solid state physics intro

Upload: jonatan-vignatti-munoz

Post on 04-Jun-2018

275 views

Category:

Documents


2 download

TRANSCRIPT

  • 8/14/2019 Solid State Physics Intro

    1/25

    Solid state physics

    N. Witkowski

  • 8/14/2019 Solid State Physics Intro

    2/25

    Based on Introduction to Solid State Physics 8th edition Charles Kittel

    Lecture notes from Gunnar Niklasson

    http://www.teknik.uu.se/ftf/education/ftf1/FTFI_forsta_sidan.html

    40h Lessons with N. Witkowski house 4, level 0, office 60111,

    e-mail:[email protected]

    6 laboratory courses (6x3h): 1 extended report + 4 limited reports Semiconductor physics

    Specific heat

    Superconductivity

    Magnetic susceptibility

    X-ray diffraction

    Band structure calculation Evaluation : written examination 13 march (to be confirmed)

    5 hours, 6 problems

    document authorized Physics handbook for science and engineering CarlNordling, Jonny Osterman

    Calculator authorized

    Second chance in june

    Introduction

    Given between 23rd feb-6th march

    Registration : from 9th feb on board F and Q

    House 4 ground level

    Info comes later

    Home work

    http://www.teknik.uu.se/ftf/education/ftf1/FTFI_forsta_sidan.htmlhttp://www.teknik.uu.se/ftf/education/ftf1/FTFI_forsta_sidan.html
  • 8/14/2019 Solid State Physics Intro

    3/25

    What is solid state ?

    Single crystals

    Polycristallinecrystals

    Amorphous

    materials

    Quasicrystals Long range order no no 3Dtranslational periodicity

    Long range order and 3D

    translational periodicity

    Single crystals assembly

    Disordered or random atomic

    structure

    4 nmx4nm1.2 mmgraphite

    diamond

    Al72Ni20Co8

    silicon

  • 8/14/2019 Solid State Physics Intro

    4/25

    Outline

    [1] Crystal structure 1

    [2] Reciprocal lattice 2

    [3] Diffraction 2

    [4] Crystal binding no lecture 3 [5] Lattice vibrations 4

    [6] Thermal properties 5

    [7] Free electron model 6

    [8] Energy band 7,9

    [9] Electron movement in crystals 8

    Metals and Fermi surfaces 9 [10] Semiconductors 8

    [11] Superconductivity 10

    [12] Magnetism 11

    Correspondingchapter in Kittel book

  • 8/14/2019 Solid State Physics Intro

    5/25

    Chap.1

    Crystal structure

  • 8/14/2019 Solid State Physics Intro

    6/25

    Introduction

    Aim :

    A : defining concepts and definitions

    B : describing the lattice types

    C : giving a description of crystal structures

  • 8/14/2019 Solid State Physics Intro

    7/25

    A. Concepts, definitions A1. Definitions

    Crystal : 3 dimensional periodicarrangments of atomes inspace. Description using amathematical abstraction : thelattice

    Lattice: infinite periodic arrayof points in space, invariantunder translation symmetry.

