51/135

    31

    The first challenge was preparation of  the TCO coated glasses.   It should havevery high optical transmittance and   low resistivity.  Four different types of  glasses

    were tested.  First,   indium tin oxide  (ITO) coated glasses, which were purchased

    from Sigma-Aldrich were used, but the CdTe film peeled off  after high temperature

    annealing.  Indium in ITO coating seems deteriorated at elevated temperature. Next,

    three different Sn02:F coated  glasses were used. The glasses purchased  from

    Pilkington was more transparent compared it purchased from Woo Yang. Thinner

    Pilkington glasses,TEC15, showed best results.

    A high resistance TCO (HRT) layer is necessary to produce high efficiency cells.

    Additional Sn02:F or ZnO:AI films, with a higher resistance than the TCO, have two

     benefits. One   is that these ?-type oxide layers allows for thinner CdS, therefore   it

    increases the   light   absorption.   Another   is   that   HRT   appears   to   improve non-

    uniformity of  the solar cells by blocking electrically short channels in the films. The

     properties   of   HRT   layers   mainly   depend   on   its   thickness   and   annealing

    temperature, which decides the  resistivity. Although we have tried  0.04   µG?  thickZnO:Al   films   followed   by   500   0C   annealing,   but   have   not   seen   significant

    improvement such as increasing open circuit voltage and/or short circuit current.

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    52/135

    32

    The CdS   thin films   (0.2   µ??)   were   thermally   deposited   at   room   temperature.

    Rather thick layers were deposited to avoid pin holes in  this deposition.   If  CdS film

    is   thinner   (

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    53/135

    33

    200000

    150000

    5*?m

    55?—*

    e

    g 100000

    £   50000

    -I — ? — ? — ? — ? — ¦ — I — ? — I — ¦ — I — ' — I — ¦ — I — ' — I — "~

    CdS:  Survey

    t — ¦ — t

    Cd 

    3d Cd 

    5/2   3d,

    Cd 2d   c

    4???   1S4s

    Cd 

    3p3Cd3P1

    O1s

    Cd 

    3s

    Cd (A)

    '   ¦ ¦   I   I   L.   _l   ?   I   ?-

    ?   100   200 300   400   500 600 700 800   900  100011001200Binding Energy(eV)

    Cd   at CdS  thin  film  surface

    3d 5/2

    404.9

    3d  3/2

    404 406 408   410   412   4 14 416Binding  Energy(eV)

    S at CdS   thin  film  surface

    61.4

    162.5

    160   162   164Binding Energy(eV)

    Figure 9. XPS results on CdS thin film (top) survey scan (bottom) detail scans of 

    Cd   and  S

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    54/135

    34

    in the as-grown CdTe. The CdCI2 treatment increase grain size and  improve itselectrical properties. In addition, it influences p-type doping. AFM and SEM images

    of  the CdTe film are presented in the figure 10, 11, and 12.

    As-grown CdTe  film has  grain   size  about 0.1   µt?   as  shown  in   figure  10.   Its

    chemical analysis was carried out by XPS, and the results are presented in  figure

    13. Strong Cd and Te peaks were found, and no other impurity was observed. TheCdTe film was placed  inside an oven while 0.1  M CdCI2 was vaporized,  using  a

    ultrasonic nubilizer, and delivered to  its surface. The CdCI2 treatment temperature

    has great  role on   increasing   the grain  size.  The AFM surface images of  CdTe

    annealed at different temperature are shown in  figure 10 and  11. By exposing the

    sample to the CdCI2 treatment at 425 0C for 20 minutes, a grain size of  5 µ?? was

    achieved as shown in  the  figure 12.

    Finally,  the back contact deposition is the  last step to complete the  CdTe/CdS

    solar   cell.   This   step  consists   of  etching   off   CdCI2   treated   CdTe   surface,   Cu

    deposition and diffusion by low

     temperature annealing, and Au contact deposition.

