some remarks on constrained optimization - tu...

34
Some Remarks on Constrained Optimization Some Remarks on Constrained Optimization Jos´ e Mario Mart´ ınez www.ime.unicamp.br/martinez Department of Applied Mathematics, University of Campinas, Brazil 2011

Upload: others

Post on 19-May-2020

41 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

Some Remarks on Constrained Optimization

Jose Mario Martınezwww.ime.unicamp.br/∼martinez

Department of Applied Mathematics, University of Campinas, Brazil

2011

Page 2: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

Collaborators:Roberto Andreani (Unicamp), Ernesto Birgin (USP),Laura Schuverdt (La Plata), Chris Floudas (Princeton),Leandro Martınez (USP), Benar Svaiter (IMPA),Damian Fernandez (Cordoba), Gabriel Haeser (Unifesp),Andre Luiz Martinez, Emerson Castelani,Julian Martınez (Unicamp), Esdras Carvalho (Maringa),Feodor Pisnitchenko (UFABC), Felipe Bueno (Unicamp),Natasa Krejic (Novi Sad), Leandro Prudente (Unicamp),Flavio Yano (Itau), Mario Salvatierra (Amazonas).

Page 3: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

First Remarks

Every branch of Mathematics is applicable, directly or indirectly, tothe “reality”.Optimization is a mathematical problem with many “immediate”applications in the non-mathematical world.Optimization provides a model for real-life problems. We use thismodel to take decisions, fit parameters, make previsions,understand and compress data, detect instability of models,recognize patterns, planning, finding equilibria, packing molecules,protein folding and alignment, etc.We use Optimization Software to solve Optimization problems.

Page 4: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

In Optimization one tries to find the lowest possible values of areal function f within some domain.Roughly speaking, this is Global Optimization. GlobalOptimization is very hard. For approximating the global minimizerof a continuous function on a simple region of Rn one needs toevaluate f on a dense set.As a consequence one usually relies on Affordable Algorithms thatdo not guarantee global optimization properties but only localones. (In general, convergence to stationary points.) Affordablealgorithms run in reasonable computer time.Even from the Global Optimization point of view, AffordableAlgorithms are important, since we may use them many times,perhaps from different initial approximations, with the expectancyof finding lower and lower functional values in different runs.

Page 5: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

Dialogue between Algorithm A and Algorithm B

Algorithm A finds a stationary (KKT) feasible point with objectivefunction value equal to 999.00 using 1 second of CPU time.Algorithm B finds the (perhaps non-stationary) feasible point withobjective function value equal to 17.00 using 15 minutes.Algorithm B says: I am the best because my functional value islower than yours.Algorithm A says: If you give me 15 minutes I can run many timesso that my functional value will be smaller than yours.Algorithm B says: Well, Just do it!

Page 6: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

Time versus failures

1500 protein-alignment problems (from Thesis of P. Gouveia,2011).

Page 7: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

Claim

Affordable Algorithms are usually compared on the basis of theirbehavior on the solution of a problem with a given initial point.This approach does not correspond to the necessities of mostpractical applications.Modern (Affordable) methods should incorporate the mosteffective heuristics and metaheuristics for choosing initial points,regardless the existence of elegant convergence theory.

Page 8: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

Algencan

Algencan is an algorithm for constrained optimization based ontraditional ideas (Penalty and Augmented Lagrangian) (PHR).At each (outer) iteration one finds an approximate minimizer of theobjective function plus a shifted (quadratic) penalty function (theAugmented Lagrangian). (Talk by E. G. Birgin in this Conference.)Subproblems, which involve minimization with simple constraints,are solved using Gencan.Gencan is not a Global-Minimization method. However, itincorporates Global-Minimization tricks.

Page 9: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

Applying Algencan to Minimize f (x) subject toh(x) = 0, g(x) ≤ 0, x ∈ Ω

1 Define, for x ∈ Rn, λ ∈ Rm, µ ∈ Rp+, ρ > 0:

Lρ(x , λ, µ) = f (x) +ρ

2

[∥∥∥∥h(x) +λ

ρ

∥∥∥∥2 +

∥∥∥∥(g(x) +µ

ρ

)+

∥∥∥∥2].2 At each iteration, minimize approximately Lρ subject to x ∈ Ω.

