solar energy – new photovoltaic technologies · • solar europe industry initiative (seii) epia...

24
General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from orbit.dtu.dk on: Aug 30, 2020 Solar energy – new photovoltaic technologies Sommer-Larsen, Peter Published in: Energy solutions for CO2 emission peak and subsequent decline Publication date: 2009 Link back to DTU Orbit Citation (APA): Sommer-Larsen, P. (2009). Solar energy – new photovoltaic technologies. In Energy solutions for CO2 emission peak and subsequent decline: Proceedings (pp. 136-138). Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi. Denmark. Forskningscenter Risoe. Risoe-R, No. 1712(EN)

Upload: others

Post on 15-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Solar Energy – New Photovoltaic Technologies · • solar europe industry initiative (seii) epia 2009solar europe industry initiative (seii), epia 2009 • Reaching a PV contribution

General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

You may not further distribute the material or use it for any profit-making activity or commercial gain

You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from orbit.dtu.dk on: Aug 30, 2020

Solar energy – new photovoltaic technologies

Sommer-Larsen, Peter

Published in:Energy solutions for CO2 emission peak and subsequent decline

Publication date:2009

Link back to DTU Orbit

Citation (APA):Sommer-Larsen, P. (2009). Solar energy – new photovoltaic technologies. In Energy solutions for CO2 emissionpeak and subsequent decline: Proceedings (pp. 136-138). Danmarks Tekniske Universitet, RisøNationallaboratoriet for Bæredygtig Energi. Denmark. Forskningscenter Risoe. Risoe-R, No. 1712(EN)

Page 2: Solar Energy – New Photovoltaic Technologies · • solar europe industry initiative (seii) epia 2009solar europe industry initiative (seii), epia 2009 • Reaching a PV contribution

Solar Energy – New Photovoltaic gyTechnologiesPeter Sommer-LarsenHead of Solar Energy Programme

Page 3: Solar Energy – New Photovoltaic Technologies · • solar europe industry initiative (seii) epia 2009solar europe industry initiative (seii), epia 2009 • Reaching a PV contribution

Photovoltaics• Brief PV status• Brief PV status• New technologies in the pipeline

– Thin filmPolymer solar cells– Polymer solar cells

• Net energy production during deployment

15/09/2009Risø International Energy Conference 2009Peter Sommer-Larsen

2 Risø DTU, Technical University of Denmark

Page 4: Solar Energy – New Photovoltaic Technologies · • solar europe industry initiative (seii) epia 2009solar europe industry initiative (seii), epia 2009 • Reaching a PV contribution

Photovoltaics – the promises• SOLAR EUROPE INDUSTRY INITIATIVE (SEII) EPIA 2009• SOLAR EUROPE INDUSTRY INITIATIVE (SEII), EPIA 2009• Reaching a PV contribution to the overall EU electricity demand of 4% in 2016 and

12% in 2020, 20% in 2030 with a potential of up to 50% in 2050.• Typical turn-key large system price of 2 €/Wp by 2015 and <1.5 €/Wp by 2020

PV electricity generation cost in Southern EU of 0.13 €/kWh in 2015 (below retail electricity prices = grid parity) and below 0.06 €/kWh by 2030 (below wholesale electricity prices). Grid parity in most of EU by 2020.

New power capacity EU 2008

7000

8000

9000

New power capacity EU 2008 (www.ewea.org)

12000

14000

16000

(MW

)

Installed PV capacity

ROWUS

4000

5000

6000

7000

paci

ty /

MW

6000

8000

10000

12000

led

PV p

ower

JapanEU

0

1000

2000

3000

Cap

0

2000

4000

6000

Inst

all

15/09/2009Risø International Energy Conference 2009Peter Sommer-Larsen

3 Risø DTU, Technical University of Denmark

0

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

Page 5: Solar Energy – New Photovoltaic Technologies · • solar europe industry initiative (seii) epia 2009solar europe industry initiative (seii), epia 2009 • Reaching a PV contribution

