solid acid fuel cell stack for apu applications · 1. solid acid fuel cell stack for apu...

30
1 Solid Acid Fuel Cell Stack for APU Applications Hau H. Duong Superprotonic, Inc. May 22, 2009 Project ID# fc_45_duong This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Upload: others

Post on 10-Jan-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Solid Acid Fuel Cell Stack for APU Applications · 1. Solid Acid Fuel Cell Stack for APU Applications. Hau H. Duong. Superprotonic, Inc. May 22, 2009. Project ID# fc_45_duong. This

1

Solid Acid Fuel Cell Stack for APU Applications

Hau H. DuongSuperprotonic, Inc.

May 22, 2009

Project ID# fc_45_duong

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Page 2: Solid Acid Fuel Cell Stack for APU Applications · 1. Solid Acid Fuel Cell Stack for APU Applications. Hau H. Duong. Superprotonic, Inc. May 22, 2009. Project ID# fc_45_duong. This

2

Overview

TimelineStart – July 2008Finish – July 201040% complete

BudgetTotal project funding

DOE - $492,000SPI cost share - $123,000

DOE funding received for FY’08$492,000

BarriersBarriers

A. DurabilityTolerance to reformed fuelOperating hours

B. CostMEA fabricationCatalysts

C. Performance

Technical TargetsStack System*

Power (W) 300 3000

Durability (h) 2000 2000

Efficiency (%LHV) 55 25

CO tolerance (%) 10 N/A

H2S tolerance (ppbv) 50 N/A

Specific power (W/kg) 55 TBD

Power density (W/L) 160 TBD

Cost ($/kWe) 300 800

* System projections based on conceptual design

CollaboratorCalifornia Institute of TechnologyRichard Mistler, Inc.

Page 3: Solid Acid Fuel Cell Stack for APU Applications · 1. Solid Acid Fuel Cell Stack for APU Applications. Hau H. Duong. Superprotonic, Inc. May 22, 2009. Project ID# fc_45_duong. This

3

Introduction to SAFC

Page 4: Solid Acid Fuel Cell Stack for APU Applications · 1. Solid Acid Fuel Cell Stack for APU Applications. Hau H. Duong. Superprotonic, Inc. May 22, 2009. Project ID# fc_45_duong. This

4

Solid Acid ElectrolytesFundamentals

Intermediate salts and acids

1Cs3PO4+ 2H3PO4 → 3CsH2PO4

General Formula: MxHy(XO4)z

M = Cs, Rb, K, NH4, Tl

X = S, Se, P, As

Physically similar to salts

Brittle

Water soluble

Properties

Solid state proton conductivity

Impermeable50 100 150 200 250 300

1E-8

1E-6

1E-4

0.01

1

Con

duct

ivity

(1/Ω

⋅cm

)

Temperature (°C)

Polymer (Nafion®)

Solid Acid (CsH2PO4)

Solid Acid Conductivity

superprotonic

normal phase transition

Page 5: Solid Acid Fuel Cell Stack for APU Applications · 1. Solid Acid Fuel Cell Stack for APU Applications. Hau H. Duong. Superprotonic, Inc. May 22, 2009. Project ID# fc_45_duong. This

5

Cesium Dihydrogen PhosphateElectrical properties

1.9 2.0 2.1 2.2 2.3

-4

-3

-2

-1

0

1

log(

σT/Ω

-1cm

-1K)

1/T ×10-3 (K-1)

270 240 210 180 150

T (°C)Superprotonic phase transition

TSP = 231°C

Proton conductivity jump

< 8.5 x 10-6 Ω-1cm-1 at 223°C

> 1.8 x 10-2 Ω-1cm-1 at 233°C

Hysteresis

Upon cooling 5-30 °C

Superprotonic conductivity

Typical conductivity

~ 2.5 x 10-2 Ω-1cm-1 at 250°C

Temperature range

232-280°C*

* Dependant on PH2O Haile et al, Faraday Discussions, 2007

Arrhenius Plot of Conductivity

Ea = 0.42 eV

CsH2PO4

Page 6: Solid Acid Fuel Cell Stack for APU Applications · 1. Solid Acid Fuel Cell Stack for APU Applications. Hau H. Duong. Superprotonic, Inc. May 22, 2009. Project ID# fc_45_duong. This

