solving markov random fields using second order cone programming relaxations m. pawan kumar philip...

90
Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Upload: mary-price

Post on 28-Mar-2015

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Solving Markov Random Fields using

Second Order Cone Programming Relaxations

M. Pawan Kumar

Philip Torr

Andrew Zisserman

Page 2: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Aim• Accurate MAP estimation of pairwise Markov random fields

2

5

4

2

6

3

3

7

0

1 1

0

0

2 3

1

1

4 1

0

V1 V2 V3 V4

Label ‘0’

Label ‘1’

Labelling m = {1, 0, 0, 1}

Random Variables V = {V1,..,V4}

Label Set L = {0,1}

Page 3: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Aim• Accurate MAP estimation of pairwise Markov random fields

2

5

4

2

6

3

3

7

0

1 1

0

0

2 3

1

1

4 1

0

V1 V2 V3 V4

Label ‘0’

Label ‘1’

Cost(m) = 2

Page 4: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Aim• Accurate MAP estimation of pairwise Markov random fields

2

5

4

2

6

3

3

7

0

1 1

0

0

2 3

1

1

4 1

0

V1 V2 V3 V4

Label ‘0’

Label ‘1’

Cost(m) = 2 + 1

Page 5: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Aim• Accurate MAP estimation of pairwise Markov random fields

2

5

4

2

6

3

3

7

0

1 1

0

0

2 3

1

1

4 1

0

V1 V2 V3 V4

Label ‘0’

Label ‘1’

Cost(m) = 2 + 1 + 2

Page 6: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Aim• Accurate MAP estimation of pairwise Markov random fields

2

5

4

2

6

3

3

7

0

1 1

0

0

2 3

1

1

4 1

0

V1 V2 V3 V4

Label ‘0’

Label ‘1’

Cost(m) = 2 + 1 + 2 + 1

Page 7: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Aim• Accurate MAP estimation of pairwise Markov random fields

2

5

4

2

6

3

3

7

0

1 1

0

0

2 3

1

1

4 1

0

V1 V2 V3 V4

Label ‘0’

Label ‘1’

Cost(m) = 2 + 1 + 2 + 1 + 3

Page 8: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Aim• Accurate MAP estimation of pairwise Markov random fields

2

5

4

2

6

3

3

7

0

1 1

0

0

2 3

1

1

4 1

0

V1 V2 V3 V4

Label ‘0’

Label ‘1’

Cost(m) = 2 + 1 + 2 + 1 + 3 + 1

Page 9: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Aim• Accurate MAP estimation of pairwise Markov random fields

2

5

4

2

6

3

3

7

0

1 1

0

0

2 3

1

1

4 1

0

V1 V2 V3 V4

Label ‘0’

Label ‘1’

Cost(m) = 2 + 1 + 2 + 1 + 3 + 1 + 3

Page 10: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Aim• Accurate MAP estimation of pairwise Markov random fields

2

5

4

2

6

3

3

7

0

1 1

0

0

2 3

1

1

4 1

0

V1 V2 V3 V4

Label ‘0’

Label ‘1’

Cost(m) = 2 + 1 + 2 + 1 + 3 + 1 + 3 = 13

Minimum Cost Labelling = MAP estimate

Pr(m) exp(-Cost(m))

Page 11: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Aim• Accurate MAP estimation of pairwise Markov random fields

2

5

4

2

6

3

3

7

0

1 1

0

0

2 3

1

1

4 1

0

V1 V2 V3 V4

Label ‘0’

Label ‘1’

Objectives• Applicable for all neighbourhood relationships• Applicable for all forms of pairwise costs• Guaranteed to converge

