some topological indices of edge corona of two graphs

14
Iranian J. Math. Chem. 10 (3) September (2019) 209222 Some Topological Indices of Edge Corona of Two Graphs CHANDRASHEKAR ADIGA 1, , MALPASHREE RAJU 1 , RAKSHITH BILLVA RAMANNA 2 AND ANITHA NARASIMHAMURTHY 3 1 Department of Studies in Mathematics, University of Mysore, Manasagangothri, Mysore570 006, India 2 Department of Mathematics, Vidyavardhaka College of Engineering, Mysore570002, India 3 Department of Mathematics, PES University, Bangalore560 085, India ARTICLE INFO ABSTRACT Article History: Received: 13 August 2015 Accepted: 12 March 2017 Published online 30 September 2019 Academic Editor: Hassan YousefiAzari In this paper, we compute the Wiener index, first Zagreb index, second Zagreb index, degree distance index and Gutman index of edge corona of two graphs. © 2019 University of Kashan Press. All rights reserved Keywords: Edge corona Wiener index Zagreb index Degree distance index Gutman index 1. INTRODUCTION Throughout this paper we consider only simple connected graphs, i.e., connected graphs without loops and multiple edges. Let =( , ) G VE be a graph with vertex set 1 2 ( )={ , , , } n VG vv v and edge set 1 2 ( )={ , , , } m EG ee e . We denote the shortest distance between two vertices u and v in G by (,) duv and the degree of a vertex v in G by () dv . A topological index is a real number derived from the structure of a graph, which is invariant under graph isomorphism. The Wiener index W(G) of a graph G is defined as Corresponding Author (Email address: [email protected]) DOI: 10.22052/ijmc.2017.34313.1132 Iranian Journal of Mathematical Chemistry Journal homepage: ijmc.kashanu.ac.ir

Upload: others

Post on 21-Dec-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Iranian J. Math. Chem. 10 (3) September (2019) 209– 222

Some Topological Indices of Edge Corona of Two Graphs

CHANDRASHEKAR ADIGA1,

, MALPASHREE RAJU1, RAKSHITH BILLVA RAMANNA

2

AND ANITHA NARASIMHAMURTHY3

1Department of Studies in Mathematics, University of Mysore, Manasagangothri, Mysore−570 006,

India 2Department of Mathematics, Vidyavardhaka College of Engineering, Mysore−570002, India

3Department of Mathematics, PES University, Bangalore−560 085, India

ARTICLE INFO ABSTRACT

Article History:

Received: 13 August 2015

Accepted: 12 March 2017

Published online 30 September 2019

Academic Editor: Hassan Yousefi−Azari

In this paper, we compute the Wiener index, first Zagreb index,

second Zagreb index, degree distance index and Gutman index of

edge corona of two graphs.

© 2019 University of Kashan Press. All rights reserved

Keywords:

Edge corona

Wiener index

Zagreb index

Degree distance index

Gutman index

1. INTRODUCTION

Throughout this paper we consider only simple connected graphs, i.e., connected graphs

without loops and multiple edges. Let = ( , )G V E be a graph with vertex set

1 2( ) = { , , , }nV G v v v and edge set 1 2( ) = { , , , }mE G e e e . We denote the shortest distance

between two vertices u and v in G by ( , )d u v and the degree of a vertex v in G by ( )d v . A

topological index is a real number derived from the structure of a graph, which is invariant

under graph isomorphism. The Wiener index W(G) of a graph G is defined as

Corresponding Author (Email address: [email protected])

DOI: 10.22052/ijmc.2017.34313.1132

Iranian Journal of Mathematical Chemistry

Journal homepage: ijmc.kashanu.ac.ir

210 ADIGA, RAJU, RAMANNA AND NARASIMHAMURTHY

{ , } ( )( ) = ( , ).

u v V GW G d u v

‎‎ The Wiener index is a classical distance based topological

index. It was first introduced by H. Wiener [26] with an application to chemistry. The

Wiener index has been extensively studied by many chemists and mathematicians. For

more details about Wiener index the reader may refer to [5, 6, 12, 16, 20]. The first and

second Zagreb indices of a graph denoted by 1( )M G and 2 ( )M G , respectively, are degree

based topological indices introduced by Gutman and Trinajstić [15]. These two indices are

defined as 2

1 = ( ) ( )( ) ( ( ) ( )) ( ) ,

e uv E G v V GM G d u d v d v

and 2 ( )( ) ( ) ( ).

e uv E GM G d u d v

More information about Zagreb indices can be found in

[13, 14, 19]. The degree distance, DD(G), and Gutman index Gut(G) of a graph G are

defined, respectively, as

{ , } ( )

{ , } ( )

( ) ( ( ) ( )) ( , ),

( ) ( ) ( ) ( , ).

G G Gu v V G

G G Gu v V G

DD G d u d v d u v

Gut G d u d v d u v

The degree distance was introduced independently by A. A. Dobrynin, A. A.

Kochetova [7] and Gutman [11]. The Gutman index was introduced by Gutman [11] which

was earlier known as modified Schultz index. Studies on degree distance and Gutman index

can be found in [2, 3, 8, 21, 25] and the references cited therein.