    Basis: atoms or group ofatoms attached to every latticepoint

    Crystal = basis+lattice

  • 8/14/2019 Solid State Physics Intro

    8/25

    A. Concepts, definitions

    Translation vector :arrangement of atoms looksthe same from ror r point

    r=r+u1a1+u2a2+u3a3: u1, u2and u3integers = latticeconstant

    a1, a2, a3primitivetranslation vectors

    T=u1a1+u2a2+u3a3translation vector

    r = a1+2a2r= 2a1- a2

    T=r-r=a1-3a2

  • 8/14/2019 Solid State Physics Intro

    9/25

    A. Concepts, definitions

    A2.Primitive cell Standard model

    volume associated with onelattice point

    Parallelepiped with latticepoints in the corner

    Each lattice point sharedamong 8 cells

    Number of latticepoint/cell=8x1/8=1

    Vc= |a1.(a2xa3)|

  • 8/14/2019 Solid State Physics Intro

    10/25

    A. Concepts, definitions

    Wigner-Seitz cell

    planes bisecting the lines

    drawn from a lattice point to

    its neighbors

  • 8/14/2019 Solid State Physics Intro

    11/25

    A. Concepts, definitions

    A3.Crystallographic unit

    cell

    larger cell used to display

    the symmetries of the cristal

    Not primitive

  • 8/14/2019 Solid State Physics Intro

    12/25

    B. Lattice types

    B1. Symmetries :

    Translations

    Rotation : 1,2,3,4 and 6

    (no 5 or 7)

    Mirror reflection : reflection

    about a plane through alattice point

    Inversion operation (r-> -r)

    three 4-fold axes

    of a cubefour 3-fold

    axes of a cube

    six 2-fold

    axes of a cube

    planes of symmetry parallel in a cube

  • 8/14/2019 Solid State Physics Intro

    13/25

    B. Lattice types

    B2. Bravais lattices in 2D

    5 types

    general case :

    oblique lattice |a1||a2| , (a1,a2)=

    special cases :