3 If ENOUGH PROGRESS was not obtained, INCREASE ρ.

4 Update and safeguard Lagrange multipliers λ ∈ Rm, µ ∈ Rp+.

Page 10: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

Why to safeguard

At the end of outer iteration k Algencan obtains Lagrangemultipliers estimatesλk+1 = λk + ρkh(xk) and µk+1 = (µk + ρkg(xk))+.λk/ρk and µk/ρk are the shifts employed at iteration k.If (unfortunately) ρk goes to infinity, the only decision that makessense is that the shifts must tend to zero. (It does not make senseinfinite penalization with non-null shift.)A simple way to guarantee that is to impose that the approximationLagrange multipliers to be used at iteration k + 1 must bebounded. We obtain that projecting them on a (large) box.

Page 11: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

When safeguarding is not necessary

If the sequence generated by Algencan converges to the feasiblepoint x∗, which satisfies the Mangasarian-Fromovitz condition(and, hence, KKT) with only one vector of Lagrange multipliers,and, in addition, fulfills the second order sufficient optimalitycondition, then the penalty parameters remain bounded and theestimates of Lagrange multipliers converge to the true Lagrangemultipliers.

Page 12: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

Feasibility Results

It is impossible to prove that a method always obtains feasiblepoints because, ultimately, feasible points may not exist at all.All we can do is to guarantee that, in the limit, “stationary pointsof the infeasibility” are necessarily found.Moreover, even if we know that feasible points exist, it isimpossible to guarantee that an affordable method finds them.“Proof”: Run your affordable method with an infeasible problemwith only one stationary point of infeasibility. Your methodconverges to that point. Now, modify the constraints in a regionthat does not include the sequence generated by your method insuch a way that the new problem is feasible. Obviously, yourmethod generates the same sequence as before. Therefore, theaffordable method does not find the feasible points.

Page 13: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

Optimality Results

Assume that Algencan generates a subsequence such thatInfeasibility tends to zero.Then, given ε > 0, for k large enough we have the following AKKTresult:

1 Lagrange:

‖∇f (xk) +∇h(xk)λk+1 +∇g(xk)µk+1‖ ≤ ε;

2 Feasibility:‖h(xk)‖ ≤ ε, ‖g(xk)+‖ ≤ ε;

3 Complementarity:

minµk+1i ,−gi (xk) ≤ ε for all i .

Page 14: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

Stopping Criteria

The Infeasibility Results + the AKKT results suggest that theexecution of Algencan should be stopped when one of the followingcriteria is satisfied:

1 The current point is infeasible and stationary for infeasibilitywith tolerance ε. (Infeasibility of the problem is suspected.)

2 The current point satisfies AKKT (Lagrange + Feasibility +Complementarity) with tolerance ε.

Theory: Algencan necessarily stops according to the criterionabove, independently of constraint qualifications.

Page 15: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

Algencan satisfies the stopping criterion and converges to feasiblepoints that may not be KKT (and where the sequence of Lagrangemultipliers approximation tends to infinity).Algencan satisfies AKKT in the problem

Minimize x subject to x2 = 0.

Other methods (for example SQP) do not. SQP satisfies Feasibilityand Complementarity but does not satisfy Lagrange in thisproblem.

Page 16: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

CAKKT

Algencan satisfies an even stronger stopping criterion. TheComplementary Approximate KKT conditon (CAKKT) says that,eventually:

1 Lagrange:

‖∇f (xk) +∇h(xk)λk+1 +∇g(xk)µk+1‖ ≤ ε;

2 Feasibility:‖h(xk)‖ ≤ ε, ‖g(xk)+‖ ≤ ε;

3 Strong Complementarity:

|µk+1i gi (x

k)| ≤ ε for all i ;

and|λk+1

i hi (xk)| ≤ ε for all i .

Page 17: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

However, CAKKT needs a slightly stronger assumption on theconstraints:The functions hi and gj should satisfy, locally, a “GeneralizedLojasiewicz Inequality”, which means that the norm of the gradientgrows faster than the functional increment.This inequality is satisfied by every reasonable function. Forexample, analytic functions satisfy GLI.The function h(x) = x4 sin(1/x) does not satisfy GLI. We have acounterexample showing that Algencan may fail to satisfy theCAKKT criterion when this function defines a constraint.Should CAKKT be incorporated as standard stopping criterion ofAlgencan?