The corona [9] of two graphs G and H is the graph obtained by taking one copy of G,

|V(G)| copies of H and joining i-th vertex of G to every vertex in the i-th copy of H. The

edge corona [17] of two graphs G and H denoted by G◊H is obtained by taking one copy of

G and |E(G)| copies of H and joining end vertices of i-th edge of G to every vertex in the i-th

copy of H. Various researchers studied the topological indices of the corona of two graphs,

for example see [23, 27]. Motivated by these works, in this paper we compute some

topological indices of edge corona of two graphs. In Section 2, we derive formulas for the

Wiener index and Zagreb indices of edge corona of two graphs. As special cases of these

formulas we express Wiener index and Zagreb indices of edge corona Pn◊H, Cn◊H and

Kn◊H, where H is an arbitrary graph, in terms of vertices and edges. In Section 3, we

compute the degree distance and Gutman index of edge corona of two graphs and obtain

formula in terms of vertices and edges for degree distance and Gutman index of edge

corona of two graphs G and H, when G = Cn , Pn or Kn and H = Cm , Pm , Km or mK .

2. WIENER INDEX, FIRST ZAGREB INDEX AND SECOND ZAGREB INDEX OF

EDGE CORONA OF TWO GRAPHS

Let G1 and G2 be graphs with vertex sets V(G1)={ 1v , 2v ,…,1nv }, V(G2)={ 1u , 2u ,…,

2nu }, and

edge sets E(G1)={ 1e , 2e ,…,1m

e } and E(G2)={ '

1e , '

2e ,…,2

'

me }. Let the vertex set of i-th copy

Some Topological Indices of Edge Corona of Two Graphs 211

of G2 be denoted by V(G2)={ 1iu , 2iu ,…,2inu }. In this section, we compute the Wiener index

and Zagreb indices of edge corona of two graphs G1 and G2.

Let e = uv and f = xy be two distinct edges in G. The distance dG(e,f) between two

edges e and f is given by min{dG(x,u), dG(x,v), dG(y,u), dG(y,v)}. The edge-Wiener index

( )eW G [4] of a graph G, is the sum of all distances between unordered pairs of vertices in

the line graph L(G). Equivalently, edge-Wiener index of G is the Wiener index of the line

graph L(G) of G i.e.,

{ , } ( )( ) = ( ( )) = ( { ( , ), ( , ), ( , ), ( , )} 1).e G G G Gxy uv E G

W G W L G min d x u d x v d y u d y v

Note that in literature different definitions of the edge-Wiener index and distance

between two edges are proposed; for example see [18]. The vertex PI index [1] of a graph G

is defined as

= ( )( ) = [ ( | ) ( | )],

i ii l me l e me v v E G

PI G n v G n v G

where ne=uv(u|G) is the number of vertices in G that are closer to u than v in G. It may be

noted that if G is a bipartite graph, then PI(G)=|V(G)||E(G)|.

We need the following two lemmas to prove our main results. As the proofs directly

follow from the definition of the edge corona, we omit the details.

Lemma 2.1 We have

1. 1 2 12( ) = ( 1) ( )G G i G id v n d v , 1( )iv V G .

2. 2)(=)(221

jGijGG udud , 2( )ij iu V G .

Lemma 2.2 We have

1. 1 2 1 1( , ) = ( , ), , ( ).G G i j G i j i jd v v d v v v v V G

2. 1 2

2

2

1, ( )( , ) =

2, ( )

j k

G G ij ikj k

u u E Gd u u

u u E G

, 2, ( ).ij ik iu u V G

3.1 2 1

( , ) = ( , ) 2,G G ij km G i kd u u d e e 2( ) ij iu V G and 2( ).km ku V G

4.

1 1 1

1 2

1 1 1 1

2 1

2 1

( , ) 1, ( , ) = ( , ),

( ) , ( ),( , ) =

( ( , ) ( , ) 1) / 2, ( , ) ( , ),

( ) , ( ),

G l k G l k G m k

ij i k

G G ij kG l k G m k G l k G m k

ij i k

d v v d v v d v v

u V G v V Gd u v

d v v d v v d v v d v v

u V G v V G

where =l m iv v e .

Theorem 2.3 The Wiener index of 1 2G G is given by

212 ADIGA, RAJU, RAMANNA AND NARASIMHAMURTHY

2 2 21 2 1 2 1 1 1 1 2 1 1 1 2( ) = ( ) ( ) ( ( ) ( )) ( 1) 1 .

2 2e

n nW G G W G nW G DD G PI G m n m n mm

Proof. We have

1 2 1 2 3 4( ) = ,W G G A A A A (2.1)

where

1 21

1 21 2

1 21 2 2

1 21 2 1

1 { , } ( )

2 ( ) { , } ( )

3 { , } ( ) ( ), ( )

4 ( ) ( ), ( )

= ( , ),

= ( , ),

= ( , ),

= ( , ).

i j

i ij ik i

i k ij i km k

i ij i k

G G i jv v V G

G G ij ike E G u u V G

G G ij kme e E G u V G u V G

G G ij ke E G u V G v V G

A d v v

A d u u

A d u u

A d u u

We now compute iA for =1,2,3,4i .By Lemma 2.2, we have

1 2 11 1

1 21 2

1 2 2

1 2 2

1 1{ , } ( ) { , } ( )

2 ( ) { , } ( )

( ) ( ) (( )

( ) ( ) ( )