    The biggest concern in this step is that it is impossible to make ohmic contact with

     p-type CdTe and any metal materials. All metal contacts result in formation of 

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    55/135

    35

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    56/135

    Figure 11 AFM ¡mage of  CdTe after post annealing at 425 0C for 20 minutes

    ^rararofi^^^M

    HRRH

    Figure 12. Cross-sectional view of  CdTe solar cell after post annealing at 425 °

    for  20   minutes

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    57/135

    37

    Schottky  junctions.   In   order   to   minimize   this   effect,   a   highly   doped   area   is

    desired   between   CdTe   and   metal.   One   method   is   etching   CdTe   surface   in

     bromine/methanol   solution.   By using   this etching,   the Te-rich  surface   is  created,

    which   increase Cd vacancies at  the  surface. Another method   is  adding  Cu to the

    CdTe   surface.  As  a   result,   the width of  the  Schottky barrier  is  decreased.   In   this

    experiment,  we  tried both etching   in bromine/methanol   solution and  Cu doping.25A of  Cu was deposited using e-beam deposition system, and annealed at 180 0C

    for  20   minutes.

    Figure   13   and   14  show  XPS   analysis   on   as-grown  CdTe   surface   and  CdTe

    surface  after  CdCI2   treatment  followed   by Cu  doping.   In   addition to  Cd   and  Te

     peaks,   Cl and  Cu peaks were observed after the treatment and the doping.   No

     bromine  residue was found.  Lastly, Au  was deposited  as a  back  contact using e-

     beam deposition system.

    In summary, CdS/CdTe solar cell was fabricated based on  best known published

    information.   The most   difficult   challenge   was   CdCI2   vapor   process,   which   is

    explained in the following section.

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    58/135

    38

    300000

    250000

    l'I1 — t-

    ?   CdTe:  Survey

    200000

    ?U)

    E 1500003O

    c¿&¦¡j 100000COl

    *-»

     _ç

    50000

    Cd 

    3d„

    -|— ? — ? — ?— | — ¦   GTe

    3cU. Te3d,„

    Ih   CdCd   r,4sTe4dlCd   4s   C

    |4p   1s

     _!__!   I   L-

    Cd 

    3d,,.

    O

    1s

    Cd 

    3p   Te  Te   Cd -

    3Cd   Sp3Te   3s   (A)3P1 3P1Cd 

    3s

    0 100   200   300   400^ ¿00^   800   900   1000   1100 1200

    45000

    40000

    35000

    30000

    25000

    20000

    15000

    I   10000

    5000

    Cd  at  CdTe thin film surface

    3d 5/2405.3

    6.7

    400 402   4 04 406   408   410   412Binding  Energy(eV)

    414 416

    Te at  CdTe thin film surface

    3d 5/2572.6

    576 580

    Binding  Energy(eV)

    Figure 13. XPS results on as-grown CdTe thin film  (top) survey scan  (bottom)

    detail scans of  Cd and Te

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    59/135

    39

    350000

    300000

    250000   -

    -?2 200000(?

    ·*— '

    C3

    o

    O  150000

    C   100000?

    50000

    CdTe after CdCI2 treatment and Cu dopingTe

    3d   Te6^ 3d,,

    Cd 3d 

    Cd 

    5ß3d,

    G Cd

    Te

    Te   Cd4s4d    4s

    Cl

    4d   lCd   2d   C

    J   ?-

    ?

    1s

    Cd 

    3P3Cd 

    l3Pl\\\

    Te

    3P3Te

    Cd   \   3PiCu3s

    Te

    3s

    kk2p3

    Cd 

    (A)

    Jl!   \j

    J   ? — L   J   ?   I — ?-

    ?   100   200   300   400   500   600   700   800   900   100011001200Binding Energy(eV)

    Cl  at  CdTe  surface

    after CdCI2 treatment and Cu doping

    2P,

    2P1i   200.4

    2P3932

    kààAm

    ?'   ?

    2P,952

    I I I

    1IW Ì«1Cu at CdTe surface   '   '   I   ]   T|!|'i'after CdCI2 treatment and Cu doping

    185 190   195   200 205 210 215Binding Energy(eV)

    915 920 925 930 935 940 945   950   955 960 965Binding Energy(eV)

    Figure 14.  XPS results on  CdTe solar cell (top) survey scan (bottom) detail scans

    of  Cl  and  Cu

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    60/135

    40

    4.4.  CdCI?  vapor  process

    CdCI2   post   treatment   is   the most  critical  process   in  CdTe   thin   film   solar   cell

    fabrication. Spin   coating   of  CdCI2,   thermal   evaporation   of  CdCI2   and so   called

    vapor  process  were   used   by  other  groups.   7"12   Firstly,   spin   coating   of  CdCI2

    followed   by   annealing  was  tested.   However,  CdTe   films were  peeled   off  after

    annealing.   In   addition,   the applied   CdCI2  crystallized  and   it was not possible to

    clean it away from its surface. Next, coated CdCI2 was briefly rinsed, and samples

    were  annealed.   Less than   5%   energy   conversion   efficiency   was   measured   on

    these samples as shown in figure 15.