Page 12: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

MotivationSubgraph Matching - Torr - 2003, Schellewald et al - 2005

G1

G2

Unary costs are uniform

V2 V3

V1

MRF

ABCD A

BCD

ABCD

Page 13: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

MotivationSubgraph Matching - Torr - 2003, Schellewald et al - 2005

G1

G2

| d(mi,mj) - d(Vi,Vj) | <

12

YES NO

Potts Model

Pairwise Costs

Page 14: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Motivation

V2 V3

V1

MRF

ABCD A

BCD

ABCD

Subgraph Matching - Torr - 2003, Schellewald et al - 2005

Page 15: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Motivation

V2 V3

V1

MRF

ABCD A

BCD

ABCD

Subgraph Matching - Torr - 2003, Schellewald et al - 2005

Page 16: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

MotivationMatching Pictorial Structures - Felzenszwalb et al - 2001

Part likelihood Spatial Prior

Outline

Texture

Image

P1 P3

P2

(x,y,,)

MRF

Page 17: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Motivation

Image

P1 P3

P2

(x,y,,)

MRF

• Unary potentials are negative log likelihoods

Valid pairwise configuration

Potts Model

Matching Pictorial Structures - Felzenszwalb et al - 2001

12

YES NO

Page 18: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Motivation

P1 P3

P2

(x,y,,)

Pr(Cow)Image

• Unary potentials are negative log likelihoodsMatching Pictorial Structures - Felzenszwalb et al - 2001

Valid pairwise configuration

Potts Model

12

YES NO

Page 19: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Outline• Integer Programming Formulation

• Previous Work

• Our Approach– Second Order Cone Programming (SOCP)– SOCP Relaxation– Robust Truncated Model

• Applications– Subgraph Matching– Pictorial Structures

Page 20: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Integer Programming Formulation2

5

4

2

0

1 3

0

V1 V2

Label ‘0’

Label ‘1’Unary Cost

Unary Cost Vector u = [ 5

Cost of V1 = 0

2

Cost of V1 = 1

; 2 4 ]

Labelling m = {1 , 0}

Page 21: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Integer Programming Formulation2

5

4

2

0

1 3

0

V1 V2

Label ‘0’

Label ‘1’Unary Cost

Unary Cost Vector u = [ 5 2 ; 2 4 ]T

Labelling m = {1 , 0}

Label vector x = [ -1

V1 0

1

V1 = 1

; 1 -1 ]T

Recall that the aim is to find the optimal x

Page 22: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Integer Programming Formulation2

5

4

2

0

1 3

0

V1 V2

Label ‘0’

Label ‘1’Unary Cost

Unary Cost Vector u = [ 5 2 ; 2 4 ]T

Labelling m = {1 , 0}

Label vector x = [ -1 1 ; 1 -1 ]T

Sum of Unary Costs = 12

∑i ui (1 + xi)

Page 23: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Integer Programming Formulation2

5

4

2

0

1 3

0

V1 V2

Label ‘0’

Label ‘1’Pairwise Cost

Labelling m = {1 , 0}

0Cost of V1 = 0 and V1 = 0

0

00

0Cost of V1 = 0 and V2 = 0

3

Cost of V1 = 0 and V2 = 11 0

00

0 0

10

3 0

Pairwise Cost Matrix P

Page 24: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Integer Programming Formulation2

5

4

2

0

1 3

0

V1 V2

Label ‘0’

Label ‘1’Pairwise Cost

Labelling m = {1 , 0}

Pairwise Cost Matrix P

0 0

00

0 3

1 0

00

0 0

10

3 0

Sum of Pairwise Costs14

∑ij Pij (1 + xi)(1+xj)

Page 25: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Integer Programming Formulation2

5

4

2

0

1 3

0

V1 V2

Label ‘0’

Label ‘1’Pairwise Cost

Labelling m = {1 , 0}

Pairwise Cost Matrix P

0 0

00

0 3

1 0

00

0 0

10

3 0

Sum of Pairwise Costs14

∑ij Pij (1 + xi +xj + xixj)

14

∑ij Pij (1 + xi + xj + Xij)=

X = x xT Xij = xi xj

Page 26: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Integer Programming FormulationConstraints

