sov conduction
Embed Size (px)
TRANSCRIPT
-
8/12/2019 SOV Conduction
1/47
Separation of Variables for Multi-
dimensional Steady Systems Example 1: Laplaces equation in rectangular
coordinates (p.93):
See solution on page 93-99
),()()(),(
yxuYbXaYXT
++ =0
'''=+
+
k
g
TT yyxx
TL
TL
Ty=0
Tx=0
-
8/12/2019 SOV Conduction
2/47
Example 2: Laplaces equation in cylindricalcoordinates
r0 1
011
2 =++ UrUrU rrr
U(1,)=f()
1
-
8/12/2019 SOV Conduction
3/47
Use separation of variables:
1 becomes:
Also, it must be periodic in :
So:
This is satisfied only if =n where n=0,1,2,, so:
)()( = rRU
:or
cos,sin"'"
0"1
'1
"
22
2
==+
=++
RRr
RRr
Rr
Rr
R
)](cos[)](sin[
cossin
22 +++=+
BA
BA
)2()( +=
,...2,1,0cossin =+= nnBnA nnn ;
-
8/12/2019 SOV Conduction
4/47
R equation:
This is the equidimesional equation. Characteristicequation obtained substituting R=rn:
For n=0:
For n0:
0'"
22
=+ RnrRRr
2220 nn ==+ or-1)-(
rccRr
c
R
rcRrRRr
ln'
'
'
lnln'ln0'"
00
0
0
2
+==
==+
oror
or
n
n
n
nn rcrcR += '
rccR ln'00+=
-
8/12/2019 SOV Conduction
5/47
solution:
However, u
-
8/12/2019 SOV Conduction
6/47
Apply non homog. B.C.:
Use orthogonality:
First multiply by sin(m) and integrate in (0,2):
=
=++==
11
0 cossin)(),1(n
n
n
n nbnaafU
m
n
n
n
n
admf
dnmbdnma
dmadmf
=
++
=
=
=
2
0
0
1
2
01
2
0
0
2
0
0
2
0
sin)(
cossinsinsin
sinsin)(
or
4444 34444 21
44 344 21
-
8/12/2019 SOV Conduction
7/47
Next multiply by cos(m) and integrate in (0,2)
Next multiply by 1 and integrate in (0,2)
General 2-D cylindrical coordinate problems:
mbdmf =2
0
cos)(
2)( 0
2
0
adf =
),(),(),( zTzrTrT
Equidimensionalequation in r:
sin and cos
Bessel functionin r, exponential
in z
Thin walled tubes,can reduce to
Cartesian coords.
-
8/12/2019 SOV Conduction
8/47
Example 3: Semi-infinite solid cylinder
Let = T - TThen:
r
r0
z
T
)(0),(
)()()0,(0),(
),0(0),0(
0
0
2
2
finiter
rFTrfrzr
finitezzr
zr
rr
r
or
=== =
==
=
+
-
8/12/2019 SOV Conduction
9/47
Let (r,z) = R(r)Z(z) Need eigenvalue problem in r-direction:
( )
0)(,0
and
0)(,)0(or0)0(
0
"'
1
2
2
2
0
2
2
==
===
=+
==
ZZ
dr
Zd
rRfiniteRdr
dR
rR
dr
dRr
dr
d
Z
ZrR
dr
d
Rr
-
8/12/2019 SOV Conduction
10/47
Rn = AnJo(nr) where n are determined from Jo(nro)
Also,
Apply the non-homogeneous condition:
Use orthogonality:
=
=
=
1
0 )(),(
)(
n
n
z
n
z
nn
rJeazr
eCzZ
n
n
===
1
0 )()()0,(
n
nn rJarFr
=0
0
0
2
0
0 0
)(
)()(
r
n
r
n
n
drrrJ
drrJrrFa
2
)( 02
1
2
0 rJr n=
-
8/12/2019 SOV Conduction
11/47
Example 4: Laplaces eqn. In spherical coordinates:
Axisymmetric no variation in direction
r
y
zT(r,,)
)(),(,),0(
0sinsin
12
fRTfiniteT
T
r
Tr
r
==
=
+
-
8/12/2019 SOV Conduction
12/47
Let T(r,) = R(r)() is the only possible homogeneous direction.