    To achieve higher efficiency, a process using  CdCI2 vapor was needed. Other

    groups reported solar cells with higher efficiency using a so called vapor process,which   is   annealing   samples   under   continuous   CdCI2  vapor   flow  generated   by

    thermally sublimated from solid form CdCI2 source.9"12 Our own vapor process was

     built  in house as shown   in figure 16.   In our case, we used a nubilizer to generate

    CdCI2 vapor, and the vapor was transferred into a oven where CdTe/CdS samples

    are annealed. As a  results, we found  increase of  both Voc  and Jsc,  which   leads to

    higher efficiency as shown in figure 15.

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    61/135

    41

    CM

    eo

    <E

    U)Ca>Q

    ca>L-?-

    3

    O

    5

    0

    -5

    -10

    -15

    -20

    -25

    Annealing temperature: 38O0C,  30min

    Solid   lines

    : spin coatedfollowed  by rinsed

    Dashed  lines:   spin coated followed by  rinsedand then applied using sonic during annealing

    J   ?   L·

    -0.1   0.0   0.1   0.2 0.3   0.4 0.5   0.6   0.7   0.8

    Voltage (V)

    Figure 15.  1-V measurement on samples without/with CdCI2 vapor process

    Exhaust

    Oven

    CdCI2vapor    Carrier 

    Sample

     Nubilizer 

    Figure 16. Schematic diagram of  CdCI2 vapor process system built in-house

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    62/135

    42

    4.5. Characterization of  solar  cellsThe CdTe/CdS solar cells were tested by current-voltage measurement (l-V) with

    a light source at 20 0C. To allow meaningful comparison between different solar

    cells under different conditions, a standard is generally used. The standard is the

    total power density of  the exposed light at the solar cell surface is 1000 W/square

    meters. Solar energy conversion efficiency   is defined as the maximum power over

    the total power. In our best solar cell we achieved open circuit voltage 0.79 V, and

    short circuit current density 22.96 mA, and FF 67 %. The efficiency achieved was

    12.16 %, and device size was  0.5 mm  ?  0.5 mm.  The l-V system was calibrated

    using a reference cell (p-Si solar cell, VLSI Standards, Inc., San Jose, CA).

    //(%)Pu,

    J^VFF ? 100   (5)Pu,

    0.02296 ? 0.79 ? 67.06 ? 100 ^ ] on~   HXK)= 12.16%

    l-V results from different CdTe/CdS solar cell samples with different efficiency were

    shown  in   figure  17.  As  explained  in  chapter 2.3.,   using  values  of  open  circuit

    voltage, short circuit current, shunt resistance and series resistance obtained from

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    63/135

    43

    l-V curves, we were able to analyze the performance of  CdTe/CdS solar cells. Theequivalent   circuit   of  the solar   cell,   shown   in   figure   6,   has  two   shunt   resistor

    components  (one for the p/n junction, another for the back contact junction)   and

    two series resistor components (one for the back contact, another due to the front

    contact and electrical wires), the values are summarized in table IV.

    ^   10.2%   -Iv  12.2%

    -0.6   -0.4   -0.2   0.0   0.2   0.4   0.6   0.8   1.0Voltage (V)

    Figure 17. Energy conversion efficiency measurement results

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    64/135

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    65/135

    45

    To achieve the  short circuit current,  Jsc,  first of  all,  a high  density generation of 

    electron-hole  pairs   are needed without  recombination.  Optimized  thicknesses  of 