2

= ( , ) ( , ) ( ), (2.2)

= ( , ),

= 2 1

2 1

= (

i j i j

i ij ik i

i ij ik i ij ik i

i ij ik i ij ik i

G G i j G i jv v V G v v V G

G G ij ike E G u u V G

e E G u u E G u u E G

e E G u u V G u u E G

A d v v d v v W G

A d u u

n

12 2( )

1 2 2 2

( 1) )

= ( ( 1) ), (2.3)

ie E Gn m

m n n m

and

1 21 2 2

11 2 2

11

3 { , } ( ) ( ), ( )

{ , } ( ) ( ), ( )

2

2 { , } ( )

2

2 1 1 1

= ( , ),

= ( ( , ) 2),

= ( ( , ) 2)

= ( ( ) ( 1) / 2). (2.4)

i k ij i km k

i k ij i km k

i k

G G ij kme e E G u V G u V G

G i ke e E G u V G u V G

G i ke e E G

e

A d u u

d e e

n d e e

n W G m m

We have

1 21 2 14 ( ) ( ), ( )

( , ).i ij i k

G G ij ke E G u V G v V GA d u u

Using Lemma 2.2, the above equation can be rewritten as follows:

1 11 1 1 1

1 11 1 1

1 11 1

4 2 ( ) ( ), ( , ) ( , )

( ), ( , ) ( , )

2= ( ) ( )

= ( ( ( , ) ( , ) 2) / 2

( ( , ) ( , ) 1) / 2

( ( ( , ) ( , ))

l m k G m k G kl

k G m k G kl

i l m k

G l k G m kv v E G v V G d v v d v v

G l k G m kv V G d v v d v v

G l k G m ke v v E G v V G

A n d v v d v v

d v v d v v

n d v v d v v

Some Topological Indices of Edge Corona of Two Graphs 213

1

11 1 1

11 1

1

1 1 1= ( )

2 1 1 1( ) ( ) ( )

2 1 1 1( ) ( )

2 1 1 1

2 ( ( | ) ( | ))) / 2

( ( , ) 2 ( )) / 2

= ( ( ) ( , ) 2 ( )) / 2

= ( ( ( ) ( )) ( , ) 2 ( )

i ii l m

j i j k

i k

e l e me v v E G

G i kv V G v v V G v V G

i G i kv V G v V G

i k G i k

n n v G n v G

n d v v n m PI G

n d v d v v n m PI G

n d v d v d v v n m PI G

1{ , } ( )

2 1 1 1 1

) / 2

= ( ( ) 2 ( )) / 2. (2.5)

i kv v V G

n DD G n m PI G

Using (2.2), (2.3), (2.4) and (2.5) in (2.1) the result follows.

Corollary 2.4 Let 1G be a bipartite graph. Then the Wiener index of 1 2G G is given by

2

1 2 1 2 1 2 1 1 1 1 2 2 1 1 1 2( ) = ( ) ( ) ( ( ) ) / 2 ( 1) / 2 1 .eW G G W G nW G n DD G nm mn n m n mm

We need the following lemmas for future references.

Lemma 2.5 [22] Let nP and nC denote the path and cycle on n vertices, respectively. Then

2( ) = ( 1) / 6,nW P n n

3

2

/ 8,( ) =

( 1) / 8, .n

n if n is evenW C

n n if n is odd

Lemma 2.6 [8, 24] Let nP and nC denote the path and cycle on n vertices, respectively.

Then

( ) = ( 1)(2 1) / 3,nDD P n n n

3

2

/ 2,( ) =

( 1) / 2, .n

n if n is evenDD C

n n if n is odd

It can be easily verified that ( ) = ( 1) / 2nW K n n , 2( ) = ( 1)nDD K n n , ( )e nW K

= 2( 1)( 3 2) / 4n n n n , ( ) =nPI K ( 1)n n , ( ) =nPI P ( 1)n n and 2 1( ) 2nPI C n (2 1).n

Using these facts and also by applying above two lemmas in Theorem 2.3, we obtain the

following corollary.

Corollary 2.7 Let G be a graph with 1n vertices and 1m edges. Then

1. 2 2 2

1 1 1 1( ) = ( 1)(( 1) ( 1) 6 6 ) / 6.nW P G n n n n n n m

2. 2 2 2 2

2 1 1 1( ) = (( 1) ( 1)2 2 ).nW C G n n n n n n n m

3. 2 2 2 2

2 1 1 1 1 1 1( ) = ( 1/ 2)(( 1) (3 4 1) 2 2 ).nW C G n n n n n n n m

4. 2 2 2 2

1 1 1 1 1 1( ) = (1/ 8) ( 1)(3 7 6 8 12 4 4).nW K G n n n n n n n n n n m

214 ADIGA, RAJU, RAMANNA AND NARASIMHAMURTHY

Theorem 2.8 The first Zagreb index of 1 2G G is given by

2

1 1 2 2 1 1 1 1 2 2 2( ) = ( 1) ( ) ( ( ) 4 8 ).M G G n M G m M G n m

Proof. By Lemma 2.1, we have

1 21 2

1 2 1 21 1 2

1 21 2

2 21 2

2

1 1 2 ( )

2 2

( ) ( ) ( )

2 2 2

2 ( ) ( ) ( )1

2 2

2 1 1 ( ) ( )

( ) = ( )

= ( ) ( )

= ( 1) ( ) ( ( ) 2)

= ( 1) ( ) ( ( ) 4 ( ) 4)

=

i i ij i

i i ij i

i ij i

G Gx V G G

G G i G G ijv V G e E G u V G

G i G jv V G e E G u V G

G j G je E G u V G

M G G d x

d v d u

n d v d u

n M G d u d u

1

2

2 1 1 1 2 2 2( )

2

2 1 1 1 1 2 1 2 2 1

( 1) ( ) ( ( ) 8 4 )

= ( 1) ( ) ( ) 8 4 .

ie E Gn M G M G m n

n M G mM G mm n m

This completes the proof.