Choose the (-) sign to end up with the following:
Recast 1 as
finiteR
R
dr
dRr
dr
Rdr
dd
dd
=
=+
=+
)0(
02
0sinsin
1
2
22
and
1
2
0sin
cos1
sin
1 2
=+
d
d
d
d
-
8/12/2019 SOV Conduction
13/47
Let x = cos ; then and
This is the so called Legendres eqn. If = n:
0)1()1( 2 =++
43421
dx
dx
dx
d
dx
d
d
dx
dx
d
d
d []sin
[][]
==
3
)(),(: xQxP nn
Legendre functionsof first kind (polynomials
Of order n)
Legendre functionsof second kind (in finiteseries)
-
8/12/2019 SOV Conduction
14/47
Temperature Variation in a Solid Sphere
Eqn. 2 is equidimensional eqn. Characteristiceqn. obtained by setting R = r
K,2,1,0);(cos == nPA nn
+=+=
++=
+=
=+=+
)1(2
)12(1
2
)1(411
2
411
002)1(
2,1
2
n
nn
nn
oror
-
8/12/2019 SOV Conduction
15/47
Hence
Apply non-homog. B.C.:
=
+
=
==+=
0
)1(
)(cos),(
0)0(;)(
n
n
n
n
nnn
nn
nn
PrarT
DfiniteRrDrCrR
==
+=
=
=
1
1 0
0
0
0sin)(cos)(cos0)()(
sin)(cos)(2
12
)(cos)(
dPPdxxPxP
dPfn
Ra
PRaf
nnmn
n
n
n
n
n
n
n
or
-
8/12/2019 SOV Conduction
16/47
For example: if
-
8/12/2019 SOV Conduction
17/47
[ ]
K
+
+=
==
===
)(cos16
7
)(cos4
3
2
1),(
16
7
)35(2
1
2
7
04
5)13(
2
1
2
5
3
3
10
1
0 0
3
0
3
3
1
0
301
0
202
2
PR
r
PR
r
T
rT
TdxxxTRa
xxT
dxxT
Ra
.
.
-
8/12/2019 SOV Conduction
18/47
Legendre Polynomials
Consider the following linear second-order ODE withvariable coefficients:
Or equivalently:
0)1()1( 2 =++
ydx
dyx
dx
d
0)1(2)1( 2
22
=++ ydxdy
xdx
yd
x (5.109a)
(5.109b)
-
8/12/2019 SOV Conduction
19/47
This equation is known as Legendres diferential
equationand its two linearly independent solutionsare called Legendre functionsof the firstand secondkind, respectively.
When = n, where n is a positive integer or zero, theLegendre functions of the first kind becomes apolynomial of degree n.