PV electricity prices

•Map of Solar radiation – from wikipedia:(http://en.wikipedia.org/wiki/File:EU-Glob opta presentation.png)( p // p g/ / _ p _p p g)

•Table of electricity prices ($/kWh) versus solar cell price ($/Wp) at different insolations (kWh/kWp/year) from Wikipedia:different insolations (kWh/kWp/year) – from Wikipedia:

(http://en.wikipedia.org/wiki/Photovoltaics)

15/09/2009Risø International Energy Conference 2009Peter Sommer-Larsen

4 Risø DTU, Technical University of Denmark

Page 6: Solar Energy – New Photovoltaic Technologies · • solar europe industry initiative (seii) epia 2009solar europe industry initiative (seii), epia 2009 • Reaching a PV contribution

Photovoltaics – the promises• SOLAR EUROPE INDUSTRY INITIATIVE (SEII) EPIA 2009• SOLAR EUROPE INDUSTRY INITIATIVE (SEII), EPIA 2009• Reaching a PV contribution to the overall EU electricity demand of 4% in 2016 and

12% in 2020, 20% in 2030 with a potential of up to 50% in 2050.• Typical turn-key large system price of 2 €/Wp by 2015 and <1.5 €/Wp by 2020

PV electricity generation cost in Southern EU of 0.13 €/kWh in 2015 (below retail electricity prices = grid parity) and below 0.06 €/kWh by 2030 (below wholesale electricity prices). Grid parity in most of EU by 2020.

New power capacity EU 2008

7000

8000

9000

New power capacity EU 2008 (www.ewea.org)

12000

14000

16000

(MW

)

Installed PV capacity

ROWUS

4000

5000

6000

7000

paci

ty /

MW

6000

8000

10000

12000

led

PV p

ower

JapanEU

0

1000

2000

3000

Cap

0

2000

4000

6000

Inst

all

15/09/2009Risø International Energy Conference 2009Peter Sommer-Larsen

5 Risø DTU, Technical University of Denmark

0

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

Page 7: Solar Energy – New Photovoltaic Technologies · • solar europe industry initiative (seii) epia 2009solar europe industry initiative (seii), epia 2009 • Reaching a PV contribution

Learning curve / price curve• Production capacity:• Production capacity:

– 6.9 GW (2008, Solarbuzz)– 15 GW (2009, EPIA) -> 35 GW (2013, EPIA Global market outlook for

photovoltaics until 2013)photovoltaics until 2013)

15/09/2009Risø International Energy Conference 2009Peter Sommer-Larsen

6 Risø DTU, Technical University of Denmark

Page 8: Solar Energy – New Photovoltaic Technologies · • solar europe industry initiative (seii) epia 2009solar europe industry initiative (seii), epia 2009 • Reaching a PV contribution

Photovoltaics - status• 34th version of Solar T h l C ll M d l t• 34th version of Solar

Cell Efficiency Tables(Green, M.A., Emery, K., Hishikawa, Y., Warta W 2009

Technology Cell Module comment1st generation

Mono c-Si 25.0% 22.9% Multi c-Si 20.4% 15.5%Mono c GaAs 26 1%Warta, W., 2009,

(Version 34), Prog. Photovolt: Res. Appl., 17:320–326)Efficiencies meas ed

Mono c-GaAs 26.1% 2nd generation

Amorphous Si 9.5% 10.4% Module is a-Si/a-SiGe/a-SiGe (tandem)

CIGS 19.4% 13.4% Sputtered/CVD• Efficiencies measured at STC (standard test conditions): 25 deg. C, 1000 W/m2, AM1 5G solar

CIGSCIGS printed

19.4% 16.4%

13.4%11.3%

Sputtered/CVDAccording to Nanosolar

CdTe 16.7% 10.9% 3rd generation

Dye sensitized 11.2% 8.4%AM1.5G solar spectrum.