Theorem 2.9 The second Zagreb index of 1 2G G is given by

2

2 1 2 2 2 1 1 2 2 1 1 2 1 2 2 2 2 1 1( ) = ( 1) ( ) ( ) 2 ( ) 4 2( 1)( ) ( ).M G G n M G mM G mM G mm n m n M G

Proof. By Lemma 2.1, we have

1 2 1 21 2

1 2 1 2 1 2 1 21 1 2

1 2 1 2 1 21 2

1

2 1 2 ( )

( ) ( ) ( )

= ( ) ( )

2

2 ( )

( ) = ( ) ( )

= ( ) ( ) ( ) ( )

( ( ) ( )) ( )

= ( 1)

i j i ij ik i

i l m ij i

i j

G G G Gxy E G G

G G i G G j G G ij G G ikv v E G e E G u u E G

G G l G G m G G ije v v E G u V G

v v E G

M G G d x d y

d v d v d u d u

d v d v d u

n

1 1

2 21 2

1 1 21 2

1

1 1

( ) ( )

2 = ( ) ( )

2

2 2 1 2 2 1 2 2( )

2 2

( ) ( )

( ( ) 2)( ( ) 2)

( 1) ( ( ) ( )) ( ( ) 2)

= ( 1) ( ) ( ( ) 2 ( ) 4 )

( 1) ( ( ) ( )) (2

i ij ik i

i l m ij i

i

G i G j

G ij G ike E G u u E G

G l G m G ije v v E G u V G

e E G

G l G m

d v d v

d u d u

n d v d v d u

n M G M G M G m

n d v d v m

12= ( )

2

2 2 1 1 2 2 1 2 2

2 2 2 1 1

2 )

= ( 1) ( ) ( ( ) 2 ( ) 4 )

2( 1)( ) ( ).

i l me v v E Gn

n M G m M G M G m

n m n M G

Hence the proof.

Using the facts that 1( ) = 4 6nM P n ( 2)n , 2( ) = 4 8 ( 3),nM P n n 1( ) =nM C

2 ( )nM C = 4n , 2

1( ) = ( 1) ,nM K n n 3

2( ) = ( 1) / 2nM K n n , in Theorems 2.8 and 2.9, we

obtain the following corollaries.

Some Topological Indices of Edge Corona of Two Graphs 215

Corollary 2.10 We have

1. 2 2

1( ) = 4 6 24 28 10 8.n mM P P m n m mn m n

2. 2

1( ) = 4 ( 6 1).n mM C C n m m

3. 2 2

1( ) = 4 6 24 28 4 6.n mM P C m n m mn m n

4. 2

1( ) = 4 24 10 .n mM C P m n mn n

5. 2

1( ) = (1/ 2) ( 1)( 1) ( 2 2).n mM K K n n m m n

6. 2

1( ) = ( 1)(( 1)( 1) 8 7).n mM K P n n n m m

7. 2

1( ) = ( 1) ( 4 6).n mM P K m mn m n

8. 2 2

1( ) = ( 1)(( 1) 6 1).n mM K C n n m n m m

9. 3 2

1( ) = 6 9 4 .n mM C K m n m n mn n

10. 2 2

1( ) = 4 6 12 16 4 6.n mM P K m n m mn m n

11. 2

1( ) = 4 ( 3 1).n mM C K n m m

12. 2

1( ) = ( 1)(( 1) ( 1) 2 ).n mM K K n n m n m

Corollary 2.11 We have

1. 2

2( ) = (20 32) (32 44) 28 28.n mM P P n m n m n

2. 2

2( ) = 20 40 4 .n mM C C m n mn n

3. 2

2( ) = (20 32) (40 56) 4 8.n mM P C n m n m n

4. 2

2( ) = 20 32 28 .n mM C P m n mn n

5. 2 2 2

2( ) = (1/ 4) ( 1)( (4 5) 2( 1) )( 1) .n mM K K n n m n m n m

6. 2 2 2 2 2 2

2( ) = (1/ 2) ( 1)( 6 2 7 14 6 19).n mM K P n n m n m n mn m n m n

7. 2 2

2( ) = (1/ 2(( 1) (7 11) 8 16))( 1) .n mM P K n m n m n m

8. 2 2 2 2

2( ) = (1/ 2) ( 1)(( 1) (6 4 2) 7 10 1).n mM K C n n m n m m n m m

9. 2 2

2( ) = (1/ 2) ( 7 8)( 1) .n mM C K n m m m

10. 2

2( ) = (12 20) (16 28) 4 8.n mM P K n m n m n

11. 2

2( ) =12 16 4 .n mM C K m n mn n

12. 2

2( ) = (1/ 2) ( 1)( 1) (( 1) 3 1).n mM K K n m n m n m

3. DEGREE DISTANCE AND GUTMAN INDEX OF EDGE CORONA OF TWO

GRAPHS

For a graph G, we define

216 ADIGA, RAJU, RAMANNA AND NARASIMHAMURTHY

( ), = ( )

( , ) = ( , )

( ) := ( ).