The general solution of Legendres equation for
n = 0, 1, 2, can be written as
Pn(x) are polynomials called Legendre Polynomialsofdegreen, and Qn(x) are the Legendre functions of thesecond kind
)()()( 21 xQCxPCxy nn += (5.110)
-
8/12/2019 SOV Conduction
20/47
The Legendre polynomials are given by:
...!5
)4)(2)(3)(1(
!3
)2)(1()(
...!4
)3)(1)(2(
!2
)1(1)(
,...7,5,3),()1(642
531)1()(,)(
,...6,4,2),(642
)1(531)1()(,1)(
53
42
2/)1(
1
2/
0
++
++
=
++
++
=
=
==
===
xnnnn
xnn
xxV
xnnnn
xnn
xU
nxVn
nxPxxP
nxUn
nxPxP
n
n
n
n
n
n
n
n
(5.111a,b)
(5.111c,d)
(5.112a)
(5.112b)
-
8/12/2019 SOV Conduction
21/47
The first six Legendre Polynomials are readily foundto be:
Rodrigues Formula
)157063(81)()13(
21)(
)33035(8
1)()(
)35(2
1)(1)(
355
22
24
51
3
30
xxxxPxxP
xxxPxxP
xxxPxP
+==
+==
==
n
n
n
nn x
dx
d
nxP )1(
!2
1)(
2 =
(5.113)
(5.114)
-
8/12/2019 SOV Conduction
22/47
Recurrence formula:
The following property of Legendre Polynomials is
also frequently used:
xn
xPnxnPxP nnn
)12(
)()1()()( 11
+
++= +
,...3,2,1),()12(
11
=+= +
nxPndx
dP
dx
dPn
nn
(5.115)
(5.116)
-
8/12/2019 SOV Conduction
23/47
If |x| < 1, the Legendre functions of the second kindare given by
Notice that the Legendre Functions of the secondkind are infinite series, which are convergent when
|x| < 1, but diverges as x 1
,...7,5,3),(531
)1(642)1()(
),()(
,...6,4,2),()1(531
642)1()(
),()(
2/)1(
11
2/
00
=
=
=
=
=
=
+nxU
n
nxQ
xUxQ
nxVn
nxQ
xVxQ
n
n
n
n
n
n
(5.117a,b)
(5.117c,d)
-
8/12/2019 SOV Conduction
24/47
Legendre Functions of the second kind Qn(x) also
satisfy recurrence formulas (5.115) and (5.116)
When |x| < 1
Qn for any positive integer value of n:
xxxxQ 10 tanh
11ln
21)( =+=
(5.118)
)...(
)1(3
)52()(
1
)12()()()( 310 xP
n
nxP
n
nxQxPxQ nnnn
=
(5.119)
-
8/12/2019 SOV Conduction
25/47
If |x| < 1, the substitution x = cos transforms
Legendres differential equation from the form(5.109b) into the form:
or, equivalently
when = n. Hence the general solution to (5.120a) is
0)1(sinsin
1
=++
ynnd
dy
d
d
(5.120a)
0)1(cot2
2 =+++ ynnddy
dyd
(5.120b)
)(cos)(cos)(21 nn QCPCy += (5.121)
-
8/12/2019 SOV Conduction
26/47
It should be noted here that Qn(cos) is not finite
when cos = 1; that is when = k, k = 0, 1, 2, ,whereas Pn(cos) is merely a polynomial of degree nin cos. In particular we have
.
.
.
)cos33cos5(
8
1)cos3cos5(
2
1)(cos
)12cos3(4
1)1cos3(
2
1)(cos
cos)(cos
1)(cos
3
3
22
1
0
+==
+==
==
P
P
P
P
-
8/12/2019 SOV Conduction
27/47
When |x| < 1, the functions
are called the associated Legendre functionsofdegreen and orderm of the firstand second kinds,respectively. They can be shown to satisfy thedifferential equation
)()(,)()1()(
)()(,)(
)1()(
02/2
02/2
xQxQdx
xQdxxQ
xPxPdx
xPdxxP
nnmn
m
mmn
nnm
n
mmm
n
==
==
(5.122a)
(5.122b)
01
)1(2)1(2