Page 18: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

Example concerning the Kissing Problem

The Kissing Problem consists of finding np points in the unitarysphere of Rnd such that the distance between any pair of them isnot smaller than 1.This problem may be modeled as Nonlinear Programming in manypossible ways.For nd = 4 and np = 24 the problem has a solution. UsingAlgencan and random initial points uniformly distributed in theunitary sphere we find this solution in the Trial 147, using a fewseconds of CPU time.It is also known that, with nd = 5 and np = 40 the problem has asolution. We used Algencan to find the global solution usingrandom uniformly distributed initial points in the sphere, and webegan this experiment on February 8, 2011, at 16.00 pm.In February 9, at 10.52 am, Algencan had run 117296 times, andthe best distance obtained was 0.99043038012718854.The code is still running.

Page 19: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

Consequences:

1 Global Optimization is hard;

2 Stopping Criteria are not merely auxiliary tools on which wedon’t like to think about. Refined stopping criterion arecrucial for saving computer time and, thus, having time tochange the strategy. Few research is dedicated to this topic.

3 Multistart is a sensible strategy. Many other global strategiesexist. The choice is difficult (and perhaps impossible) becauseno strong supporting theories exist.

4 Algencan has global-minimization properties when thesubproblems are solved with global-minimization strategies.Global simple-constrained (perhaps unconstrained or box-)optimization is obviously easier than globalgeneral-constrained optimization.

Page 20: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

Algencan and Infeasibility (Thesis of L. Prudente 2011)

You are running Algencan and the sequence seems to becondemned to converge to an infeasible point. What should youdo?Alternatives:

1 You continue the execution until the maximum number ofiterations is exhausted, because perhaps something better isgoing to happen.

2 You stop and try another initial point.

For deciding this question we need better theoretical knowledgeabout the behavior of Algencan in Infeasible cases.

Page 21: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

Algencan and Infeasibility

Assume that a subsequence generated by Algencan (solving thesubproblems up to stationarity with εk → 0) converges to theinfeasible point x∗.Consider the Auxiliary Problem:

Minimize f (x) s. t. h(x) = h(x∗), g(x) ≤ g(x∗)+

Then, for all ε > 0, there exists k such that the AKKT stoppingcriterion holds at xk with respect to the Auxiliary Problem.Algencan tends to find minimizers suject to the levels of feasibilityof its limit points.

Page 22: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

Minimization with empty feasible region

Minimize 4x21 + 2x1x2 + 2x22 − 22x1 − 2x2 s. t. (x2 − x21 )2 + 1 = 0.

-

6

.

... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ............................................................................................................................................................................................................................................................

...............................

..

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

..

..

.......

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Page 23: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

More on Infeasibility

Suppose that one runs Algencan setting, for each subproblem, aconvergence tolerance εk that does not tend to zero. For example,εk = 10 for all k .Then, the property that every limit point is a stationary point ofinfeasibility is preserved. (But the minimization property of f oninfeasibility levels does not.)Practical consequence: If your Algencan sequence is condemned toinfeasibility, you can get the Infeasible-Conclusion spending amoderate amount of time on each subproblem.

Page 24: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

When the perfect solution is wrong

You run your Nonlinear Programming solver A with a stricttolerance for infeasibility, say, 10−10. Your solver convergessmoothly to a AKKT feasible point up to that tolerance and anunexpectedly low value of the objective function.You are very happy but your Engineer says that the solution iscompletely wrong. (This is the good case; in the bad case yourEngineer believes that it is correct.)Reason: Unexpected Ill-Conditioning of constraints. The tolerance10−10 is not enough to guarantee that the point is close to theconstraint set. The “shape” of the solution is completely wrongand the rocket will fall over your head.

Page 25: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

Minimizen∑

i=1

xi s. t. xi =xi−1 + xi+1

2, i = 1, n, x0 = xn+1 = 1.

Approximate solution (n = 2500) with Norm of Infeasibility ≈ 10−6:

-

6

..

............................................................................................................................................................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................

Page 26: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

Order-Value Optimization (OVO)

fi : Ω ⊂ Rn → R for all i = 1, . . . ,m. We define i1(x), ..., im(x) by

fi1(x)(x) ≤ . . . ,≤ fim(x)(x).