6

SAFC Characteristics

Solid acid electrolytes

Solid state proton conducting membranes - CsH2PO4

Operate at favorable temperatures - 230-280°C

Fuel flexibility

Hydrogen, methanol, ethanol, reformed fossil fuels

Optimal temperature for low T gas shift

High tolerance to CO (>10%), H2S(100ppm), & NH3 (100ppm),

Low cost/high performance potential

Optimized microstructure for improved catalysis

Better catalysis/less platinum

Page 7: Solid Acid Fuel Cell Stack for APU Applications · 1. Solid Acid Fuel Cell Stack for APU Applications. Hau H. Duong. Superprotonic, Inc. May 22, 2009. Project ID# fc_45_duong. This

7

SAFC History at Superprotonic

SAFC Progress Timeline

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2000 2002 2004 2006 2008 2010

Date (Year)

Pow

er D

ensi

ty (W

/cm

2)

Initi

al w

ork

at C

alte

ch

Sup

erpr

oton

ic, I

nc.

3000

sq.

feet

Fac

ility

1200

0 sq

. fee

t Fa

cilit

y

Project target

Page 8: Solid Acid Fuel Cell Stack for APU Applications · 1. Solid Acid Fuel Cell Stack for APU Applications. Hau H. Duong. Superprotonic, Inc. May 22, 2009. Project ID# fc_45_duong. This

8

Project Update

Page 9: Solid Acid Fuel Cell Stack for APU Applications · 1. Solid Acid Fuel Cell Stack for APU Applications. Hau H. Duong. Superprotonic, Inc. May 22, 2009. Project ID# fc_45_duong. This

9

Objective - Relevance

The main focus of the project is to develop a solid acid fuel cell stack that operates on diesel reformatewith performance characteristics approaching or exceeding most of the DOE’s 2010 technical targets for an APU.

*SPI System projections will be based on scaled up stack and conceptual system design

**Barriers: A-Durability, B-Cost, C-Performance♣ Cost will be projected based on production of 100000 3 kW units/year

Performance Measure

Units SPI Stack SPI System* DOE 2010 APU System Target

Technical Barrier(s) Addressed**

Power Watts 300 3000 N/A N/A

Durability Hours 2000 2000 20000 A,B,C

Efficiency % LHV 55 25 35 B,C

CO tolerance % 10 N/A N/A A,B

H2S tolerance ppbv 50 N/A N/A A,B

Specific power W/kg 55 TBD 100 B,C

Power density W/L 160 TBD 100 B,C

Cost♣ $/kWe 300 800 400 B

Page 10: Solid Acid Fuel Cell Stack for APU Applications · 1. Solid Acid Fuel Cell Stack for APU Applications. Hau H. Duong. Superprotonic, Inc. May 22, 2009. Project ID# fc_45_duong. This

10

ApproachTask 1: Development of SAFC MEA

Fabricate and test 3 cm2 and 20 cm2 MEAOptimize MEA performanceDevelop proposal for scaling up MEA fabrication to 125 cm2

Task 2: Fabrication of 125 cm2 SAFC MEA

Fabricate using method based on 3 cm2 and 15 cm2 MEAFabricate using scaled up method

Task 3: Characterization of SAFC MEA

Evaluate SAFC performance on reformate with CO and H2SEvaluate 3 cm2 and 15 cm2 MEA performanceEvaluate 125 cm2 performance (durability, efficiency, specific power, power density, etc.)