• Each variable should be assigned a unique label

∑ xi = 2 - |L|i Va

• Marginalization constraint

∑ Xij = (2 - |L|) xij Vb

Page 27: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Integer Programming FormulationChekuri et al. , SODA 2001

x* = argmin 12

∑ ui (1 + xi) + 14

∑ Pij (1 + xi + xj + Xij)

∑ xi = 2 - |L|i Va

∑ Xij = (2 - |L|) xij Vb

xi {-1,1}

X = x xT

ConvexNon-Convex

Page 28: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Outline• Integer Programming Formulation

• Previous Work

• Our Approach– Second Order Cone Programming (SOCP)– SOCP Relaxation– Robust Truncated Model

• Applications– Subgraph Matching– Pictorial Structures

Page 29: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Linear Programming Formulation

x* = argmin 12

∑ ui (1 + xi) + 14

∑ Pij (1 + xi + xj + Xij)

∑ xi = 2 - |L|i Va

∑ Xij = (2 - |L|) xij Vb

xi {-1,1}

X = x xT

Chekuri et al. , SODA 2001Retain Convex Part

Relax Non-convex Constraint

Page 30: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Linear Programming Formulation

x* = argmin 12

∑ ui (1 + xi) + 14

∑ Pij (1 + xi + xj + Xij)

∑ xi = 2 - |L|i Va

∑ Xij = (2 - |L|) xij Vb

xi [-1,1]

X = x xT

Chekuri et al. , SODA 2001Retain Convex Part

Relax Non-convex Constraint

Page 31: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Linear Programming Formulation

x* = argmin 12

∑ ui (1 + xi) + 14

∑ Pij (1 + xi + xj + Xij)

∑ xi = 2 - |L|i Va

∑ Xij = (2 - |L|) xij Vb

xi [-1,1]

Chekuri et al. , SODA 2001Retain Convex Part

Page 32: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Feasible Region (IP) x {-1,1}, X = x2

Linear Programming Formulation

Page 33: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Feasible Region (IP)Feasible Region (Relaxation 1)

x {-1,1}, X = x2

x [-1,1], X = x2

Linear Programming Formulation

Page 34: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Feasible Region (IP)Feasible Region (Relaxation 1)Feasible Region (Relaxation 2)

x {-1,1}, X = x2

x [-1,1], X = x2

x [-1,1]

Linear Programming Formulation

Page 35: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Linear Programming Formulation

• Bounded algorithms proposed by Chekuri et al, SODA 2001

• -expansion - Komodakis and Tziritas, ICCV 2005

• TRW - Wainwright et al., NIPS 2002

• TRW-S - Kolmogorov, AISTATS 2005

• Efficient because it uses Linear Programming

• Not accurate

Page 36: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Semidefinite Programming Formulation

x* = argmin 12

∑ ui (1 + xi) + 14

∑ Pij (1 + xi + xj + Xij)

∑ xi = 2 - |L|i Va

∑ Xij = (2 - |L|) xij Vb

xi {-1,1}

X = x xT

Lovasz and Schrijver, SIAM Optimization, 1990Retain Convex Part

Relax Non-convex Constraint

Page 37: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

x* = argmin 12

∑ ui (1 + xi) + 14

∑ Pij (1 + xi + xj + Xij)

∑ xi = 2 - |L|i Va

∑ Xij = (2 - |L|) xij Vb

xi [-1,1]

X = x xT

Semidefinite Programming Formulation

Retain Convex Part

Relax Non-convex Constraint

Lovasz and Schrijver, SIAM Optimization, 1990

Page 38: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Semidefinite Programming Formulation

x1

x2

xn

1

...

1 x1 x2... xn

1 xT

x X

=

Rank = 1

Xii = 1

Positive SemidefiniteConvex

Non-Convex

Page 39: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Semidefinite Programming Formulation

x1

x2

xn

1

...