    square lattice: |a1|=|a2| , = 90 hexagonal lattice: |a1|=|a2| , = 120

    rectangular lattice: |a1||a2| , = 90

    centered rectangular lattice: |a1||a2|, = 90

  • 8/14/2019 Solid State Physics Intro

    14/25

    B. Lattice types

    B3. Bravais lattices in 3D: 14

    systemNumber

    of latticesCell axes and angles

    Triclinic 1 |a1||a2||a3| ,

    Monoclinic 2 |a1||a2||a3| , ==90

    Orthorhombic 4 |a1||a2||a3| , ===90

    Tetragonal 2 |a1|=|a2||a3| , ===90

    Cubic 3 |a1|=|a2|=|a3| , ===90

    Trigonal 1 |a1|=|a2|=|a3| , ==

  • 8/14/2019 Solid State Physics Intro

    15/25

    B. Lattice types

    B3. Bravais lattices in 3D: 14

    systemNumber

    of latticesCell axes and angles

    Triclinic 1 |a1||a2||a3| ,

    Monoclinic 2 |a1||a2||a3| , ==90

    Orthorhombic 4 |a1||a2||a3| , ===90

    Tetragonal 2 |a1|=|a2||a3| , ===90

    Cubic 3 |a1|=|a2|=|a3| , ===90

    Trigonal 1 |a1|=|a2|=|a3| , ==

  • 8/14/2019 Solid State Physics Intro

    16/25

    B. Lattice types

    B3. Bravais lattices in 3D: 14

    systemNumber of

    latticesCell axes and angles

    Triclinic 1 |a1||a2||a3| ,

    Monoclinic 2 |a1||a2||a3| , ==90

    Orthorhombic 4 |a1||a2||a3| , ===90

    Tetragonal 2 |a1|=|a2||a3| , ===90

    Cubic 3 |a1|=|a2|=|a3| , ===90

    Trigonal 1 |a1|=|a2|=|a3| , ==

  • 8/14/2019 Solid State Physics Intro

    17/25

    B. Lattice types

    B3. Bravais lattices in 3D: 14

    systemNumber of

    latticesCell axes and angles

    Triclinic 1 |a1||a2||a3| ,

    Monoclinic 2 |a1||a2||a3| , ==90

    Orthorhombic 4 |a1||a2||a3| , ===90

    Tetragonal 2 |a1|=|a2||a3| , ===90

    Cubic 3 |a1|=|a2|=|a3| , ===90

    Trigonal 1 |a1|=|a2|=|a3| , ==

  • 8/14/2019 Solid State Physics Intro

    18/25

    B. Lattice types

    B3. Bravais lattices in 3D: 14

    systemNumber of

    latticesCell axes and angles

    Triclinic 1 |a1||a2||a3| ,

    Monoclinic 2 |a1||a2||a3| , ==90

    Orthorhombic 4 |a1||a2||a3| , ===90

    Tetragonal 2 |a1|=|a2||a3| , ===90

    Cubic 3 |a1|=|a2|=|a3| , ===90

    Trigonal 1 |a1|=|a2|=|a3| , ==

  • 8/14/2019 Solid State Physics Intro

    19/25

    B. Lattice types

    B3. Bravais lattices in 3D: 14

    systemNumber

    of latticesCell axes and angles

    Triclinic 1 |a1||a2||a3| ,

    Monoclinic 2 |a1||a2||a3| , ==90

    Orthorhombic 4 |a1||a2||a3| , ===90

    Tetragonal 2 |a1|=|a2||a3| , ===90

    Cubic 3 |a1|=|a2|=|a3| , ===90

    Trigonal 1 |a1|=|a2|=|a3| , ==

  • 8/14/2019 Solid State Physics Intro

    20/25

    B. Lattice types

    B3. Bravais lattices in 3D: 14

    systemNumber of

    latticesCell axes and angles

    Triclinic 1 |a1||a2||a3| ,

    Monoclinic 2 |a1||a2||a3| , ==90

    Orthorhombic 4 |a1||a2||a3| , ===90

    Tetragonal 2 |a1|=|a2||a3| , ===90

    Cubic 3 |a1|=|a2|=|a3| , ===90

    Trigonal 1 |a1|=|a2|=|a3| , ==

  • 8/14/2019 Solid State Physics Intro

    21/25

    B. Lattice types B4. Examples : bcc

    Bcc cell : a, 90, 2 atoms/cell

    Primitive cell : ai vectors from theorigin to lattice point at bodycenters

    Rhombohedron : a1= a(x+y-z),a2= a(-x+y+z), a3= a(x-y+z),

    edge a

    Wigner-Seitz cell

    xy

    z

    a1

    a2a3

    3

  • 8/14/2019 Solid State Physics Intro

    22/25

    B. Lattice types B5. Examples : fcc

    fcc cell : a, 90, 4 atoms/cell

    Primitive cell : aivectors from theorigin to lattice point at face centers

    Rhombohedron : a1= a(x+y), a2= a(y+z), a3= a(x+z), edge a

    Wigner-Seitz cell

    x

    y

    z

    2

  • 8/14/2019 Solid State Physics Intro

    23/25

    B. Lattice types B6. Examples : fcc - hcp

    different way of stacking the close-packed planes

    Spheres touching each other about74% of the space occupied

    B7. Example : diamond structure fcc structure

    4 atoms in tetraedric position

    Diamond, silicon

    fcc : 3 planes A B C hcp : 2 planes A B

  • 8/14/2019 Solid State Physics Intro

    24/25

    C. Crystal structures C1. Miller index

    lattice described by set of parallel planes

    usefull for cristallographic interpretation

    In 2D, 3 sets of planes

    Miller index

    Interception between plane and lattice axis a,

    b, c Reducing 1/a,1/b,1/cto obtain the smallest

    intergers labelled h,k,l

    (h,k,l) index of the plan, {h,k,l}serie ofplanes, [u,v,w]or direction

    http://www.doitpoms.ac.uk/tlplib/miller_indices/lattice_index.php

    http://www.doitpoms.ac.uk/tlplib/miller_indices/lattice_index.phphttp://www.doitpoms.ac.uk/tlplib/miller_indices/lattice_index.php
  • 8/14/2019 Solid State Physics Intro

    25/25

    C. Crystal structures C2. Miller index : example

    plane intercepts axis : 3a1, 2a2, 2a3

    inverses : 1/3 , 1/2 , 1/2

    integers : 2, 3, 3

    h=2 , k=3 , l=3

    Index of planes : (2,3,3)