yDye sensitized flex 3-6% According to G24i Organic Polymer 6.4% 1-2%

High efficiency GaInP/GaAs/Ge 32.0% Multijunction

/ / l ij iGaInP/GaInAs/Ge 41.2% Multijunction, concentrator (454 suns)

Mono c-Si 27.6% Concentrator (92 suns)

15/09/2009Risø International Energy Conference 2009Peter Sommer-Larsen

7 Risø DTU, Technical University of Denmark

Page 9: Solar Energy – New Photovoltaic Technologies · • solar europe industry initiative (seii) epia 2009solar europe industry initiative (seii), epia 2009 • Reaching a PV contribution

Photovoltaics - New technologies• Printed CIGS ink (CuIn Ga Se )• Printed CIGS ink (CuInxGa1-xSe2)

panel production cost estimate:0.99 $/Wp (Nanosolar, Inc.)640 MWp/y production capacityp y p p y

• CdTe thin filmproduction cost estimate:0.98 $/Wp (First Solar, Inc.)

1000 MW d ti it~1000 MWp production capacity

• PICTURES FROM www.nanosolar.com: Ultra-Low Cost Solar Cells: An Overview of Nanosolar's Cell Technology Platform (in pdf format) Overview of Nanosolar's Cell Technology Platform (in pdf format), Nanosolar White Paper, September 2009

15/09/2009Risø International Energy Conference 2009Peter Sommer-Larsen

8 Risø DTU, Technical University of Denmark

Page 10: Solar Energy – New Photovoltaic Technologies · • solar europe industry initiative (seii) epia 2009solar europe industry initiative (seii), epia 2009 • Reaching a PV contribution

Materials abundance and costs• [Wadia C Alivisatos AP Kammen DM Materials Availability Expands the • [Wadia C , Alivisatos AP, Kammen DM, Materials Availability Expands the

Opportunity for Large-Scale Photovoltaics Deployment, Environ. Sci. Technol., 2009, 43 (6), pp 2072–2077]

• Annual electricity potential index (from known economical reserves)Annual electricity potential index (from known economical reserves)• Materials extraction cost index (from minimum cost/Wp)

PV technology Ann. Elec. Pot. index

Mat. Extrac. Cost indexindex Cost index

mc-Si 1 1

a-Si 5·105 5·10-6

CdTe 10-7 3

Indium: Reserve 2 800 Tons global production 500 tons/y

CdTe 10 7 3

CIGS 10-2 0.6

Indium: Reserve 2.800 Tons, global production 500 tons/yCd: Reserve 540.000 tons, global production 20.900 tons/yAg: Reserve 270.000 tons, global production 19.500 tons/y[U.S. Geological Survey, MINERAL COMMODITY SUMMARIES 2007]

15/09/2009Risø International Energy Conference 2009Peter Sommer-Larsen

9 Risø DTU, Technical University of Denmark

Page 11: Solar Energy – New Photovoltaic Technologies · • solar europe industry initiative (seii) epia 2009solar europe industry initiative (seii), epia 2009 • Reaching a PV contribution

Life cycle analysis and energy payback time• Full lifecycle analysis is not available• Full lifecycle analysis is not available

[Roes AL,Alsema EA, Blok K, Patel MK, Ex-ante Environmental and Economic Evaluation of Polymer Photovoltaics, Prog. Photovolt: Res. Appl. 2009; 17:372–393]

• NREU: non-renewable energy use (production, balance-of-system, installation)

• Energy payback time: time to production equalsll t d

PV-technology NREU (MJ/Wp)