G G

Gw V G e uv E Gd w v d u w

C G d w

It is easy to see that 2 1( ) = 4 2nC C n and 2( ) = ( 1) ( 2) / 2nC K n n n .

In this section, we compute the degree distance and Gutman index of edge corona

of two graphs.

Theorem 3.1 The degree distance index of 1 2G G is given by

1 2 2 2 1 2 2 2 1

2 2 1 1 2 2 1

2

1 1 2 1 2 2 1 1 2 1 2 1 2 2

( ) = ( 2 1) ( ) 4 ( ) ( )

(1/ 2) ( 1)(2 ( ) ( )) ( ) ( )

( ) 2 ( )( ( 1) 2) 4 ( 1).

eDD G G m n DD G n m n W G

n n Gut G C G m n PI G

mM G m m n n m n mm m n n

Proof. We have

1 2 1 2 3 4( ) = ,DD G G A A A A

(3.1)

where

1 2 1 2 1 21

1 2 1 2 1 212

1 2 1 2 1 21 2 2

1{ , } ( )

2 ( ){ , } ( )

3 { , } ( ) ( ), ( )

= ( ( ) ( )) ( , ),

= ( ( ) ( )) ( , ),

= ( ( ) ( )) (

i j

iij ik i

i k ij i km k

G G i G G j G G i jv v V G

G G ij G G ik G G ij ike E G u u V G

G G ij G G km G G ije e E G u V G u V G

A d v d v d v v

A d u d u d u u

A d u d u d u

1 2 1 2 1 21 2 14 ( ) ( ), ( )

, ),

= ( ( ) ( )) ( , ).i ij i k

km

G G ij G G k G G ij ke E G u V G v V G

u

A d u d v d u v

Using Lemmas 2.1 and 2.2, 1A , 2A , 3A and 4A can be computed as follows:

1 2 1 2 1 21

1 1 11

1 { , } ( )

2 { , } ( )

2 1

= ( ( ) ( )) ( , )

= ( 1) ( ( ) ( )) ( , )

= ( 1) ( ). (3.2)

i j

i j

G G i G G j G G i jv v V G

G i G j G i jv v V G

A d v d v d v v

n d v d v d v v

n DD G

1 2 1 2 1 21 2

2 21 2

2 22

21 2

2 ( ) { , } ( )

( ) { , } ( )

( )

2 2 2 1 2( ) ( )

= ( ( ) ( )) ( , )

= (2 ( ( ) ( ) 4)

( ( ) ( ) 4))

= (2( 1) ( ( )) 4 ( 1) ( )

i ij ik i

i j k

j k

i j

G G ij G G ik G G ij ike E G u u V G

G j G ke E G u u V G

G j G ku u E G

G je E G u V G

A d u d u d u u

d u d u

d u d u

n d u n n M G

1

2

2 2 2 2 1 2 2( )

2 1 2 1 2 2 1 1 2

4 )

= 4( 1) 4 ( 1) ( ) 4

4( 2) 4 ( 1) ( ). (3.3)

ie E G

m

n m n n M G m

n mm m n n mM G

Some Topological Indices of Edge Corona of Two Graphs 217

1 2 1 2 1 21 2 2

2 11 2

11

3 { , } ( ) ( ), ( )

2 { , } ( ) ( )

2 2 2{ , } ( )

2 2 2 1 1 1

= ( ( ) ( )) ( , )

= 2 ( ( ) 2)( ( , ) 2)

= 2 ( ( , ) 2)(2 2 )

= 4 ( )( ( ) ( 1)

i k ij i km k

i k

i k

G G ij G G km G G ij kme e E G u V G u V G

G i G i ke e E G u V Gi

G i ke e E G

e

A d u d u d u u

n d u d e e

n d e e m n

n m n W G m m

1 2 1 2 1 21 1

1 11 1

1

4 ( ) ( ), ( )2

2 2( ) ( )

2 2

2 2 1 1 1

1 2

/ 2). (3.4)

= ( ( ) ( )) ( , )

= ((1/ 2) ( ( , ) ( , ))(2( )

( 1) ( ))

( )(2 ( ( | ) ( | )))

(

i ij i k

l m k

i i

G G ij G G k G G ij ke E G u V G v V G

G l k G m kv v E G v V G

G k

e l e m

A d u d v d u v

d v v d v v m n

n n d v

m n n n v G n v G

m n n

11 1 12 2 2 ( ), ( , ) ( , )

1) (1/ 2) ( 1) ( ).k G m k G l k

G kv V G d v v d v vn n d v

Thus,

4 2 2 1 1 2 2 1 1

2

2 2 1 1 1 2 2

= ( )( ( ) ( )) (1/ 2) ( 1)(2 ( ) ( ))

( )(2 ) ( 1). (3.5)

A m n DD G PI G n n Gut G C G

m n m n m n n

Employing (3.2), (3.3), (3.4) and (3.5) in (3.1), we get the required result.