1 x1 x2... xn

1 xT

x X

=

Xii = 1

Positive SemidefiniteConvex

Page 40: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Schur’s Complement

A B

BT C

=I 0

BTA-1 I

A 0

0 C - BTA-1B

I A-1B

0 I

0

A 0 C -BTA-1B 0

Page 41: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Semidefinite Programming Formulation

X - xxT 0

1 xT

x X

=1 0

x I

1 0

0 X - xxT

I xT

0 1

Schur’s Complement

Page 42: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

x* = argmin 12

∑ ui (1 + xi) + 14

∑ Pij (1 + xi + xj + Xij)

∑ xi = 2 - |L|i Va

∑ Xij = (2 - |L|) xij Vb

xi [-1,1]

X = x xT

Semidefinite Programming Formulation

Relax Non-convex Constraint

Retain Convex PartLovasz and Schrijver, SIAM Optimization, 1990

Page 43: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

x* = argmin 12

∑ ui (1 + xi) + 14

∑ Pij (1 + xi + xj + Xij)

∑ xi = 2 - |L|i Va

∑ Xij = (2 - |L|) xij Vb

xi [-1,1]

Semidefinite Programming Formulation

Xii = 1 X - xxT 0

Retain Convex PartLovasz and Schrijver, SIAM Optimization, 1990

Page 44: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Feasible Region (IP) x {-1,1}, X = x2

Semidefinite Programming Formulation

Page 45: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Feasible Region (IP)Feasible Region (Relaxation 1)

x {-1,1}, X = x2

x [-1,1], X = x2

Semidefinite Programming Formulation

Page 46: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Feasible Region (IP)Feasible Region (Relaxation 1)Feasible Region (Relaxation 2)

x {-1,1}, X = x2

x [-1,1], X = x2

x [-1,1], X x2

Semidefinite Programming Formulation

Page 47: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Semidefinite Programming Formulation

• Formulated by Lovasz and Schrijver, 1990

• Finds a full X matrix

• Max-cut - Goemans and Williamson, JACM 1995

• Max-k-cut - de Klerk et al, 2000

• Accurate

• Not efficient because of Semidefinite Programming

Page 48: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Previous Work - Overview

LP SDP

ExamplesTRW-S,

-expansion

Max-k-Cut

Accuracy Low High

Efficiency High Low

Is there a Middle Path ???

Page 49: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Outline• Integer Programming Formulation

• Previous Work

• Our Approach– Second Order Cone Programming (SOCP)– SOCP Relaxation– Robust Truncated Model

• Applications– Subgraph Matching– Pictorial Structures

Page 50: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Second Order Cone Programming

Second Order Cone || v || t OR || v ||2 st

x2 + y2 z2

Page 51: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Minimize fTx

Subject to || Ai x+ bi || <= ciT x + di

i = 1, … , L

Linear Objective Function

Affine mapping of Second Order Cone (SOC)

Constraints are SOC of ni dimensions

Feasible regions are intersections of conic regions

Second Order Cone Programming

Page 52: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Second Order Cone Programming

|| v || t tI v

vT t0

LP SOCP SDP

=1 0

vT I

tI 0

0 t2 - vTv

I v

0 1

Schur’s Complement

Page 53: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Outline• Integer Programming Formulation

• Previous Work

• Our Approach– Second Order Cone Programming (SOCP)– SOCP Relaxation– Robust Truncated Model

• Applications– Subgraph Matching– Pictorial Structures

Page 54: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Matrix Dot Product

A B = ∑ij Aij Bij

A11 A12

A21 A22

B11 B12

B21 B22

= A11 B11 + A12 B12 + A21 B21 + A22 B22

Page 55: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

SDP Relaxation

x* = argmin 12

∑ ui (1 + xi) + 14

∑ Pij (1 + xi + xj + Xij)

∑ xi = 2 - |L|i Va

∑ Xij = (2 - |L|) xij Vb

xi [-1,1]