    CdTe   layer   and   CdCI2   treatment are   critical.   Other   sources   of   JSc   losses   are

    electrical contacts  and reflection   at the glass  surface.  The  key determining   open

    circuit   voltage,   Voc,   is   the   recombination   in   the   depletion-region.   Lower

    recombination rate give higher Voc.   In other words, less trapping levels-high crystal

    quality at the p/n junction- all yield higher V0c-

    Fill factor is another   important figure of  merit for the  solar cells,   and   it can be

    calculated  as shown  in chapter  2.3.  Solar  cells always  have a parasitic resistance

    which   is   a   combination   series resistance   and   shunt   resistance.   The   series

    resistance consists   of   bulk   resistance   of   the   semiconductor,   contact   resistance

     between   semiconductor  and metal   contact,   and electrical  contacts   connected   to

    outside. The shunt resistance is  mainly caused by leakage across p/n junction.  By

    optimizing  the solar cell  fabrication   processes,  as described   in previous section,

    we've improved the performance of  CdTe/CdS solar cells as shown in table Vl.

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    66/135

    46

    4.6.   Demonstration

    Using four 3 cm ? 3 cm CdTe/CdS solar cell, an alarm clock and a toy dragon fly

    were operated as shown in figure 18. Top three pictures are the CdTe solar cells

    connected  to the alarm   clock.  As  shown   in the middle  picture,  the battery was

    removed, and the power terminals were connected to the CdTe solar cells. In the

    case of  the toy dragon fly, the turn-on voltage was about 0.6V, and about 40 mA of current was   required   to  start the  small   electrical   motor,   which  attached   to   the

    dragon flies. By connecting the solar cells in series, the solar cells provide enough

    voltage and power to the alarm clock and  toy  dragon fly. These CdTe solar cell

    used for the demonstration had an efficiency of  about 5%.

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    67/135

    47

    Figur® 18. Demonstration of  CdTe/CdS solarceli.

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    68/135

    48

    4.7.  Tandem  solar  cells

    Tandem   solar  cells,   which   consist   of  multiple   solar   cells   with   each   solar   cell

    absorbing  the  solar   radiation   closed   to  each   solar  cell's   band gap.   Tandem  solar 

    cells   made   of  single   crystalline   GaAs   and   Si   have been   achieved   high   energy

    conversion efficiency,  over  40%.   2"6  In our  study, we  suggest PbSe  nanowires with

     band gaps  smaller than   the  band  gap  of  CdTe (1.5  eV).   Band  gaps  of  nanowires

    can   be   engineered   by   varying   size   of   nanowires.   It   is   known   as   quantum

    confinement  effect,  which will  be explained   in section  5.2.  Calculated band  gaps of 

    PbSe   nanowires   with   different   sizes   were   superimposed   on   ¡deal   solar   cell

    efficiency  marked  with   band  gap  of  different solar  cell  materials   in   figure   19.   The

     band gaps  of  nanowires   are  calculated   using   1-D   infinite  well   case as   shown   inequation  (6).

    ^Vi2   ?2p2\2",?   ImJa2+ 2mh*a2+   8   (6)

    As shown in the figure 19,   band gap  of  PbSe nanowires can be engineered, so   it

    can join together  with  other  solar  cells such as CdTe thin film for  tandem  solar  cell

    configuration.

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    69/135

    49

    There have been proposals of  solar cells made of  nanowires.13"14 Despite of  the

    high   energy   conversion   efficiency potential,   realization   of   nanowire   solar   cell

    require  better understanding  and  control  over  materials and device  structure.  As a

    initial  step, we  have shown the  quantum confinement effect in  our  PbSe nanowires

    in this study.

    50

    40

    30

    P   20

    10h

    ?c

    ?

    EUJ

    CuInGaSe.

    PbSe a-Si:Hnanorod 

    20

    15

    Ec

    "so

    o

    10  If  

    5   eQ

    0

    0.0   0.5   1.0 1.5   2.0 2.5 3.0 3.5   4.0Bandgap energy [eV]

    Figure 19. Calculated band gaps of  PbSe nanowires and ideal solar cell efficiency

    reproduced from Sze. T=300K 

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    70/135

    5.  Quantum  confinement   in  PbSe nanowire

    5.1.   Background 

    To   explore   materials   for   tandem solar   cells,   PbSe   nonowires   were   studied.