Corollary 3.2 Let 1G be a bipartite graph. Then

1 2 2 2 1 2 2 2 1

2 2 1 2 2 1 1 1 1 2

2

1 2 2 1 1 2 1 2 1 2 2

( ) = ( 2 1) ( ) 4 ( ) ( )

( 1) ( ) ( ) ( )

2 ( )( ( 1) 2) 4 ( 1).

eDD G G m n DD G n m n W G

n n Gut G m n n m mM G

m m n n m n mm m n n

Theorem 3.3 The Gutman index of 1 2G G is given by

2 2

1 2 2 2 2 1 2 2 2 2 1

1 1 2 1 2 2 2 2 2 1

1 2 1 2 2 2 2 1 2 1 2 2

( ) = ( 1)(2 3 1) ( ) (4 8 4 ) ( )

3 ( ) ( ) ( )( 1) ( )

2 ( (2 3 1) 2 2) 2 ( ( 1) 6).

eGut G G n m n Gut G m n m n W G

mM G mM G m n n C G

m n m n m n m mm m m m

Proof.

1 2 1 2 3 4( ) = ,Gut G G A A A A

(3.6)

where

1 2 1 2 1 21

1 2 1 2 1 21 2

1 2 1 2 1 21 2 2

1 { , } ( )

2 ( ) { , } ( )

3 { , } ( ) ( ), ( )

= ( ) ( ) ( , ),

= ( ) ( ) ( , ),

= ( ) ( ) ( ,

i j

i i

i k i km k

G G i G G j G G i jv v V G

G G ij G G ik G G ij ike E G u u V Gij ik

G G ij G G km G G ije e E G u V G u V Gij

A d v d v d v v

A d u d u d u u

A d u d u d u u

1 2 1 2 1 21 2 14 ( ) ( ), ( )

),

= ( ) ( ) ( , ).i k

km

G G ij G G k G G ij ke E G u V G u V Gij iA d u d v d u v

218 ADIGA, RAJU, RAMANNA AND NARASIMHAMURTHY

Using Lemmas 2.1 and 2.2, 1A , 2A , 3A and 4A can be computed as follows:

1 2 1 2 1 21

1 1 11

1 2 1 2 1 21 2

1 { , } ( )

2

2 { , } ( )

2

2 1

2 ( ) { , } ( )

{ ,

= ( ) ( ) ( , )

= ( 1) ( ) ( ) ( , )

= ( 1) ( ). (3.7)

= ( ) ( ) ( , )

= (2

j

j

i ij ik

j

G G i G G j G G i jv v V Gi

G i G j G i jv v V Gi

G G ij G G ik G G ij ike E G u u V Gi

u u

A d v d v d v v

n d v d v d v v

n Gut G

A d u d u d u u

2 2 2 21 2

2 2 2 22

1

( ) } ( )

, ( )

2

2 1 2 2 2 2 2( )

2 2 1 2 2

2

1 2 1 2 2 2 2

( ( ) ( ) 2( ( ) ( )) 4)

( ( ) ( ) 2( ( ) ( )) 4)

= (4 ( )) 8( 1) 4 ( 1)

( ) 2 ( ) 4 )

= (4 3 ( ) ( ) 4( 1)(

i k

j k

i

G j G k G j G ke E G V G

G j G k G j G ku u E G

e E G

d u d u d u d u

d u d u d u d u

m M G n m n n

M G M G m

m m M G M G n

2 2 22 ) 4 ). (3.8)m n m

1 2 1 2 1 21 2 2

2 2 11 2 2

11 2

3 { , } ( ) ( ), ( )

{ , } ( ) ( ), ( )

{ , } ( ) ( ),

= ( ) ( ) ( , )

= ( ( ) 2)( ( ) 2)( ( , ) 2)

( ( , ) 2) (

i k ij km k

i k ij km k

i k km

G G ij G G km G G ij kme e E G u V G u V Gi

G ij G km G i ke e E G u V G u V Gi

G i ke e E G u V G u Vij i

A d u d u d u u

d u d u d e e

d e e

2 22

2 22 2

11

( )

2

2( ), ( )

2 2

2 2 2 2{ , } ( )

2 2

2 2 2 2 1 1 1

( ) ( )

2 ( ( ) ( )) 4 )

= ( ( , ) 2)(4 8 4 )

= (4 8 4 )( ( ) ( 1) / 2). (3.9)

ij i km k

i k

G ij G kmGk

G ij G kmu V G u V G

G i ke e E G

e

d u d u

d u d u n

d e e m n m n

m n m n W G m m

1 2 1 2 1 21 2 1

1 1 11 1

11 1 1

4 ( ) ( ), ( )

2 2 2( ) ( )

2 2 2 1 ( ), ( , ) ( , )

2

= ( ) ( ) ( , )

= (( )( 1)( ( , ) ( , )) ( )

( )( 1)(2 ( )))

= (

i ij i k

l m k

k G m k G l k

G G ij G G k G G ij ke E G u V G v V G

G l k G m k G kv v E G v V G

G kv V G d v v d v v

A d u d v d u v

m n n d v v d v v d v

m n n m d v

m n

2

2 2 1 1 1)( 1)[2 ( ) ( ) 2 ]. (3.10)n Gut G C G m

Now, the result follows using (3.7), (3.8), (3.9) and (3.10) in (3.6).