Xii = 1 X - xxT 0

Derive SOCP relaxation from the SDP relaxation

FurtherRelaxation

Page 56: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

1-D ExampleX - xxT 0

X - x2 ≥ 0

For two semidefinite matrices, the dot product is non-negative

A A 0

x2 X

SOC of the form || v ||2 st

Page 57: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Feasible Region (IP)Feasible Region (Relaxation 1)Feasible Region (Relaxation 2)

x {-1,1}, X = x2

x [-1,1], X = x2

x [-1,1], X x2

SOCP Relaxation

Same as the SDP formulation

Page 58: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

2-D Example

X11 X12

X21 X22

1 X12

X12 1

=X =

x1x1 x1x2

x2x1 x2x2

xxT =x1

2 x1x2

x1x2

=x2

2

Page 59: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

2-D Example(X - xxT)

1 - x12 X12-x1x2. 0

1 0

0 0 X12-x1x2 1 - x22

x12 1

-1 x1 1

C1. 0 C1 0

Page 60: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

2-D Example(X - xxT)

1 - x12 X12-x1x2

C2. 0

. 00 0

0 1 X12-x1x2 1 - x22

x22 1

LP Relaxation-1 x2 1

C2 0

Page 61: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

2-D Example(X - xxT)

1 - x12 X12-x1x2

C3. 0

. 01 1

1 1 X12-x1x2 1 - x22

(x1 + x2)2 2 + 2X12

SOC of the form || v ||2 st

C3 0

Page 62: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

2-D Example(X - xxT)

1 - x12 X12-x1x2

C4. 0

. 01 -1

-1 1 X12-x1x2 1 - x22

(x1 - x2)2 2 - 2X12

SOC of the form || v ||2 st

C4 0

Page 63: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

SOCP Relaxation

Consider a matrix C1 = UUT 0

(X - xxT)

||UTx ||2 X . C1

C1 . 0

Continue for C2, C3, … , Cn

SOC of the form || v ||2 st

Kim and Kojima, 2000

Page 64: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

SOCP Relaxation

How many constraints for SOCP = SDP ?

Infinite. For all C 0

We specify constraints similar to the 2-D example

Page 65: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

SOCP RelaxationMuramatsu and Suzuki, 2001

1 0

0 0

0 0

0 1

1 1

1 1

1 -1

-1 1

Constraints hold for the above semidefinite matrices

Page 66: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

SOCP RelaxationMuramatsu and Suzuki, 2001

1 0

0 0

0 0

0 1

1 1

1 1

1 -1

-1 1

a + b

+ c + d

a 0

b 0

c 0

d 0

Constraints hold for the linear combination

Page 67: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

SOCP RelaxationMuramatsu and Suzuki, 2001

a+c+d c-d

c-d b+c+d

a 0

b 0

c 0

d 0Includes all semidefinite matrices where

Diagonal elements Off-diagonal elements

Page 68: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

SOCP Relaxation - A

x* = argmin 12

∑ ui (1 + xi) + 14

∑ Pij (1 + xi + xj + Xij)

∑ xi = 2 - |L|i Va

∑ Xij = (2 - |L|) xij Vb

xi [-1,1]

Xii = 1 X - xxT 0

Page 69: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

SOCP Relaxation - A

x* = argmin 12

∑ ui (1 + xi) + 14

∑ Pij (1 + xi + xj + Xij)

∑ xi = 2 - |L|i Va

∑ Xij = (2 - |L|) xij Vb

xi [-1,1]

(xi + xj)2 2 + 2Xij (xi - xj)2 2 - 2Xij

Specified only when Pij 0

Page 70: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Triangular Inequality

• At least two of xi, xj and xk have the same sign

• At least one of Xij, Xjk, Xik is equal to one

Xij + Xjk + Xik -1Xij - Xjk - Xik -1-Xij - Xjk + Xik -1-Xij + Xjk - Xik -1

• SOCP-B = SOCP-A + Triangular Inequalities

Page 71: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Outline• Integer Programming Formulation