Energy payback timeall accounted energy

use in LCA

(MJ/Wp) payback time

mc-Si 29.82 24.93 2.33 1.95

CdTe 15.7 9.5 1.23 0.75

CIS1 40 3 34 6 3 16 2 71CIS1 40.3 34.6 3.16 2.71

a-Si 24.6 17.1 1.93 1.34

DSSC 11.7 5.8 0.92 0.45

OPV l 16 1 1 26OPV on glass 16.1 1.26

OPV on PET 2.4 0.191 non-printed 2+frame +BOS

3 frame BOS

15/09/2009Risø International Energy Conference 2009Peter Sommer-Larsen

10 Risø DTU, Technical University of Denmark

3 -frame -BOS

Page 12: Solar Energy – New Photovoltaic Technologies · • solar europe industry initiative (seii) epia 2009solar europe industry initiative (seii), epia 2009 • Reaching a PV contribution

Polymer Solar Cells• Schematics of a polymer solar cell• Schematics of a polymer solar cell

Encapsulation

Printed Ag electrode

Encapsulation

+Metal electrode

Hole cond. layer

Photovoltaic polymer100-200 nm/ layer

- Printed Ag electrode

Electron cond layer

Photovoltaic polymer

+Hole cond. layer

ITO

Glass

3 mm

+ Electron cond. layer

ITO

PET175 µm

-

OPV on glass OPV printed on flex substrateg p

15/09/2009Risø International Energy Conference 2009Peter Sommer-Larsen

11 Risø DTU, Technical University of Denmark

Page 13: Solar Energy – New Photovoltaic Technologies · • solar europe industry initiative (seii) epia 2009solar europe industry initiative (seii), epia 2009 • Reaching a PV contribution

Polymer solar cell• Yu G Gao J Hummelen J C Wudl F Heeger A J 1995 Polymer • Yu, G., Gao, J., Hummelen, J.C., Wudl, F., Heeger, A.J., 1995, Polymer

photovoltaic cells - enhanced efficiencies via a Network if internal donor-acceptor heterojunctions , Science, 270(5243): 1789-1791

• Bulk hetero junction:Bulk hetero junction:

Encapsulation

Metal electrode

Photovoltaic polymer

Encapsulation

100-200 nm/ layer

-

p-type barrier

ITO

Glass

100-200 nm/ layer

+

3 mm

15/09/2009Risø International Energy Conference 2009Peter Sommer-Larsen

12 Risø DTU, Technical University of Denmark

Page 14: Solar Energy – New Photovoltaic Technologies · • solar europe industry initiative (seii) epia 2009solar europe industry initiative (seii), epia 2009 • Reaching a PV contribution

How it works – absorption of light

C6H13

S

C6H13

S

*S

C6H13

SS

C6H13

S

S

C6H13

S

C6H13

S

C6H13

S

C6H13

15/09/2009Risø International Energy Conference 2009Peter Sommer-Larsen

13 Risø DTU, Technical University of Denmark

Page 15: Solar Energy – New Photovoltaic Technologies · • solar europe industry initiative (seii) epia 2009solar europe industry initiative (seii), epia 2009 • Reaching a PV contribution

How it works electron transfer from donor How it works – electron transfer from donor to acceptor

e-C6H13

S

C6H13

S

S

C6H13

SS

C6H13

S

S

C6H13

S

C6H13

S

C6H13

S

C6H13

15/09/2009Risø International Energy Conference 2009Peter Sommer-Larsen

14 Risø DTU, Technical University of Denmark

Page 16: Solar Energy – New Photovoltaic Technologies · • solar europe industry initiative (seii) epia 2009solar europe industry initiative (seii), epia 2009 • Reaching a PV contribution

How it works – generation of charge carriers

e-e

C6H13

S

C6H13

S

h+S

C6H13

SS

C6H13

S

S

C6H13

S

C6H13

S

C6H13

S

C6H13

15/09/2009Risø International Energy Conference 2009Peter Sommer-Larsen

15 Risø DTU, Technical University of Denmark

Page 17: Solar Energy – New Photovoltaic Technologies · • solar europe industry initiative (seii) epia 2009solar europe industry initiative (seii), epia 2009 • Reaching a PV contribution