    Although   PbSe   has  direct  and  small  band gap,   bulk   PbSe   is  not very  efficient to

    make  solar   cell   because   the  energy   band   gap   is   not  in  visible   range.   The  solar 

    irradiance  outside visible range   is very weak.   However,  with the  magic of  quantum

    confinement,   PbSe  nanowires   could   be another  good   candidate   material   for  solar 

    cell.   We   can   engineer the   energy   band   by   making   the   PbSe   material smaller;

    therefore move the absorption energy gap toward visible range.

    Material   growth   of   semiconductor   nanowires   has   attracted   much   interest   for 

    conceptual   devices   such   as   single   electron   transistors,   field   effect   transistors,

    sensors,   emitters,   and solar  cells.15"20   Bulk  PbSe  has a narrow direct band  gap

    (0.28  eV  at 300K)  at the  L point of  the  Brillouin zone,   large dielectric constant (e„~

    23)   and   high   optical sensitivity   (absorption   coefficient   >   104   cm"1)   near   room

    temperature  in  the technologically important regions  of  near   infrared   (0.75-3/™) and

    mid-wave infrared (3-5/™). 21"25 Nanowires of  PbSe are of  enhanced  interest due to

    their  special  properties where the  relatively large Bohr  excitonic radius (46  nm) and

    50

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    71/135

    51

    small   effective  masses   lead   to   strong  electron   and   hole   confinement   in   PbSe

    nanowires.  PbSe nanowires have been grown  by solution-phase  synthesis21   and

    direct  current   electrodeposition22, vapor-liquid-solid   growth.23   In   this   study,   we

    demonstrate strong confinement   in wires grown   by  RF magnetron sputtering  on

    non-single-crystal Si02/Si   substrates,  without   an   intermediate   layer,  where   the

    wires are much larger than the Bohr radius of the electrons.

    5.2. Quantum confinement in  nanowires

    In   a   bulk   semiconductor, density  state  of  electrons,   N(E) is   as  a   function  of 

    energy band level and effective mass, written as follows.

     NiE) = An^-Y4Ëh2   (7)It is the number of  allowed energy states per unit energy per unit volume (eV1-cm"3)

    for a three dimensional semiconductor.   In the figure 20, the parabolic curve shows

    the density state of  bulk.  For a two dimensional semiconductor such as quantum

    well, density of  states become steplike. Nanowires, in which electrons are confined

    along a line, are one dimentional quantum structure with spikelike density of  states.

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    72/135

    52

    To   calculate   confinement energy   calculation   in   the   nanowires,   Schrodinger 

    equation for free electrons in two dimensions using polar coordinates  .27

    h2 ( d2   id    Id 2   ?

    2m· +   + ¦

    2   a/i2dr    r  dr    r    d?  ?(?,T) = ??^,T)

    (8)

    ?-2^2   ·   2?   p   j(n

    The solution for a cylindrical well with infinitely high walls is   e?1-   — 2ma

    I. „?   1, where angular momentum quantum number is   Je,n ~ (n + 9 Kl   ?)p

    The state of  lowest energy has zero angular  momentum( £=Q).

    Thé lowest confined energy level  of  nanowires is  ?2p\-p)2

    &1,02ma¿

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    73/135

    53

    ?

    B"co?

    ?— 

    O

    >>^-'

    "toCf  

    Q

    tEc bulk C   dot

    C   wire

    C   wei

    Energy

    Figure 20.   Illustration of  the density of  states (DOS) of  electrons reproduced from

    "Quantum  Heterostructure" 26

    5.3.  Growth of  the PbSe  nanowire

    The sputtering deposition technique has been used to grow other semiconductor 

    nanowires such as ZnO.28 The advantages of  the sputtering method include growth

    of  quality   PbSe  nanowires which   are contamination   free,  compatible with device

     processing,  less expensive and  simple.

    PbSe thin film was deposited on a  3" Si02/Si   substrate,  as shown   in figure 21 ,

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    74/135

    54

    using   RF   magnetron   sputtering   system   (CVC   SC4000) at   the   Nanotechnology

    Core   Facility   at   University   of  Illinois   at   Chicago   using   2"   lead   selenide   (99.9%)

    sputtering target from GERAC,   USA.  The PbSe was deposited  for  5  minutes under 

    a   pressure  of  4.3  mTorr with  constant flow  of  Ar  gas   (40  seem),  with  the substrate

    at   room   temperature.  The applied  power  on  target was  at  200W,   and  the sample

    was  rotated.  Schematic   illustration  of  the  sputtering  process is  shown   in  figure 22.