Corollary 3.4 Let 1G be a bipartite graph. Then

2 2

1 2 2 2 2 1 2 2 2 2 1

1 1 2 1 2 2 1 2 1 2 2 2

2 1 2 1 2 2

( ) = ( 1)(2 3 1) ( ) (4 8 4 ) ( )

3 ( ) ( ) 2 ( (2 3 1)

2 2) 2 ( ( 1) 6).

eGut G G n m n Gut G m n m n W G

mM G mM G m n m n m n

m mm m m m

Some Topological Indices of Edge Corona of Two Graphs 219

Lemma 3.5 [10] Let nP and nC denote the path and the cycle on n vertices, respectively.

Then

2( ) = ( 1)(2 4 3) / 3,nGut P n n n

3

2

/ 2, ,( ) =

( 1) / 2, .n

n if n is evenGut C

n n if n is odd

Using Lemmas 2.5, 2.6 and 3.5 in Theorems 3.1 and 3.3, we obtain the following

corollaries.

Corollary 3.6 We have

1. 2 2 2 2( ) = ( 1)(2 2 16 14).n mDD P P n m n m n mn m n

2. 2 3 2 2 2

2( ) = (12 16 4) (20 12 ) (8 32 ) .n mDD C C m m n m m n m m n

3. 2 2 2 2 2 2

2 1( ) = 2(2 1)(3 8 4 5 7 5 ).n mDD C C n m n m n mn m mn n m n

4. 2 2 2 2 2( ) = (1/ 3)( 1)(6 3 8 2 2 48 ).n mDD P C n m n m n mn mn n m n

5. 2 3 2 2 2

2( ) = (12 12 ) (20 4 4) (8 36 28) .n mDD C P m m n m m n m m n

6. 2 2 2 2 2

2 1( ) = 2(2 1)(3 8 3 5 4 7 6).n mDD C P n m n m n mn m mn m n

7. 2 2 2 2 2( ) = (1/ 2) ( 1)(8 18 14 13 n mDD K P n n m n m n mn m mn

30 2 16).m n

8. 2 2 2( ) = (1/ 3)( 1)( 1) ( 2 3 ).n mDD P K n m mn mn n m n

9. 2 2 2

2( ) = 2 (( 3 2) (2 3 ) )( 1).n mDD C K n m m n m m n m m

10. 2 2 2 2

2 1( ) = (( 3 2) (3 6 2) 2 ) ( 1)(2 1).n mDD C K m m n m m n m m m n

11. 2 3 2 2 3 2 2( ) = (1/ 4)( 1)( 1)( 5 2 14 2n mDD K C n m m n m n mn m n mn

2 212 6 4 8 4 ).m mn n m n

12. 2 2 2 2 2( ) = (1/ 3)( 1)(4 6 2 12 ).n mDD P K n m n m n mn n m n

13. 2 2 2 2 2 2

2( ) = 4 (2 3 3 2 2 ).n mDD C K n m n m n mn m mn n m

14. 2 2 2 2 2 2

2 1( ) = 2(2 1)(2 5 3 3 5 ).n mDD C K n m n m n mn m mn n n

15. 2 2 2 2 2( ) = (1/ 2) ( 1)(5 11 2 8 2 8 2 2).n mDD K K n n m n m n mn m mn m n

Corollary 3.7 We have

1. 2 2 2( ) = ( 1)(6 6 30 39).n mGut P P n m n m mn m

2. 2 2 2 2 2 2

2( ) = 4 (9 12 6 4 4 16 ).n mGut C C n m n m n mn m mn n m

3. 2 2 2 2 2 2

2 1( ) = 2(2 1)(9 21 6 12 10 12 ).n mGut C C n m n m n mn m mn n m n

220 ADIGA, RAJU, RAMANNA AND NARASIMHAMURTHY

4. 2 2 2 2

2( ) = 4 (9 12 4 6 20 20)n mGut C P n m n m n m mn m .

5. 2 2 2 2

2 1( ) = 2(2 1)(9 21 12 6 22 19).n mGut C P n m n m n m mn m

6. 2 2 2 2 2( ) = (1/ 3)( 1)(18 12 3 12 2 90 4 3).n mGut P C n m n mn m mn n m n

7. 2 2 2 2 2( ) = (1/ 2) ( 1)(21 46 6 33 16 50 41).n mGut K P n n m n m n mn m mn m n

8. 2 2 2( ) = (1/ 6)( 1)( 2)( 1) ( 2 3 4 3).n mGut P K n m m mn mn n m n

9. 2 3 2 2 3 2 2 3 2( ) = (1/ 2) (21 67 10 79 30 33n mGut K C n m n m n mn m n mn n m

32 22 3 1) (3 / 2) .mn m n n

10. 2 2 2 2 2 2

2( ) = ( 1) ( 2 4 4 4 ).n mGut C K n m m n m n mn mn n m

11. 2 2 2 2 2

2 1( ) = ( 1/ 2)( 1) (( 3 1) (4 8 3) 4 4 ).n mGut C K n m n n m n n m n n

12. 2 2 2 2 2 2

2 1( ) = 2(2 1)(4 8 4 4 6 ).n mGut C K n m n m n mn m mn n n

13. 2 2 2 2 2 2

2( ) = 4 (4 4 4 2 2 ).n mGut C K n m n m n mn m mn n m

14. 2 2 2 2 2 2( ) = (1/ 3)( 1)(8 4 8 3 10 2n mGut P K n m n m n mn m mn n

6 4 3).m n

15. 2 2 2 2 2 2( ) = (1/ 2) ( 1)(8 17 6 11 12 n mGut K K n n m n m n mn m mn n

2 2 1).m n

ACKNOWLEDGEMENT

The authors are thankful to the referees for their helpful comments and suggestions. The

first author is thankful to the University Grants Commission, Government of India, for the

financial support under the Grant F.510/2/SAP-DRS/2011.