• Previous Work

• Our Approach– Second Order Cone Programming (SOCP)– SOCP Relaxation– Robust Truncated Model

• Applications– Subgraph Matching– Pictorial Structures

Page 72: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Robust Truncated ModelPairwise cost of incompatible labels is truncated

Potts ModelTruncated Linear Model

Truncated Quadratic Model

• Robust to noise

• Widely used in Computer Vision - Segmentation, Stereo

Page 73: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Robust Truncated ModelPairwise Cost Matrix can be made sparse

P = [0.5 0.5 0.3 0.3 0.5]

Q = [0 0 -0.2 -0.2 0]

Reparameterization

Sparse Q matrix Fewer constraints

Page 74: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Compatibility Constraint

Q(ma, mb) < 0 for variables Va and Vb

Relaxation ∑ Qij (1 + xi + xj + Xij) < 0

SOCP-C = SOCP-B + Compatibility Constraints

Page 75: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

SOCP Relaxation

• More accurate than LP

• More efficient than SDP

• Time complexity - O( |V|3 |L|3)

• Same as LP

• Approximate algorithms exist for LP relaxation

• We use |V| 10 and |L| 200

Page 76: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Outline• Integer Programming Formulation

• Previous Work

• Our Approach– Second Order Cone Programming (SOCP)– SOCP Relaxation– Robust Truncated Model

• Applications– Subgraph Matching– Pictorial Structures

Page 77: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Subgraph MatchingSubgraph Matching - Torr - 2003, Schellewald et al - 2005

G1

G2

Unary costs are uniform

V2 V3

V1

MRF

ABCD A

BCD

ABCD

Pairwise costs form a Potts model

Page 78: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Subgraph Matching

• 1000 pairs of graphs G1 and G2

• #vertices in G2 - between 20 and 30

• #vertices in G1 - 0.25 * #vertices in G2

• 5% noise to the position of vertices

• NP-hard problem

Page 79: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Subgraph Matching

Method Time (sec) Accuracy (%)

LP 0.85 6.64

SDP-A 35.0 93.11

SOCP-A 3.0 92.01

SOCP-B 4.5 94.79

SOCP-C 4.8 96.18

Page 80: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Outline• Integer Programming Formulation

• Previous Work

• Our Approach– Second Order Cone Programming (SOCP)– SOCP Relaxation– Robust Truncated Model

• Applications– Subgraph Matching– Pictorial Structures

Page 81: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Pictorial Structures

Image

P1 P3

P2

(x,y,,)

MRF

Matching Pictorial Structures - Felzenszwalb et al - 2001

Outline

Texture

Page 82: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Pictorial Structures

Image

P1 P3

P2

(x,y,,)

MRF

Unary costs are negative log likelihoods

Pairwise costs form a Potts model

| V | = 10 | L | = 200

Page 83: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Pictorial Structures

LBP

GBP

SOCP

Page 84: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Pictorial Structures

LBP

GBP

SOCP

Page 85: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Pictorial Structures

LBP

GBP

SOCP

Page 86: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Pictorial Structures

LBP

GBP

SOCP

LBP and GBP do not converge

Page 87: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Pictorial StructuresROC Curves for 450 +ve and 2400 -ve images

Page 88: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Pictorial StructuresROC Curves for 450 +ve and 2400 -ve images

Page 89: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Conclusions• We presented an SOCP relaxation to solve MRF

• More efficient than SDP

• More accurate than LP, LBP, GBP

• #variables can be reduced for Robust Truncated Model

• Provides excellent results for subgraph matching and pictorial structures

Page 90: Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman

Future Work

• Quality of solution– Additive bounds exist– Multiplicative bounds for special cases ??

• Message passing algorithm ??– Similar to TRW-S or -expansion– To handle image sized MRF