Task 4: Design & Modeling of SAFC stack

Design 300W stack componentsBipolar platesCooling platesSealing

Model 300W stackFlow field distributionPressure gradient

Task 5: Fabrication of 300W SAFC stackTask 6: Characterization of SAFC stack

DurabilityLong term stabilityThermal cycling

EfficiencySpecific powerPower densityTest on reformate

Task 7: Design 3kW SAFC stackScale up 300W designModelingHigh volume cost projection

Task 8: Design 3kW SAFC systemControl and ancillary subsystemsStart-up and shutdown procedures and algorithm

Page 11: Solid Acid Fuel Cell Stack for APU Applications · 1. Solid Acid Fuel Cell Stack for APU Applications. Hau H. Duong. Superprotonic, Inc. May 22, 2009. Project ID# fc_45_duong. This

11

Milestones

Month/Year Milestones or Go/No-Go DecisionAugust 2008 Go/No-Go decision: Complete evaluation of MEA fabrication and assess scalability with existing

manufacturing processes. Conduct feasibility of electrolyte layer deposition using a sprayer and electrolyte densification via roller compaction. (Status – met)

September 2008 Go/No-Go decision: Complete evaluation of SAFC stack functionality and stability on synthetic reformate with high CO (10%) and H2S (100 ppm) content. (Status – met)

October 2008 Milestone: Complete 300W stack design completed based on existing 50W stack configuration. (Status –75% complete)

November 2008 Milestone: Complete evaluation of 20 cm2 SAFC stack functionality and stability on reformed methanol and liquid propane gas (Status – 100% complete)

January 2008 Milestone: Model flow field and pressure gradient on a 300W SAFC stack. (Status – 50% complete)

February 2008 Milestone: Fabricated 125 cm2 SAFC MEA based on current 20 cm2 MEA fabrication process (Status – 10% complete)

March 2008 Go/No-Go decision: Complete feasibility of SAFC stack functionality on reformed diesel fuel. (Status met)

October 2009 Milestone: Demonstrate micro-porous layer deposition using tape casting technique (Status – planned)

November 2009 Milestone: Demonstrate anode and cathode catalyst layer deposition using a sprayer (Status – planned)

December 2009 Go/No-Go: Fabricate 125 cm2 SAFC MEA (10 minimum) using proposed fabrication process. (Status –planned)

Page 12: Solid Acid Fuel Cell Stack for APU Applications · 1. Solid Acid Fuel Cell Stack for APU Applications. Hau H. Duong. Superprotonic, Inc. May 22, 2009. Project ID# fc_45_duong. This

12

Development of SAFC MEA fabrication

1. Micro-porous layer (MPL) deposition via the tape casting process;

2. Anode catalyst layer (ACL) deposition using a sprayer with positive displacement pumps;

3. Electrolyte layer deposition using a sprayer with positive displacement pumps;

4. Electrolyte layer densification via the roller compaction method;

5. Sub-gasket layer insertion;

6. Cathode catalyst layer deposition using a sprayer with positive displacement pumps;

7. Cathode gas diffusion layer (GDL) attachment.

Page 13: Solid Acid Fuel Cell Stack for APU Applications · 1. Solid Acid Fuel Cell Stack for APU Applications. Hau H. Duong. Superprotonic, Inc. May 22, 2009. Project ID# fc_45_duong. This

13

SAFC Performance on Synthetic ReformateMinimal effect of reformate on twenty 20 cm2 cell stack performance

Mostly H2 dilution effect

Degradation was ~0.06%/hr on reformate

Gas flow/compositionsCathode: 7 SLPM air + 0.3 bar H2O

Anode:

Hydrogen: 2.0 SLPM H2 + 0.3 bar H2O

Reformate: 4 SLPM synthetic reformate + 0.3 bar H2O

synthetic reformate:50% H2

40% N2

10% CO

100 ppm H2S 0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 50 100 150 200 250 300

Current (mA/cm2)

Sta

ck v

olat

ge (m

V)