Let p ∈ 1, . . . ,m. We define:

f p(x) = fip(x)(x).

Interpretation: If fi (x) is the absolute value of the differencebetween the i-th observation and the theoretical observationaccording to a given model under parameters x then f p(x) is themaximum error, discarding the m − p worst errors.If fi (x) is the predicted loss associated with a decision x under thescenario i , then f p(x) is the maximal possible loss, discarding thebiggest m − p ones. (VaR in Risk Management.)Optimization problems defined in terms of i1(x), . . . , im(x) arecalled GOVO (Generalized OVO) problems.

Page 27: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

Level sets of f p(x1, x2) with m = 5, p = 4

-

6

.−5.0

...................... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .....................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....

.−2.5

...................... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .................. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .........

......................................................

..

..

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....

.......................... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... . ... . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . ... . ... . ... . ... . ... . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .........

.............................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.......5.0 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . ... ................................

...... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

..

.

..

.

..

................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..............................................................................................

....................................

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Page 28: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

Low Order-Value Function

We define

F p(x) =

p∑j=1

fij (x)(x)

(Sum of the p smallest errors)Minimizing F p(x) is much simpler than minimizing f p(x).Reason: Fix x and define I = i1(x), . . . , ip(x). Then, if one findsy such that

∑j∈I fj(y) <

∑j∈I fj(x), we will get F p(y) < F p(x).

Pratical consequence: For minimizing F p we may use ordinarymethods for minimizing smooth functions, disregardingnon-smoothness.LOVO has been successful in Protein Alignment problems(Package LovoAlign).

Page 29: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

LOVO constraints

Assume that we have an optimization problem with the constraintthat the p smaller elements of f1(x), . . . , fm(x) is not biggerthan zero.We decide to use Algencan in a naive way for solving the problem.Therefore, the optimization problem incorporates the constraints:

fi1(x)(x) ≤ 0, . . . , fip(x)(x) ≤ 0.

It turns out that each Algencan subproblem becomes an“unconstrained” optimization problem where the objective functionis Low Order-Value. Therefore, subproblems can be solved usingordinary smooth optimization.

Page 30: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

VaR constraint

Assume that f p(x) ≤ 0 is a constraint of an optimization problem.Since

f p(x) = fip(x)(x) ≥ . . . ≥ fi1(x)(x),

the constraint f p(x) ≤ 0 is equivalent to

fi1(x)(x) ≤ 0, . . . , fip(x)(x) ≤ 0.

Therefore, problems with a VaR constraint can be solved as LOVOconstrained problems by Algencan.

Page 31: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

Minimizing VaR

“Minimizing f p(x)” is a nonconvex-nonsmooth optimizationproblem.It is obviously equivalent to:

Minimize z subject to f p(x) ≤ z .

But this is a VaR-Constrained problem, reducible toLOVO-constrained and solvable by naive Algencan.

Page 32: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

Minimizing f q(x) subject to f p(x) ≤ 0 and othercombinations

Equivalent toMinimize z

subject tof p(x) ≤ z , f q(x) ≤ 0.

Page 33: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

Minimize the Median with VaR constraint

-

6

............ .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . ... . ... . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .....

...............................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..................................

................. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ...........

................................................................................................

................................................................................................

................................................................................................

................................................................................................

......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... .....

.................... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ...

....... .. .. .. .. .. .. .. .. .. .. .. ...

... .. .. .. .. .. .. .. .. .. .. .. .

..............

..............

..............

..............

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.............

Page 34: Some Remarks on Constrained Optimization - TU Delftta.twi.tudelft.nl/wagm/users/rojas/COPT/Slides/talkdelft6.pdf · Some Remarks on Constrained Optimization In Optimization one tries

Some Remarks on Constrained Optimization

Final Remarks: Beyond KKT

1 Global Optimization and KKT-like Optimization are parts ofthe same problem. Software developers should care with bothproblems as being only one.

2 Modelling is part of our problem. We are requested to findh(x) = 0 (and not ‖h(x)‖ ≤ 10−8) even when this isimpossible.

3 From a theoretical point of view with potentially practicalapplications a challenging research program is theinvestigation of convergence to non-KKT points.