REFERENCES

1. A. R. Ashrafi, M. Ghorbani, M. Jalali, The vertex PI and Szeged indices of an

infinite family of fullerenes, J. Theor. Comput. Chem.7 (2008) 221–231.

2. V. Andova, D. Dimitrov, J. Fink, R. Skrekovski, Bounds on Gutman index, MATCH

Commun. Math. Comput. Chem.67 (2012) 515–524.

3. P. Dankelmann, I. Gutman, S. Mukwembi, H. C. Swart, On the degree distance of a

graph, Discrete Appl. Math. 157 (2009) 2773–2777.

4. P. Dankelmann, I. Gutman, S. Mukwembi, H. C. Swart, The edge-Wiener index of a

graph, Discrete Math. 309 (2009) 3452–3457.

5. A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: Theory and

applications, Acta. Appl. Math. 66 (2001) 211–249.

Some Topological Indices of Edge Corona of Two Graphs 221

6. A. A. Dobrynin, I. Gutman, S. Klav ̌ar, P. ̌igert, Wiener index of hexagonal

systems, Acta Appl. Math. 72 (2002) 247–294.

7. A. A. Dobrynin, A. A. Kochetova, Degree distance of a graph: a degree analogue of

the Wiener index, J. Chem. Inf. Comput.Sci. 34 (1994) 1082–1086.

8. M. Essalih, M. E. Marraki and G. E. Hagri, Calculation of some topological indices

of graphs, J. Theor. Appl. Inf. Tech. 30 (2011) 122–127.

9. R. Frucht, F. Harary, On the corona of two graphs, Aequationes Math. 4 (1970)

322–325.

10. L. Feng, W. Liu, The maximal Gutman index of bicyclic graphs, MATCH Commun.

Math. Comput. Chem. 66 (2011) 699–708.

11. I. Gutman, Selected properties of Schultz molecular topological index, J. Chem. Inf.

Coumput. Sci. 34 (1994) 1087–1089.

12. I. Gutman, A formula for the Wiener number of trees and its extension to graphs

containing cycles, Graph Theory Notes New York 27 (1994) 9–15.

13. I. Gutman, Degree–based topological indices, Croat. Chem. Acta 86 (2013) 351–

361.

14. I. Gutman, K.C. Das, The first Zagreb index 30 years after, MATCH Commun.

Math. Comput. Chem. 50 (2004) 83–92.

15. I. Gutman, N. Trinajstić, Graph theory and molecular orbitals, Total electron

energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538.

16. I. Gutman, S. Klav ̌ar, B. Mohar (eds.), Fifty years of the Wiener index, MATCH

Commun. Math. Comput. Chem. 35 (1997) 1–259.

17. Y. Hou, W.-C. Shiu, The spectrum of the edge corona of two graphs, Electron. J.

Linear Algebra 20 (2010) 586–594.

18. A. Iranmanesh, I. Gutman, O. Khormali, A. Mahmiani, The edge versions of

Wiener index, MATCH Commun. Math. Comput. Chem. 61 (2009) 663–672.

19. M. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, The first and second Zagreb indices

of some graph operations, Discrete Appl. Math. 157 (2009) 804–811.

20. M. Liu, B. Liu, A survey on recent results of variable Wiener index, MATCH

Commun. Math. Comput. Chem. 69 (2013) 491–520.

21. M. Knor, P. Potocnik, R. Skrekovski, Relationship between the edge-Wiener

indexand the Gutman index of a graph, Discrete Appl. Math. 167 (2014) 197–201.

22. B. E. Sagan, Y. N. Yeh, P. Zhang, The Wiener polynomial of a graph, Int. J. Quant.

Chem. 60 (1996) 959–969.

23. V. S. Agnes, Degree distance and Gutman index of corona product of graphs,

Trans. Comb. 4 (3) (2015) 11–23.

24. I. Tomescu, Some extremal properties of the degree distance of a graph, Discrete

Appl. Math. 98 (1999) 159–163.

222 ADIGA, RAJU, RAMANNA AND NARASIMHAMURTHY

25. A. I. Tomescu, Unicyclic and bicyclic graphs having minimum degree distance,

Discrete Appl. Math. 156 (2008) 125–130.

26. H. Wiener, Structrual determination of paraffin boiling points, J. Am. Chem. Soc. 69

(1947) 17–20.

27. Z. Yarahmadi, A. R. Ashrafi, The Szeged, vertex PI, first and second Zagreb indices

of corona product of graphs, Filomat 26 (3) (2012) 467–472.