0

20

40

60

80

100

120

140

160

Pow

er d

ensi

ty (m

W/c

m2 )

SV (H2) - beforeSV (R) - beforeSV (R) - after 16 hrsSV (H2) - after 16 hrsPD (H2) - beforePD (R) - beforePD (R) - after 16 hrsPD (H2) - after 16 hrs

Page 14: Solid Acid Fuel Cell Stack for APU Applications · 1. Solid Acid Fuel Cell Stack for APU Applications. Hau H. Duong. Superprotonic, Inc. May 22, 2009. Project ID# fc_45_duong. This

14

SAFC Performance on Methanol Reformate

Minimal effect of reformate on twenty 20 cm2 cell stack performance

Mostly H2 dilution effect

Gas flow/compositionsCathode: 7 SLPM air + 0.3 bar H2O

Anode:

Hydrogen: 1.0 SLPM H2 + 0.3 bar H2O

Reformate: 2.8 SLPM methanol reformate + 0.3 bar H2O

methanol reformate:

74.2% H2

6.8% CO

18.2% CO20.00 0.05 0.10 0.15 0.20

0.0

0.2

0.4

0.6

0.8

1.0

0

20

40

60

80

100

Hydrogen Methanol reformate

Elec

tric

pote

ntia

l, E

/ V

Current density, i / A cm-2

Pow

er d

ensi

ty /

mW

cm

-2

Page 15: Solid Acid Fuel Cell Stack for APU Applications · 1. Solid Acid Fuel Cell Stack for APU Applications. Hau H. Duong. Superprotonic, Inc. May 22, 2009. Project ID# fc_45_duong. This

15

SAFC Performance on Propane Reformate

Minimal effect of reformate on twenty 20 cm2

cell stack performanceMostly H2 dilution effect

Gas flow/compositionsCathode: 6.4 SLPM air + 0.3 bar H2O

Anode:

Hydrogen: 1.0 SLPM H2 + 0.3 bar H2O

Reformate: 5.8 SLPM commercial propane reformate + 0.3 bar H2O

commercial propane reformate:41.1% H2

34.6% N2

10.6% CO

9.84% CO2

0.24% CH4

0.005% C3H8

0.5ppm H2S

0.00 0.05 0.10 0.15 0.200.0

0.2

0.4

0.6

0.8

1.0

0

20

40

60

80

100

120

Hydrogen Commercial propane reformate (0 h) Commercial propane reformate (4 h)

Ele

ctric

pot

entia

l, E

/ V

Current density, i / A cm-2

Pow

er d

ensi

ty /

mW

cm

-2

Page 16: Solid Acid Fuel Cell Stack for APU Applications · 1. Solid Acid Fuel Cell Stack for APU Applications. Hau H. Duong. Superprotonic, Inc. May 22, 2009. Project ID# fc_45_duong. This

16

SAFC Performance on Diesel ReformateSome effect of reformate on ten 20 cm2 cell stack performance

Strong H2 dilution effect

Gas flow/compositionsCathode

3 SLPM air + 0.3 barH2O

Anode:

Hydrogen: 1.0 SLPM H2 + 0.3 bar H2O

Reformate: 3.0 SLPM ultra low sulfide dieselreformate + 0.3 bar H2O

Ultra Low Sulfide Diesel :35% H2

41% N2

14% CO

10% CO2

0.3% CH4

1ppm H2S (by Volume)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Current Density (A/cm2)St

ack

Volta

ge (

V)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pow

er D

ensi

ty

(W/c

m2 )

HydrogenDiesel

Page 17: Solid Acid Fuel Cell Stack for APU Applications · 1. Solid Acid Fuel Cell Stack for APU Applications. Hau H. Duong. Superprotonic, Inc. May 22, 2009. Project ID# fc_45_duong. This

17

Fabrication of 125 cm2 SAFC MEA

Page 18: Solid Acid Fuel Cell Stack for APU Applications · 1. Solid Acid Fuel Cell Stack for APU Applications. Hau H. Duong. Superprotonic, Inc. May 22, 2009. Project ID# fc_45_duong. This