    The  substrate was   cleaned   with   acetone   followed   by   a   methanol and   deionized

    water   rinse.   Surface   morphology   and   cross-sectional ¡mages   of   the   film   were

    obtained  using  SEM. The  crystallinity of  the film was checked  by XRD.

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    75/135

    55

    Figure 21 . A picture of  3" PbSe film

    Rotation

    MColumnar  ?«   .·PbSe

    Substrate

    Growth

    direction

    ©<

    o

    G

    ©

    Q

    o   Plasma

    PbSe target

    Figure 22.  Schematic  illustration of  the sputtering process

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    76/135

    56

    Material   deposition using a sputtering   technique   usually   leads   to   a   randomly

    oriented  polycrystalline thin film.   However,  our  PbSe  nanowires were obtained  by

    RF magnetron sputtering deposition as shown in the figure 23  and 24.   In the plane

    view of SEM   image,  randomly distributed,   close-packed  triangular  structures were

    seen   with   a   density   of   9x1 09 cm"2.   The   cross-sectional   view   of   SEM   images

    revealed perpendicular  growth of  2.8 µ ?? long wires. The average side length of  the

    triangles  has been found to be  in the range of  140 nm to 200 nm. The thicker wires

    appeared   to be  a merging  of  thinner  wires.  The outer  wires are shorter  than   inner 

    columns due  to  damage occurring  during sample  cleaving.  The XRD  pattem(figure

    25) of  the wires showed only two strong peaks - (111) and  (222) -  corresponding to

    rock-salt cubic structure of  PbSe crystal, implying that the wires were grown only in

    the     direction.   Other   PbSe   nanowires   have   been   reported   with   multiple

    diffraction   peaks.19"20   In   these reports,   PbSe formed  islands   in the rock-salt cubic

    structure grown   in    direction  on  SiO2   substrates  as   illustrated   in  figure  26.

    The   islands   were   randomly   distributed   single   crystals,   and   agglomerated   into   a

     polycrystalline   thin   film   with   large   grains  where the   grains   were   related   to   the

    no

    substrate  orientation.

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    77/135

    57

    MTi

    1   ¦*/   ,..¦   Í   -;

    Figure 23. Surface view of  SEM   image of  grown PbSe nanowires revealed the form

    of  pyramids.

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    78/135

    58

    .Sî?S'

    Figure 24.  Sectional  view of  SEM  image of  the  perpendicularly grown nanowires   is

    shown.   The   diameter   of   the   wires   is   about   200nm   or   smaller   (-100   nm),

    approximately.  Some wires are  merged together.

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    79/135

    59

    10000PbSe film (111)

    10   20

    300

    SiO,  Substrate

    M'**«|M^yl'"*wwW'M*'t' '*

    10   20 30 40 50   602T

    Figure 25. The wires were grown in the direction of   orientation of  rock-salt

    cubic structure according to  x-ray diffraction spectrum.

    o   ©O   ©

    °*®?.??·©?? ô

    OT   o

    O   ?   «

    O0O0O0O   ?»???°©

    ?°??   ©   ?   O   O

    Figure 26. Atomic position map, rock-salt cubic structure inside small box

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    80/135

  • 8/17/2019 Solar Cells Based on CdTe Thin Film and Composite of Organic and Inorganic Nano-Scale Materials

    81/135

    61

    normalized  with   respect   to   the Si02/Si   substrate  which   was   used   in   this   study.

    The   high   absorption  of  the  thick  layer  of  PbSe wires   is   consistent with   previous

    results of  films at these wavelengths.22 The  cut-off  absorption wavelength of  about

    2.5,™   (0.496 eV)  was observed   instead of  the known cut-off  wavelength of  4.46/¿m

    (0.278 eV) for of  single- or poly-crystalline PbSe.23

    The  pronounced   interference fringes are indicative of  Franz Keldysh effect seen

     below the bandgap in semiconductors with built in or applied field. 30 Franz Keldysh

    effect   is   a   shift   of  wavelength   toward   longer  wavelength   -   smaller energy   gap,

    showing oscillations, when a strong electric field is applied.   It  has been  shown   in

    GaAs/AIGaAs quantum well stru