How it works – charge carrier diffusion

e-

h+

15/09/2009Risø International Energy Conference 2009Peter Sommer-Larsen

16 Risø DTU, Technical University of Denmark

Page 18: Solar Energy – New Photovoltaic Technologies · • solar europe industry initiative (seii) epia 2009solar europe industry initiative (seii), epia 2009 • Reaching a PV contribution

Polymer Solar Cells

15/09/2009Risø International Energy Conference 2009Peter Sommer-Larsen

17 Risø DTU, Technical University of Denmark

Page 19: Solar Energy – New Photovoltaic Technologies · • solar europe industry initiative (seii) epia 2009solar europe industry initiative (seii), epia 2009 • Reaching a PV contribution

Polymer Solar Cell• Multiple printing and coating technologies • Multiple printing and coating technologies

possibleslot-die coating / screen print (current proces)p )

• Relatively in-expensive machinery and existing industry segment (printing industry, petrochemical industry) Costs of polymer PV on glass and silicon PV

(Roes et al. 2009)• Machinery:

– 1-2 M€ of Coating and screen printing machinery produces10 MWp modules/year (1 m2/minute;

( )

Material/process Costs ($/Wp)

ITO coated glass 0.222

PEDOT:PSS 0.00010 MWp modules/year (1 m2/minute; 20Wp/m2;24/7 operation)

• Price: The potential for ultra-low costP3HT/PCBM 40$/g

P3HT/PCBM 0.089

Aluminum 0.000

Module assembly 2.457P3HT/PCBM 40$/gPlexcore® 1140€/25 ml (Sigma Aldrich)

BOS 1.375

Evaporation 0.029

polymer PV system 4.178

ili PV t 3 435

15/09/2009Risø International Energy Conference 2009Peter Sommer-Larsen

18 Risø DTU, Technical University of Denmark

mc-silicon PV systemBOS

3.435 0.935

Page 20: Solar Energy – New Photovoltaic Technologies · • solar europe industry initiative (seii) epia 2009solar europe industry initiative (seii), epia 2009 • Reaching a PV contribution

Polymer solar cell• First cost study • First cost study

[Krebs FC, Jorgensen M, Norrman K, Hagemann O, Alstrup J, Nielsen TD, Fyenbo J, Larsen K, Kristensen J, A complete process for production of flexible large area polymer solar cells entirely using screen printing-First public demonstration, SOLAR ENERGY MATERIALS AND SOLAR CELLS 93:4, 422-441, 2009 ]

Cost per module / €Cost per module / €( 75 cm2 active area / 133 cm2 total area)

Material Process costs

Materials costs Total

PET-ITO 0 287 1 03 1 317PET ITO 0.287 1.03 1.317

ZnO layer 0.056 0.64 0.696

P3MHOCT/PCBM/ZnO 0.056 1.01 1.066

PEDOT:PSS 0.056 0.15 0.206

Ag paste 0.056 0.32 0.376

Lamination 0.056 0.073 0.129

Laser cutting 0.339 0.339

Crimping contacts 0.636 0.053 0.689

Total 1 542 3 276 4 818

15/09/2009Risø International Energy Conference 2009Peter Sommer-Larsen

19 Risø DTU, Technical University of Denmark

Total 1.542 3.276 4.818

Page 21: Solar Energy – New Photovoltaic Technologies · • solar europe industry initiative (seii) epia 2009solar europe industry initiative (seii), epia 2009 • Reaching a PV contribution

Polymer Solar Cell• Ultra low price?• Ultra-low price?

June 2008 January 2009 March 2009 Ultimo 2009

4.500€/W 22€/W 15€/W 4-5€/W

Main drivers: Increased research effort, experience in roll to roll manufacturing, knowhow buildup and cheaper materials.