18

300 W Stack Design

• Stack parameters*

Diameter: 18 cm

Height: 11 cm

Weight: ~10 kg

* Based on power density of 0.2W/cm2

Page 19: Solid Acid Fuel Cell Stack for APU Applications · 1. Solid Acid Fuel Cell Stack for APU Applications. Hau H. Duong. Superprotonic, Inc. May 22, 2009. Project ID# fc_45_duong. This

19

Flow field and pressure gradient modeling

FEA modeling suggests

• Uniform flow distribution across electrode surfaces

• Uniform pressure drop between flow field channels

• Active area ~ 125 cm2

• Flow fieldChannel depth: 0.9 mmChannel width: 1.1 mmChannel length: 68~76 cm

• Manifold Area: 2 cm2

Page 20: Solid Acid Fuel Cell Stack for APU Applications · 1. Solid Acid Fuel Cell Stack for APU Applications. Hau H. Duong. Superprotonic, Inc. May 22, 2009. Project ID# fc_45_duong. This

20

300 W Stack Modeling

Full modeling requires too much memory, it was necessary to simplify the model

1. Straight channels replaced serpentine channels

2. Shorter channels replaced full-length channels to save memory

3. 20-cell stack was considered and each cell has four straight channels

4. Calculated velocity distribution between cells

5. Modeling geometry• Channel depth: 0.9 mm• Channel width: 1.1 mm• Channel length: 14~15 cm• Tube length: 7.6 cm• Manifold Area: 2 cm2

Page 21: Solid Acid Fuel Cell Stack for APU Applications · 1. Solid Acid Fuel Cell Stack for APU Applications. Hau H. Duong. Superprotonic, Inc. May 22, 2009. Project ID# fc_45_duong. This

21

Flow Distribution Modeling

4 l/min

10 l/min

Page 22: Solid Acid Fuel Cell Stack for APU Applications · 1. Solid Acid Fuel Cell Stack for APU Applications. Hau H. Duong. Superprotonic, Inc. May 22, 2009. Project ID# fc_45_duong. This

22

Collaborations

Academic

Collaboration with the California Institute of Technology

Resource for analytical instrumentation;

Synthesis of CsH2PO4 electrolyte nanoparticles to increase the power density.

Industry

Richard E. Mistler, Inc.

Determine whether the current formulation used at Superprotonics to produce micro porous layer can be scaled to production on a full length tape casting machine;

Develop a technique for the production with one step casting operation.

Page 23: Solid Acid Fuel Cell Stack for APU Applications · 1. Solid Acid Fuel Cell Stack for APU Applications. Hau H. Duong. Superprotonic, Inc. May 22, 2009. Project ID# fc_45_duong. This

23

Future Work

FY2009

Continue to optimize SAFC MEA performance to levels of commercial viability

Build and characterize a 300W SAFC stack operating on hydrogen fuel

Employ micro-porous layer deposition using tape casting

Employ anode and cathode catalyst layer deposition using sprayer

Employ CDP electrolyte densification using compaction

Fabricate 125 cm2 SAFC MEA using above processes

FY2010

Build and characterize a 300W SAFC stack operating on diesel reformate

Complete conceptual design of 3 kW SAFC stack

Complete conceptual design of 3 kW SAFC system

Page 24: Solid Acid Fuel Cell Stack for APU Applications · 1. Solid Acid Fuel Cell Stack for APU Applications. Hau H. Duong. Superprotonic, Inc. May 22, 2009. Project ID# fc_45_duong. This

24

Project Summary

Relevance: Demonstrate the feasibility of SAFC for energy efficient APU applications.

Approach: Build and characterize 300 W SAFC stack on hydrogen and reformed diesel fuels; design 3 kW SAFC stack and system.