2
2
22 =
++ y
x
mnn
dx
dyx
dx
ydx (5.123)
-
8/12/2019 SOV Conduction
28/47
Non-Homogeneous Problems
May result from non-homog. boundaries and/or non-homog. Governing equation
Example 5: Non-homog. Boundaries
The solutions can be added only when expressed ina common coordinate system. Sign for upper andlower B.C. depend on whether heat flux is in or out
2 = 0 = 21= 0 22= 0 23= 0+ +
F(y)
o
F(y)
0
0
0 0
0
= hy
k
"q
y
k =
11 =
hy
k
01 =
y 03 =
y"2 q
yk =
22 =
hy
k 33 =
hy
k
-
8/12/2019 SOV Conduction
29/47
Example 6: Non-homog. Term in the G.E. (use of
partial solutions)
L L
x
y
l
l 0 u
0
0
0
0
u
xy
=0
=0
y=0
x=0
0),(),()0,(),0(
0
"'
=====++
yLlxxy
k
u
yx
yyxx 1
-
8/12/2019 SOV Conduction
30/47
Assume soln. of following form:
With form given by 2 :
If u is function of x and y, try variation of parameters
)(),(),(or
)(),(),(
43
21
yyxyx
xyxyx
+=+= 2
3
(
2
21
111
2
1
2
2
1
2
22
2
2
),
0),()0,(),0(;0
0)(;0)0(;0"'
=
==
=
=
+
===+
lx
yLx
y
y
xyx
Ldx
dk
udx
d
-
8/12/2019 SOV Conduction
31/47
Two-Dimensional Transients
Example 7: Separation of variables (p134)
Let U = W(r,)()
4 becomes:
)()0,,(;0),,1(
),,(
12
rfrUU
rUU
UUrr
UU rrr
==
==++
where4
already normalized
2
2
'111 =
=
++ Wr
Wr
WW
rrr
exp. decayIn time
-
8/12/2019 SOV Conduction
32/47
Also:
Let W = R(r)()
2= e
011 2
2
=+++ WWr
Wr
Wrrr
2222
2
2
"'"
0"1
'1
"
=
=++
=+++
rR
Rr
R
Rr
RRr
Rr
R
or
need periodicbehavior in
-
8/12/2019 SOV Conduction
33/47
So;
Now , so satisfies:
),(),,(:
0)('"
)2()(,cos,sin:
2222
rYrJR
RnrrRRr
n
nn
forwhere
=++
+==
must be absent forfinite temp. at r=0
0)(0),,1( == mnnJU
0)( =mnnJ where mn is the mth zero crossing of Jn
m = 1, 2, 3, ; n = 0, 1, 2,
eigenvalues in r-dir. eigenvalues in -dir.
-
8/12/2019 SOV Conduction
34/47
Unknown constants are again evaluated using
orthogonality:
first:
=
=
+=1 0
2)()cossin(),,(m n
mnnmnmnmnerJnBnArU
=
= +=
=
1 0)()cossin(
),()0,,(
m n
mnnmnmn rJnBnA
rfrU
44 344 21444 3444 21
dnrJAdnrf
m
mnnmn
nrF
=
= 2
0
2
1
'''
)',(
2
0'sin)('sin),(
-
8/12/2019 SOV Conduction
35/47
next:
Drop primes for convenience:
=
=
=
1
0 ''
2'''
1
01
1
0 '''''''''
)(
)()()()';(
drrrJA
drrJrrJAdrrJnrrF
nmnnm
m
nmnmnnmnnmn
{ }
1
0
2
11
2
1
0
)()()(2
);()(
= +
rJrJrJr
A
drnrFrrJ
mnnmnnmnnmn
mnn
-
8/12/2019 SOV Conduction
36/47
or
Determine Bmn similarly. See p. 138. Note n=0 hasto be treated separately (see p. 90)
{ }
= + )()()(2
1 211 mnnmnnmnnmn JJJA L.H.S.
0)(
2)(1 mnn
mn
mnn Jn
J
+= +
=
=
+
+
1
0
2
02
1
2
1
1
0
sin),()()(
2
)(2
1);()(
drdnrfrrJJ
A
rJAdrnrFrrJ
mnn
mnn
mn
mnnmnmnn
-
8/12/2019 SOV Conduction
37/47
Example 8: Reduction of multi-dimensional to one-dimensional transients.
- Problem must be homog. and linear
- I.C. should be constant or expressible in
product form: e.g. Ri(r)Zi(z) or Xi(x)Yi(y),etc.