15/09/2009Risø International Energy Conference 2009Peter Sommer-Larsen

20 Risø DTU, Technical University of Denmark

Page 22: Solar Energy – New Photovoltaic Technologies · • solar europe industry initiative (seii) epia 2009solar europe industry initiative (seii), epia 2009 • Reaching a PV contribution

Net energy production under deployment• Energy payback time and lifetime are critical parameters for estimating • Energy payback time and lifetime are critical parameters for estimating

the net energy production under large scale deployment.• Installations grow exponentially until “production capacity target” has

been reached. Afterwards this amount is installed each year.been reached. Afterwards this amount is installed each year.

Net energy production from PV under deployment

OPV mc-Si

Installation rate 40% 33%

1.500

2.000

2.500

TW

h

Energy payback time 0,5 y 2 y

lifetime 5 y 30 y

500

1.000

En

erg

y /

insolation 1250 kWh/kWp/y

-

2000 2010 2020 2030 2040 2050

OPV mc-Si

Prod. Capacity 250 GWp/y 50 GWp/y

Capacity (equil.) 1264 GWp 1514 GWp

Ene g (eq il ) 1424 TWh 1414 TWh

15/09/2009Risø International Energy Conference 2009Peter Sommer-Larsen

21 Risø DTU, Technical University of Denmark

Energy (equil.) 1424 TWh 1414 TWh

Page 23: Solar Energy – New Photovoltaic Technologies · • solar europe industry initiative (seii) epia 2009solar europe industry initiative (seii), epia 2009 • Reaching a PV contribution

Conclusion• New photovoltaic technologies like polymer Solar Cells may become more • New photovoltaic technologies like polymer Solar Cells may become more

attractive than mc-Si technology because of:– Low energy payback time– Versatile production environments and low investment costs– Versatile production environments and low investment costs– Low price– Abundance of materials (except Ag)

• Major competitors are thin film photovoltaics on the short time scale• Major competitors are thin film photovoltaics on the short time scale– Low abundance of materials– Cd has high environmental and health impact – ROHS directive

• Low energy payback time technologies allow for CO savings also during • Low energy payback time technologies allow for CO2-savings also during large scale deployment period.

• Polymer photovoltaics are ready for use in small electronic products • Polymer photovoltaics are ready for use in small electronic products. Improvements in efficiency and lifetime and identification of low BOS cost solutions are needed before energy production becomes reality.

15/09/2009Risø International Energy Conference 2009Peter Sommer-Larsen

22 Risø DTU, Technical University of Denmark

Page 24: Solar Energy – New Photovoltaic Technologies · • solar europe industry initiative (seii) epia 2009solar europe industry initiative (seii), epia 2009 • Reaching a PV contribution

Acknowledgement Risø DTU Solar Cell Group• Dr Frederik Christian Krebs (Head of group)• Dr. Frederik Christian Krebs (Head of group)

[email protected]. Mikkel Jørgensen (Senior Scientist)Dr. Kion Normann (Senior Scientist)Dr. Kion Normann (Senior Scientist)Dr. Jenz Wenzel Andreasen (Senior Scientist)Dr. Kristian O. Sylvester-Hvid (Scientist)Dr. Eva Bundgaard (Postdoc)g ( )Martin H. Petersen (Ph.D. student)Suren Gevorgyan (Ph.D. student)Roar Søndergaard (Ph.D. student)Thomas Tromholt (Ph D student)Thomas Tromholt (Ph.D. student)Morten Vesterager Madsen (Ph.D. student)Jon Eggert Carlé ( Research assistent)Ole Hagemann (Lab. Tech.)Ole Hagemann (Lab. Tech.)Jan Alstrup (Lab. Tech.)Torben Kjær (Res.Tech.)M.Sc. Torben D. Nielsen (Business developer)

15/09/2009Risø International Energy Conference 2009Peter Sommer-Larsen

23 Risø DTU, Technical University of Denmark