Technical Accomplishment and Progress: Demonstrated SAFC functionality and stability on methanol, propane, and diesel fuels.

Technology Transfer/Collaborations: Active partnership with the California Institute of Technology and Mistler, Inc..

Proposed Future Work: Scale up SAFC MEA size and quantity; build 300 W SAFC stack; design 3 kW SAFC system.

Page 25: Solid Acid Fuel Cell Stack for APU Applications · 1. Solid Acid Fuel Cell Stack for APU Applications. Hau H. Duong. Superprotonic, Inc. May 22, 2009. Project ID# fc_45_duong. This

25

Acknowledgements

Superprotonic, Inc. gratefully acknowledge the support of the DOE under Cooperative Agreement Number DE-FG36-08GO88099.

This support does not constitute an endorsement by DOE of the material expressed in this presentation.

Page 26: Solid Acid Fuel Cell Stack for APU Applications · 1. Solid Acid Fuel Cell Stack for APU Applications. Hau H. Duong. Superprotonic, Inc. May 22, 2009. Project ID# fc_45_duong. This

26

Further Information

Hau H. Duong, Ph.D., M.B.A.Vice President of Product Development

(626) 793-9314x112

[email protected]

Calum Chisholm, Ph.D.

Founder & Vice President

(626) 793-9314 x103

[email protected]

Superprotonic, Inc.81 W Bellevue Drive

Pasadena, CA 91105

www.superprotonic.com

Page 27: Solid Acid Fuel Cell Stack for APU Applications · 1. Solid Acid Fuel Cell Stack for APU Applications. Hau H. Duong. Superprotonic, Inc. May 22, 2009. Project ID# fc_45_duong. This

27

Supplemental Slides

Page 28: Solid Acid Fuel Cell Stack for APU Applications · 1. Solid Acid Fuel Cell Stack for APU Applications. Hau H. Duong. Superprotonic, Inc. May 22, 2009. Project ID# fc_45_duong. This

28

Cesium Dihydrogen PhosphateThermal properties

Long debated in literature

Stability proven under water partial pressure (PH2O)

How much PH2O to stabilize superprotonic CsH2PO4?

CsH2PO4 ↔ CsPO3 + H2O

Dehydration temperature (Td ) is almost commensurate with superprotonic phase transition temperature (TSP ) at ambient humidity levels

Td ≈ TSP (PH2O < 0.1 bar)

Page 29: Solid Acid Fuel Cell Stack for APU Applications · 1. Solid Acid Fuel Cell Stack for APU Applications. Hau H. Duong. Superprotonic, Inc. May 22, 2009. Project ID# fc_45_duong. This

29

220 240 260 280 3000.0

0.1

0.2

0.3

0.4

liquiddehydrant

solid dehydrant

superprotonic

CsH2(1-x)PO(4-x)(l )

CsPO3(s)

CsH2PO4(s)

Wat

er p

artia

l pre

ssur

e, P

H2O

/ ba

r

Temperature, T / °C

CsH2PO4(s)

paraelectric

CsH2PO4 Stability-Phase Diagram

Cesium Dihydrogen PhosphateHumidity-temperature stability-phase diagram

Region of “safe” fuel cell operation

Can easily avoid electrolyte dehydration with slight humidification (Tdew > 65 °C)

*Taninouchi, J. Mater. Chem., 2007; Taninouchi, Solid State Ionics, 2007

Page 30: Solid Acid Fuel Cell Stack for APU Applications · 1. Solid Acid Fuel Cell Stack for APU Applications. Hau H. Duong. Superprotonic, Inc. May 22, 2009. Project ID# fc_45_duong. This

30

0 10 20 30 40 50 60 700.0

0.2

0.4

0.6

0.8

1.0

Cel

l Vol

tage

(V)

Time (h)

H2|air

200 mA/cm2

100 ppm NH3

Solid Acid Fuel CellsAmmonia tolerance (100 ppm NH3)

SAFC stable under 100 ppm NH3