L
z
rto
to
to ro
0
0
2
2
2
2
)0,,(
0),,(0),0,(
0),,(
11
ttzrT
LrTrT
zrT
T
z
T
r
T
rr
T
i===
=
=
+
+
1
-
8/12/2019 SOV Conduction
38/47
Let
Substitute in 1 :
This will be satisfied if:
),(),( rZrRT= 2
0111
)(11
=
+
+
+=++
ZZRZRR
r
R
RZZRRZZRr
ZR
zzrrr
zzrrr
or
ZZ
RRrR
zz
rrr
1
11
=
=+
and
-
8/12/2019 SOV Conduction
39/47
B.C.:
These are satisfied when:
I.C.:
One choice that will satisfy this:
),(),(),,(
),0(),(),0,(
),(),(),,( 00
LZrRLrT
ZrRrT
zZrRzrT
==
=
0),(),0(0),( 0 == LZZrR ,,
)0,()0,()0,,(0 zZrRttzrT i ==
1)0,()0,( 00 == zZttrR i ,
-
8/12/2019 SOV Conduction
40/47
This reduces the originial problem into 2 one-dim.
Problems. Z is the solution to a 1-D transient in a slab: (p.84)
R is the solution to a 1-D transient in an infinitely long
cylinder: (p.120)
where m satisfy J0(mr0) = 0. Solution for T is obtained from 2
=
+
++
= 0/)12(
222
12
]/)12sin[(4
),(n
Ln
en
LznzZ
( )
=
=1
/)(
010
00
20
20
)()(
)(2),(
m
rr
mm
mi
merJr
rJttrR
-
8/12/2019 SOV Conduction
41/47
Many other problems can be handled in a similar
manner, e.g.
See other examples, also p.265 I&P
Can also include other homog. Conditions such asconvection. Cannot handle flux.
Multi-D I.C. must be of product form.
=
-
8/12/2019 SOV Conduction
42/47
Some Multi-D Steady Problems
Solvable By Separation of VariablesRectangular:
2D (s.s):
1 2 3
qf1(x)
f4(x)
f3(x)
f2(x) T0T0
T0 f2(x)
h, T0
-
8/12/2019 SOV Conduction
43/47
3D (s.s.):
A: 1 at T1, 2 at T2, all others at T0.B: 1 at T1, 2 at T2, all others convective conditions
C: 1 at T1, convection at all others
D: Region extends infinitely in the x-dirn
from X=0.Surface at x=0 at T1. Convection at other foursurfaces
x
yz
2
6
3
5
4
1
-
8/12/2019 SOV Conduction
44/47
Cylindrical:
2D:
(a) Short cylinder (r,z)
(b) Circumferential temperature variation
variation (r,) in a half infinite solidlong half cylinder: z > 0
z
r
f(r) = T-Tr
TS or h(for r=R or z=L)
f()
T0
r
z T
-
8/12/2019 SOV Conduction
45/47
(c) Disk shaped input B.C. (flux or temperature)
Can apply to bottom surface of a semi-infiniteregion or between two semi-infinite regions:
Spherical (r,); axisymmetric
(a) hollow sphere (b) solid hemisphere
T0f()
T0
f()
Multi Dimensional Transients Using
-
8/12/2019 SOV Conduction
46/47
Multi-Dimensional Transients Using
Separation of Variables Rectangular Regions:
(i) Assuming surface temperature
is T0 at all faces for t > 0 Ti(x,y,z)
2H
2W2L
zx
y
( ) ( ) ( )[ ]( ) dxdydz
H
zm
L
ym
W
xmTzyxTA
HpLnWm
H
zm
L
ym
W
xmAe
TtzyxT
W L H
imnp
mnp
m n p
mnp
tmnp
sinsinsin),,(
///
sinsinsin
),,,(
0 0 0 0
22222
1 1 1
0
2
=++=
=
=
=
=
=
-
8/12/2019 SOV Conduction
47/47
(ii)
Cylindrical Regions:
(i) (ii)
L T0x
y Ti(x,y)
h, T0
h, T0
Ti(r,) h(Ts- T)T0
T0
T0
Ti